Application Patterns of Projection/Forgetting

Christoph Wernhard

Technische Universitat Dresden

Interpolation: From Proofs to Applications (iPRA 2014)
Vienna, 17 July 2014

Introduction

We assume a classical logic setting where projection and forgetting are
available as second-order operators that can be nested

It allows to define concepts such as:

e Literal projection, literal forgetting

e Globally strongest necessary and weakest sufficient condition
e Definability and definientia

A variety of applications can be rendered with these:

e View-based query processing
e Query rewriting
e Characterizing definientia in formula classes

Knowledge base modularization
e Conservative theory extension

“Non-standard inferences”
¢ “Formula matching”

¢ Non-monotonic reasoning and logic programming
e Stable and partial stable model semantics
e Abduction w.r.t. these semantics

Classical Logic + Second-Order Operators
e We start with an underlying classical logic, e.g., first-order or propositional

e |t is extended by second-order operators, e.g., predicate quantification or
Boolean quantification

Jglp—=q)AN(g—7)

e The associated computation is second-order operator elimination:
computing an equivalent formula without second-order operators

Jgp—=>N(g—r) =por

Forgetting, Projection, Uniform Interpolants

Further second-order operators can be defined in terms of predicate
quantification

An operator for forgetting can be seen as syntax for iterated existential
predicate quantification:

forgetAboutPredicates, +(F) = 3pdq F
Elimination of forgetAboutPredicates is often called computation of
forgetting

Forgetting about all predicates except those explicitly specified is often
called projection [Darwiche 01]

projectOntoPredicates,, .\ (F') = forgetAboutPredicates ,, ; pyppicaresh {p,q1 (F)
Elimination of projectOntoPredicates is often called computation of a
uniform interpolant

Here we handle projection and forgetting symmetrically as second-order
operators

Scopes as Parameters of Second-Order Operators

® The introduced second-order operators have a set of predicates as parameter
We generalize this to a set of ground literals, called scope

e A scope can express different effects on positive and negative predicate
occurrences
Our basic second-order operators are now literal projection and literal
forgetting:
Let F=(p—q)A(g—T)

forget,_, (F") = projecty, .., _+(F) = @ =) APp—71)

[Lang* 03, W 08]

An interpretation is a set of ground literals, containing each ground atom
either positively or negatively.

I |= projectg (F) iffger There exists a J s.t. J = Fand JNS C 1.

forgets(F) £ project (F).

ALLGROUNDLITERALS\ S

Notation for “in Scope”

e That F'is “in scope” S is written as
Fes

Let F=pV gV (rA-r)

F e {p.—q}
F e {p,q,r,s,—p,~q,—r, s}

F ¢ {p}

F eS8 |iffges F = projectg(F).

Globally Strongest Necessary and Weakest Sufficient Condition

e The globally strongest necessary condition of G on S within Fis
the strongest X € S s.th. (FAG) = X
It can be expressed by a second-order operator

gsneg,1 ((@—=p) @) = p

e The globally weakest sufficient condition of G on S within F'is
the weakest X € S's.th. (FAX)EG

It can be expressed by a second-order operator

gwse (P—4),9) = p

e The analog concepts in [Lin 01] are not unique modulo equivalence. See
also [Doherty* 01, W 12]

Let S denote the set of the complements of the members of scope S.
gsncg(F,G) £ projects(F AG).
gwscg(F,G) £ —projectg(F A —G).

Definition, Definability

e A definition of G in terms of S within F'is a formula (G <> X) such that
1. X eS8, and
2. FEGo X

G is the definiendum, X is the definiens
Note: If F'is a sentence, then F' |= G(x) > X (x) iff F' = Vx(G(x) > X (x))
Let F=(p+ gAr)A(g—T)

(p <> gAr) is a definition of p in terms of {g,} within F'

(p<+q) is a definition of p in terms of {q,r} within F’

e Existence of a definition is called definability

p is definable in terms of {q,r} within F’
p is definable in terms of {¢} within F’
p is not definable in terms of {r} within F'

e This is a semantic characterization, aka implicit definability

Definition, Definability in Terms of Second-Order Operators

¢ Definientia are exactly those formulas in the scope that are
between the GSNC and the GWSC

Let F=(p+gAr)A(g—T)

gsnc{q’r}(F, p) = proje.ct{q’r}(F AD) =gAr
gwsc, 4 (Fyp) = —projecty_, 1 (F'A—p) = ¢

e Definability holds iff the GSNC entails the GWSC

gsneg, 1 (Fyp) = qAr | g = gwsey 1 (Fp)
gsnc{q}(F7p) = g F g gwsc{q}(F,p)
gsnc{r}(F,p) 7 oL = gwsc{r}(F,p)

e In case of definability, the GSNC and GWSC provide the strongest and
weakest definientia

ISDEFINITION(X, G, S, F) iffger X €S and gsncg(F,G) = X = gwscg(F, G).
ISDEFINABLE(G, S, F) iffges gsncg(F, G) = gwscg(F, G).

