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Introduction

We assume a classical logic setting where projection and forgetting are
available as second-order operators that can be nested

It allows to define concepts such as:

e Literal projection, literal forgetting

e Globally strongest necessary and weakest sufficient condition
e Definability and definientia

A variety of applications can be rendered with these:

e View-based query processing
e Query rewriting
e Characterizing definientia in formula classes

Knowledge base modularization
e Conservative theory extension

“Non-standard inferences”
¢ “Formula matching”

¢ Non-monotonic reasoning and logic programming
e Stable and partial stable model semantics
e Abduction w.r.t. these semantics



Classical Logic + Second-Order Operators
e We start with an underlying classical logic, e.g., first-order or propositional

e |t is extended by second-order operators, e.g., predicate quantification or
Boolean quantification

Jglp—=q)AN(g—7)

e The associated computation is second-order operator elimination:
computing an equivalent formula without second-order operators

Jgp—=>N(g—r) =por



Forgetting, Projection, Uniform Interpolants

Further second-order operators can be defined in terms of predicate
quantification

An operator for forgetting can be seen as syntax for iterated existential
predicate quantification:

forgetAboutPredicates, +(F) = 3pdq F
Elimination of forgetAboutPredicates is often called computation of
forgetting

Forgetting about all predicates except those explicitly specified is often
called projection [Darwiche 01]

projectOntoPredicates,, .\ (F') = forgetAboutPredicates ,, ; pyppicaresh {p,q1 (F)
Elimination of projectOntoPredicates is often called computation of a
uniform interpolant

Here we handle projection and forgetting symmetrically as second-order
operators



Scopes as Parameters of Second-Order Operators

® The introduced second-order operators have a set of predicates as parameter
We generalize this to a set of ground literals, called scope

e A scope can express different effects on positive and negative predicate
occurrences
Our basic second-order operators are now literal projection and literal
forgetting:
Let F=(p—q)A(g—T)

forget,_, (F") = projecty, .., _+(F) = @ =) APp—71)

[Lang* 03, W 08]

An interpretation is a set of ground literals, containing each ground atom
either positively or negatively.

I |= projectg (F) iffger There exists a J s.t. J = Fand JNS C 1.

forgets(F) £ project (F).

ALLGROUNDLITERALS\ S



Notation for “in Scope”

e That F'is “in scope” S is written as
Fes

Let F=pV gV (rA-r)

F e {p.—q}
F e {p,q,r,s,—p,~q,—r, s}

F ¢ {p}

F eS8 |iffges F = projectg(F).



Globally Strongest Necessary and Weakest Sufficient Condition

e The globally strongest necessary condition of G on S within Fis
the strongest X € S s.th. (FAG) = X
It can be expressed by a second-order operator

gsneg,1 ((@—=p) @) = p

e The globally weakest sufficient condition of G on S within F'is
the weakest X € S's.th. (FAX)EG

It can be expressed by a second-order operator

gwse (P—4),9) = p

e The analog concepts in [Lin 01] are not unique modulo equivalence. See
also [Doherty* 01, W 12]

Let S denote the set of the complements of the members of scope S.
gsncg(F,G) £ projects(F AG).
gwscg(F,G) £  —projectg(F A —G).



Definition, Definability

e A definition of G in terms of S within F'is a formula (G <> X) such that
1. X eS8, and
2. FEGo X

G is the definiendum, X is the definiens
Note: If F'is a sentence, then F' |= G(x) > X (x) iff F' = Vx(G(x) > X (x))
Let F=(p+ gAr)A(g—T)

(p <> gAr) is a definition of p in terms of {g,} within F'

(p<+q) is a definition of p in terms of {q,r} within F’

e Existence of a definition is called definability

p is definable in terms of {q,r} within F’
p is definable in terms of {¢} within F’
p is not definable in terms of {r} within F'

e This is a semantic characterization, aka implicit definability



Definition, Definability in Terms of Second-Order Operators

¢ Definientia are exactly those formulas in the scope that are
between the GSNC and the GWSC