View-Based Query Rewriting — Exact Views
[Halevy 01, Calvanese* 07, Marx 07, Nash* 10, Barany* 13, W 14a]

e Given: D “database scope” {a,—a}
U “view scope” {p, —p,q,q}
Ve DUU “view specification” (p <> a) A (¢ <> a)
QEeD “query” a

The “view extension” of I wrt. “database” DB & D is project,,(DBAV)
project; (a AV) = pAgq project; (ma A V) = —pA—q

e “Queries to view extensions can be evaluated particularly well”
The objective is to find an “exact rewriting” R € U s.t. for all DB € D:

project, (DB AV) = R iff DB = Q

Assume that all R € U are uniquely definable in terms of D within V'
gsnep(V,p) = a = gwsep(V, p)

Then R is an exact rewriting iff R is a definiens of) i.t.o. U within /

gsne, (V,Q) = (pAq) C g (pVq) = gwsey (V,Q)

View-Based Query Rewriting — “Split Rewriting”
[W 14a], related to [Borgida* 10, Franconi* 13]

e Given: D “database scope”
U “view scope”
Ve DUU *“view specification”
Q EeDUU *“query”

e The idea is to rewrite a Q € DUU to a R € D that can be evaluated by
the “database system”

e The objective is to find a “split rewriting” R € D s.t. for all DB € D:
DBER iff DBAV EQ

* R is a split rewriting iff R = gwsc,(V,Q)

View-Based Query Rewriting — Further Issues

¢ |nvestigation of “determinacy” w.r.t. formula classes
[Segoufin and Vianu 05, Marx 07, Nash* 10, Barany* 13]

For @, V in particular formula classes:

® is the existence of an exact rewriting (definability) decidable?
e what formula class contains all exact rewritings?

Definientia in Formula Classes
[W 14b]
e So far, we considered definientia in terms of a vocabulary

Question: Can we apply second-order operators also to characterize
definientia in efficiently processable formula classes?

e Yes, for the class of formulas that are equivalent to a conjunction of atoms

e This class excludes disjunction and negation and can thus be used to
encode other syntactic conditions on the meta level

e.g., a Krom formula as a conjunction of atoms like clause(p, —q)

I |= projectg (F) iffges There exists a J s.t. J = F and JNS C 1.
I = diffy(F) iffger There exists a J s.t. J|=F and JNS < I.
glb(F) circygg (diffygg (F)).

fhub(F') . projectyos (gIb(F)) A projectygg (F).

ISCA-DEFINABLE(G, S, F) iff glb(gsncgpos(F, G)) = gWscgqpos (F, G).

If ISCA-DEFINABLE(G, S, F'), then
ISCA-DEFINIENS (fhub(gsnc g pos (F, G)), G, S, F).

13

Conservative Extensions Underlying Knowledge Base Modularization
[Ghilardi* 06, Cuenca Grau* 08]

iff

iff
iff
iff
iff
iff

Adding G does not “damage my ontology” F'

“All knowledge about the vocabulary of F that is
expressed by (F' A G) is expressed by F' alone”

(F A G) is a conservative extension of F'

G is conservative within F [W 143]
G imports F in a safe way [Cuenca Grau* 08]
F |= project, ey (F A G)

F' = project o,) (F' A G)

“Formula Matching”

Concept matching modulo equivalence is a non-standard inference in
description logics [Borgida and McGuinness 96, Baader* 99],
Here for arbitrary formulas but with single-variable patterns
Given: F' Background formula T

G Formula P& q

H Pattern: formula with special atom = (pAq)Vz
Objective: Find a “matching formula” X such that

FEG+ Hjz— X]
TE@< 9« (pAg V)
TE@e < ((pAgV(=pA—g))

There are two second-order formulas M and M5 such that solutions
are exactly the X s.th. M, = X E M,

Basic characterization of X: =VzF A (z < X) — (G <> H)
This is equivalent to: e FA-2A-(G+ H)EX

and X Ve F Az — (G <+ H) 15

Stable Model Semantics for Logic Programming

Let F=p A (g pA-m)

It has three models: {p,q,r},{p,q, 7}, {p, q,r}
Considered as logic program it has a single stable model: {p,q}

Logic programs can be represented by classical formulas, where
second-order operators associate logic programming semantics [W 10]

stable(p A (g < pA—rl)) = (pAgA-T)

A "“replica” of the vocabulary, identified by the 1 superscript, is used for
predicate occurrences under negation as failure

stable(F) % rename;, , (i orposy 1 (F))

1. minimize undecorated predicates, while keeping 1 predicates fixed
2. rename the 1 predicates to their undecorated correspondents

The stable operator renders the characterization of the stable model
semantics in terms of circumscription from [Lin 91]

By combination with an encoding from [Janhunen* 06], a similar operator
can render the 3-valued partial stable model semantics

Abduction with the Stable Model Semantics
[Kakas* 98, Lin and You 02, W 133]

e Given: F background (wet < shower) A
(wet « rain A —~umbrella*) A
(umbrella < forecastRain)

G observation wet
S abducibles {shower, rain, forecastRain,
—shower, —rain, —forecast Rain }
e In classical logic, an explanation is an X € S s.th. (FAX) EG

The weakest explanation is gwscg(F,) gwscg(F, G) = shower

e For the stable model semantics, a “factual”’ explanation is a conjunction

of literals X € S s.th. stables (F A X) = G

stableg effects that atoms occurring in S are subjected to the open-world
assumption (passed as “fixed” to the circumscription)

The minimal factual explanations for the example are
shower and (rains A —forecastRain)

Abduction with the Stable Model Semantics (2)
[W 13a]

For the stable model semantics, a ‘“factual” explanation is a conjunction of

literals X € S s.th. stables (F A X) = G

e The minimal factual explanations are the prime implicants of
gWSC g (stables (F), G)

e SN0 specifies the undecorated literals in .S

e The underlying justification is that for 7 € SU S it holds that
stableg(F A H) = stableg(F) A H

gWSC g (stables(F'), G) = —projectg (stables(F') A =G)

18

Abduction with 3-Valued Logic Programming Semantics

[W 13a]
e Abduction can be analogously characterized with the GWSC for

e the well founded semantics
e the partial stable model semantics

e For the partial stable model semantics, this seems so far the only thorough
formalization of abduction

e Unlike the well-founded semantics, the partial stable model semantics allows
to obtain explanations for the undefinedness of observations

Background: The barber shaves all
males who do not shave themselves

The barber shaves the barber
if the barber has been sentenced to shave himself

Observation: “The barber shaves the barber” is undefined

Explanation: The barber is male and
has not been sentenced to shave himself

Conclusion — Towards Practice

e ToyElim [W 13b] is a Prolog-based prototype system which supports to
define second-order operators as outlined and is useful for small experiments

e Relevant general processing techniques include:

e second-order quantifier elimination methods based on first-order logic
[Gabbay and Ohlbach 92, Doherty* 97]

e recent advances in uniform interpolation for description logics
[Ghilardi* 06, Konev* 09, Koopmann and Schmidt 13]

e progress in SAT pre- and inprocessing
[Eén and Biere 05, Heule* 10, Manthey* 13]

e General agenda: Investigate processing of the particular formula patterns
in which combinations of second-order operators are used in applications

Consider these patterns also for restricted argument formulas

20

Conclusion — Classical Logic + Second-Order Operators

¢ Provides an integrating view on a variety of applications in areas such as

e view-based query processing

e knowledge base modularization

e many “non-standard” inferences

® non-monotonic reasoning and logic programming
e abductive reasoning

e Operators can be nested and combined
e New operators can be defined in terms of other ones
e QOperators let instructive relationships become evident

e Operators seems useful for mechanization

Second-order operators shift techniques from a theoretical
background to a mechanizable and user accessible formalization

References

22

[Baader and Kiisters 98] Baader, F. and Kiisters, R. (1998).

Computing the least common subsumer and the most specific concept in the
presence of cyclic ALN-concept descriptions.

In KI-98, volume 1504 of LNCS, pages 129-140. Springer.

[Baader* 99] Baader, F., Kiisters, R., Borgida, A., and McGuinness, D. (1999).
Matching in description logics.
JLC, 9(3):411-447.

[Barany* 13] Barany, V., Benedikt, M., and ten Cate, B. (2013).
Rewriting guarded negation queries.
In Mathematical Foundations of Computer Science 2013, volume 8087 of LNCS,
pages 98-110. Springer.

[Borgida* 10] Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U.,
Toman, D., and Weddell, G. (2010).
On finding query rewritings under expressive constraints.
In Proc. 18th Italian Symp. on Advanced Database Systems, SEBD 2010.