Let F=(p+gAr)A(g—T)

gsnc{q’r}(F, p) = proje.ct{q’r}(F AD) =gAr
gwsc, 4 (Fyp) = —projecty_, 1 (F'A—p) = ¢

e Definability holds iff the GSNC entails the GWSC

gsneg, 1 (Fyp) = qAr | g = gwsey 1 (Fp)
gsnc{q}(F7p) = g F g gwsc{q}(F,p)
gsnc{r}(F,p) 7 oL = gwsc{r}(F,p)

e In case of definability, the GSNC and GWSC provide the strongest and
weakest definientia

ISDEFINITION(X, G, S, F) iffger X €S and gsncg(F,G) = X = gwscg(F, G).
ISDEFINABLE(G, S, F)  iffges gsncg(F, G) = gwscg(F, G).



View-Based Query Rewriting — Exact Views
[Halevy 01, Calvanese* 07, Marx 07, Nash* 10, Barany* 13, W 14a]

e Given: D “database scope”  {a,—a}
U “view scope” {p, —p,q,q}
Ve DUU “view specification” (p <> a) A (¢ <> a)
QEeD “query” a

The “view extension” of I wrt. “database” DB & D is project,,(DBAV)
project; (a AV) = pAgq project; (ma A V) = —pA—q

e “Queries to view extensions can be evaluated particularly well”
The objective is to find an “exact rewriting” R € U s.t. for all DB € D:

project, (DB AV) = R iff DB = Q

Assume that all R € U are uniquely definable in terms of D within V'
gsnep(V,p) = a = gwsep(V, p)

Then R is an exact rewriting iff R is a definiens of ) i.t.o. U within /

gsne, (V,Q) = (pAq) C g (pVq) = gwsey (V,Q)



View-Based Query Rewriting — “Split Rewriting”
[W 14a], related to [Borgida* 10, Franconi* 13]

e Given: D “database scope”
U “view scope”
Ve DUU *“view specification”
Q EeDUU *“query”

e The idea is to rewrite a Q € DUU to a R € D that can be evaluated by
the “database system”

e The objective is to find a “split rewriting” R € D s.t. for all DB € D:
DBER iff DBAV EQ

* R is a split rewriting iff R = gwsc,(V,Q)



View-Based Query Rewriting — Further Issues

¢ |nvestigation of “determinacy” w.r.t. formula classes
[Segoufin and Vianu 05, Marx 07, Nash* 10, Barany* 13]

For @, V in particular formula classes:

® is the existence of an exact rewriting (definability) decidable?
e what formula class contains all exact rewritings?



Definientia in Formula Classes
[W 14b]
e So far, we considered definientia in terms of a vocabulary

Question: Can we apply second-order operators also to characterize
definientia in efficiently processable formula classes?

e Yes, for the class of formulas that are equivalent to a conjunction of atoms

e This class excludes disjunction and negation and can thus be used to
encode other syntactic conditions on the meta level

e.g., a Krom formula as a conjunction of atoms like clause(p, —q)

I |= projectg (F) iffges There exists a J s.t. J = F and JNS C 1.
I = diffy(F) iffger There exists a J s.t. J|=F and JNS < I.
glb(F)  circygg (diffygg (F)).

fhub(F') . projectyos (gIb(F)) A projectygg (F).

ISCA-DEFINABLE(G, S, F) iff glb(gsncgpos(F, G)) = gWscgqpos (F, G).