23

[Borgida and McGuinness 96] Borgida, A. and McGuinness, D. L. (1996).
Asking queries about frames.

In Proc. 5th Int. Conf. on Knowledge Rep. and Reasoning, KR’'96, pages 340-349.
Morgan Kaufmann.

[Calvanese* 07] Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y.
(2007).
View-based query processing: On the relationship between rewriting, answering
and losslessness.
TCS, 371(3):169-182.

[Cuenca Grau* 08] Cuenca Grau, B., Horrocks, I., Kazakov, Y., and Sattler, U.
(2008).
Modular reuse of ontologies: Theory and practice.

JAIR, 31:273-318.

[Darwiche 01] Darwiche, A. (2001).
Decomposable negation normal form.
JACM, 48(4):608-647.

24

[Dechter and Pearl, 1992] Dechter, R. and Pearl, J. (1992).
Structure identification in relational data.
Al 58:237-270.

[Doherty* 97] Doherty, P., tukaszewicz, W., and Szatas, A. (1997).
Computing circumscription revisited: A reduction algorithm.
JAR, 18(3):297-338.

[Doherty* 01] Doherty, P., tukaszewicz, W., and Szatas, A. (2001).

Computing strongest necessary and weakest sufficient conditions of first-order
formulas.

In IJCAI-01, pages 145-151. Morgan Kaufmann.

[Eén and Biere 05] Eén, N. and Biere, A. (2005).
Effective preprocessing in SAT through variable and clause elimination.
In SAT 2005, volume 3569 of LNCS, pages 61-75.

[Ferraris* 11] Ferraris, P., Lee, J., and Lifschitz, V. (2011).
Stable models and circumscription.
Al, 175(1):236-263.

25

[Franconi* 13] Franconi, E., Kerhet, V., and Ngo, N. (2013).

Exact query reformulation over databases with first-order and description logics
ontologies.

JAIR, 48:885-922.

[Gabbay and Ohlbach 92] Gabbay, D. and Ohlbach, H. J. (1992).
Quantifier elimination in second-order predicate logic.
In KR’'92, pages 425-435. Morgan Kaufmann.

[Gabbay* 08] Gabbay, D. M., A., R., Schmidt, and Szatas, A. (2008).

Second-Order Quantifier Elimination: Foundations, Computational Aspects and
Applications.

College Publications, London.

[Ghilardi* 06] Ghilardi, S., Lutz, C., and Wolter, F. (2006).

Did | damage my ontology? A case for conservative extensions in description
logics.
In KR 2006, pages 187-197. AAAI Press.

[Halevy 01] Halevy, A. Y. (2001).
Answering queries using views: a survey.
The VLDB Journal, 10(4):270-294.

26

[Heule* 10] Heule, M., Jarvisalo, M., and Biere, A. (2010).
Clause elimination procedures for CNF formulas.
In LPAR-17, volume 6397 of LNCS, pages 357-371. Springer.

[Janhunen* 06] Janhunen, T., Niemel3, I., Seipel, D., Simons, P., and You, J.-H.
(2006).

Unfolding partiality and disjunctions in stable model semantics.
ACM Trans. Comput. Log., 7(1):1-37.

[Kakas* 98] Kakas, A. C., Kowalski, R. A., and Toni, F. (1998).
The role of abduction in logic programming.

In D. M. Gabbay et al., editor, Handbook of Logic in Artif. Int., volume 5, pages
235-324. Oxford University Press.

[Konev* 09] Konev, B., Walther, D., and Wolter, F. (2009).

Forgetting and uniform interpolation in large-scale description logic terminologies.

In IJCAI-09, pages 830-835. AAAI Press.

[Koopmann and Schmidt 13] Koopmann, P. and Schmidt, R. A. (2013).
Uniform interpolation of ALC-ontologies using fixpoints.
In FroCoS 2013, volume 8152 of LNCS (LNAI), pages 87-102. Springer.

27

[Lang* 03] Lang, J., Liberatore, P., and Marquis, P. (2003).
Propositional independence — formula-variable independence and forgetting.
JAIR, 18:391-443.

[Lifschitz 94] Lifschitz, V. (1994).
Circumscription.

In Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors, Handbook of Logic
in Artif. Int. and Logic Prog., volume 3, pages 298-352. Oxford University Press.

[Lin 91] Lin, F. (1991).
A Study of Nonmonotonic Reasoning.
PhD thesis, Stanford Univ.
[Lin 01] Lin, F. (2001).
On strongest necessary and weakest sufficient conditions.

Al, 128(1-2):143-159.

[Lin and You 02] Lin, F. and You, J.-H. (2002).