If ISCA-DEFINABLE(G, S, F'), then
ISCA-DEFINIENS (fhub(gsnc g pos (F, G)), G, S, F).
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Conservative Extensions Underlying Knowledge Base Modularization
[Ghilardi* 06, Cuenca Grau* 08]

iff

iff
iff
iff
iff
iff

Adding G does not “damage my ontology” F'

“All knowledge about the vocabulary of F that is
expressed by (F' A G) is expressed by F' alone”

(F A G) is a conservative extension of F'

G is conservative within F [W 143]
G imports F in a safe way [Cuenca Grau* 08]
F |= project, ey (F A G)

F' = project o, ) (F' A G)



“Formula Matching”

Concept matching modulo equivalence is a non-standard inference in
description logics [Borgida and McGuinness 96, Baader* 99],
Here for arbitrary formulas but with single-variable patterns
Given: F' Background formula T

G Formula P& q

H Pattern: formula with special atom = (pAq)Vz
Objective: Find a “matching formula” X such that

FEG+ Hjz— X]
TE@< 9« (pAg V)
TE@e < ((pAgV(=pA—g))

There are two second-order formulas M and M5 such that solutions
are exactly the X s.th. M, = X E M,

Basic characterization of X: =VzF A (z < X) — (G <> H)
This is equivalent to: e FA-2A-(G+ H)EX

and X Ve F Az — (G <+ H) 15



Stable Model Semantics for Logic Programming

Let F=p A (g pA-m)

It has three models: {p,q,r},{p,q, 7}, {p, q,r}
Considered as logic program it has a single stable model: {p,q}

Logic programs can be represented by classical formulas, where
second-order operators associate logic programming semantics [W 10]

stable(p A (g < pA—rl)) = (pAgA-T)

A "“replica” of the vocabulary, identified by the 1 superscript, is used for
predicate occurrences under negation as failure

stable(F) % rename;, , (i orposy 1 (F))

1. minimize undecorated predicates, while keeping 1 predicates fixed
2. rename the 1 predicates to their undecorated correspondents

The stable operator renders the characterization of the stable model
semantics in terms of circumscription from [Lin 91]

By combination with an encoding from [Janhunen* 06], a similar operator
can render the 3-valued partial stable model semantics



Abduction with the Stable Model Semantics
[Kakas* 98, Lin and You 02, W 133]

e Given: F background (wet < shower) A
(wet « rain A —~umbrella*) A
(umbrella < forecastRain)

G observation wet
S abducibles {shower, rain, forecastRain,
—shower, —rain, —forecast Rain }
e In classical logic, an explanation is an X € S s.th. (FAX) EG

The weakest explanation is gwscg(F, ) gwscg(F, G) = shower

e For the stable model semantics, a “factual”’ explanation is a conjunction

of literals X € S s.th. stables (F A X) = G

stableg effects that atoms occurring in S are subjected to the open-world
assumption (passed as “fixed” to the circumscription)

The minimal factual explanations for the example are
shower and (rains A —forecastRain)



Abduction with the Stable Model Semantics (2)
[W 13a]

For the stable model semantics, a ‘“factual” explanation is a conjunction of

literals X € S s.th. stables (F A X) = G

e The minimal factual explanations are the prime implicants of
gWSC g (stables (F), G)

e SN0 specifies the undecorated literals in .S

e The underlying justification is that for 7 € SU S it holds that
stableg(F A H) = stableg(F) A H

gWSC g (stables(F'), G) = —projectg (stables(F') A =G)

18



Abduction with 3-Valued Logic Programming Semantics

[W 13a]
e Abduction can be analogously characterized with the GWSC for

e the well founded semantics
e the partial stable model semantics

e For the partial stable model semantics, this seems so far the only thorough
formalization of abduction

e Unlike the well-founded semantics, the partial stable model semantics allows
to obtain explanations for the undefinedness of observations

Background: The barber shaves all
males who do not shave themselves

The barber shaves the barber
if the barber has been sentenced to shave himself

Observation: “The barber shaves the barber” is undefined

Explanation: The barber is male and
has not been sentenced to shave himself



Conclusion — Towards Practice

e ToyElim [W 13b] is a Prolog-based prototype system which supports to
define second-order operators as outlined and is useful for small experiments

e Relevant general processing techniques include:

e second-order quantifier elimination methods based on first-order logic
[Gabbay and Ohlbach 92, Doherty* 97]

e recent advances in uniform interpolation for description logics
[Ghilardi* 06, Konev* 09, Koopmann and Schmidt 13]

e progress in SAT pre- and inprocessing
[Eén and Biere 05, Heule* 10, Manthey* 13]

e General agenda: Investigate processing of the particular formula patterns
in which combinations of second-order operators are used in applications

Consider these patterns also for restricted argument formulas

20



Conclusion — Classical Logic + Second-Order Operators

¢ Provides an integrating view on a variety of applications in areas such as

e view-based query processing

e knowledge base modularization

e many “non-standard” inferences

® non-monotonic reasoning and logic programming
e abductive reasoning

e Operators can be nested and combined
e New operators can be defined in terms of other ones
e QOperators let instructive relationships become evident

e Operators seems useful for mechanization

Second-order operators shift techniques from a theoretical
background to a mechanizable and user accessible formalization
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Notes on the Relationship to Craig Interpolation (Addendtum to Slide 9)

e [Tarski 35]: Definability w.r.t. first-order formulas can be reduced to
first-order validity

gsncg(F, Q) = gwsey(F,G) iff FAGEF =G

e The interpolants X in S such that

FAGEXEF -G
are definitions

e The extreme definitions GSNC and GWSC are obtained as uniform
interpolants — if the predicate elimination succeeds

More precisely: Let S specify a set of predicates. Let F, G be first-order. Let
F’', G’ be F,G after systematically replacing all predicates not in S with new
symbols. Then

gsncg(F,G) = gwseg(F,G) iff FAGEF —G'.

If X €S, then FAGEX iff gsncg(F,G) = X.
If X €S, then X £ F' = G iff X |=gwscg(F,G).
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Notes About Unique Definability (Mentioned on Slides 10 and 14)

e If S =5, then a formula that is definable in terms of .S within F is
uniquely definable iff

= projectg(F)

e Conservativeness with respect to all formulas in a scope and definability
in terms of that scope together imply unique definability

See [W 14a]
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Proof Sketch for Slide 10
Assumptions: Re U, Q € D
R is an exact rewriting of Q w.r.t. V'
iff VDB € D : project,,(V A DB) = R iff DB |= Q
iff VYDBeD:VADBERIff DBEQ since Re U
iff VYDBe D:DB -V VRiff DB EQ
iff projectz(V A —R) = projectyz(—Q)
iff gwsc,(V,R) = Q. since Q € D
Assume Al: Unique definability of all R € U i.t.o. D within V, i.e.
VR e U : gsncp(V,R) = gwsc,(V, R).
gwsep (V. R) = Q
iff gsncp(V,R) =Q by assumption Al
iff VAREQ since Q € D
iff VA-QE-R
iff projectz(V A =Q) = —~R since R € D
iff R = gwse,;(V,Q). Note: for “sound views" just this direction is relevant

Q [=gwsep (V. R)
iff projectz(V A -R) = —-Q

iff VA-RE-Q since Q € D
iff VAQER
iff gsnc,; (V,Q) = R. since Re U

See [W 14a] 36



Proof Sketch for Slide 11
Assumption: R € D
R is a split rewriting of @ w.r.t. V and D
iff YDB € D:DB=Riff DBAV = Q
iff YDBeD:DBERIff DBE-VVQ
iff projectys(—R) = projects(V A Q)
iff =R = projecty(V A —Q) since R € D
iff R=gwscp(V,Q).

e Note: The GWSC is the only solution!
e This seems to supersede material in [W 14a3]
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Proof Sketch for Slide 15

EVeFA(re X)— (G« H)
iff =EVeFAz2ANX -5 (G H)ANNVzFA-2zAN-X — (G« H))
iff =E(X—>MeFAx— (G H)AN((FzFA-2A-(G< H)) — X)
iff X =EVeFAx— (G H)andIz FA-2A-(G <+ H) = X.
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