Abduction in logic programming: A new definition and an abductive procedure
based on rewriting.

Al, 140(1/2):175-205.

28

[Manthey* 13] Manthey, N., Philipp, T., and Wernhard, C. (2013).
Soundness of inprocessing in clause sharing SAT solvers.
In SAT 2013, volume 7962 of LNCS, pages 22-39. Springer.

[Marx 07] Marx, M. (2007).
Queries determined by views: pack your views.
In PODS '07, pages 23-30. ACM.

[McCarthy 80] McCarthy, J. (1980).
Circumscription — a form of non-monotonic reasoning.
Al, 13:27-39.
[Nash* 10] Nash, A., Segoufin, L., and Vianu, V. (2010).
Views and queries: Determinacy and rewriting.
TODS, 35(3).
[Przymusinski 90] Przymusinski, T. (1990).
Well-founded semantics coincides with three-valued stable semantics.
Fundamenta Informaticae, 13(4):445-464.

29

[Segoufin and Vianu 05] Segoufin, L. and Vianu, V. (2005).
Views and queries: Determinacy and rewriting.
In PODS 2005, pages 49-60.

[Selman and Kautz, 1991] Selman, B. and Kautz, H. A. (1991).
Knowledge compilation using Horn approximations.
In AAAI-91, pages 904-909. AAAI Press.

[Tarski 35] Tarski, A. (1935).

Einige methologische Untersuchungen zur Definierbarkeit der Begriffe.

Erkenntnis, 5:80—100.

[W 08] Wernhard, C. (2008).
Literal projection for first-order logic.

In JELIA 08, volume 5293 of LNCS (LNAI), pages 389—-402. Springer.

[W 10] Wernhard, C. (2010).
Circumscription and projection as primitives of logic programming.
In Tech. Comm. ICLP’10, volume 7 of LIPIcs, pages 202-211.

30

[W 12] Wernhard, C. (2012).
Projection and scope-determined circumscription.
JSC, 47(9):1089-1108.

[W 13a] Wernhard, C. (2013a).
Abduction in logic programming as second-order quantifier elimination.
In FroCoS 2013, volume 8152 of LNCS (LNAI), pages 103-119. Springer.

[W 13b] Wernhard, C. (2013b).
Computing with logic as operator elimination: The ToyElim system.
In INAP 2011/WLP 2011, volume 7773 of LNCS (LNAI). Springer.

[W 14a] Wernhard, C. (2014a).
Expressing view-based query processing and related approaches with second-order
operators.
Technical Report KRR 14-02, TU Dresden.
http:
//www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf.

31

http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf

[W 14b] Wernhard, C. (2014b).
Second-order characterizations of definientia in formula classes.
Technical Report KRR 14-03, TU Dresden.

http:
//www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf.

32

http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf

Appendix

33

Notes on the Relationship to Craig Interpolation (Addendtum to Slide 9)

e [Tarski 35]: Definability w.r.t. first-order formulas can be reduced to
first-order validity

gsncg(F, Q) = gwsey(F,G) iff FAGEF =G

e The interpolants X in S such that

FAGEXEF -G
are definitions

e The extreme definitions GSNC and GWSC are obtained as uniform
interpolants — if the predicate elimination succeeds

More precisely: Let S specify a set of predicates. Let F, G be first-order. Let
F’', G’ be F,G after systematically replacing all predicates not in S with new
symbols. Then

gsncg(F,G) = gwseg(F,G) iff FAGEF —G'.

If X €S, then FAGEX iff gsncg(F,G) = X.
If X €S, then X £ F' = G iff X |=gwscg(F,G).

34

Notes About Unique Definability (Mentioned on Slides 10 and 14)

e If S =5, then a formula that is definable in terms of .S within F is
uniquely definable iff

= projectg(F)

e Conservativeness with respect to all formulas in a scope and definability
in terms of that scope together imply unique definability

See [W 14a]

35

Proof Sketch for Slide 10
Assumptions: Re U, Q € D
R is an exact rewriting of Q w.r.t. V'
iff VDB € D : project,,(V A DB) = R iff DB |= Q
iff VYDBeD:VADBERIff DBEQ since Re U
iff VYDBe D:DB -V VRiff DB EQ
iff projectz(V A —R) = projectyz(—Q)
iff gwsc,(V,R) = Q. since Q € D
Assume Al: Unique definability of all R € U i.t.o. D within V, i.e.
VR e U : gsncp(V,R) = gwsc,(V, R).
gwsep (V. R) = Q
iff gsncp(V,R) =Q by assumption Al
iff VAREQ since Q € D
iff VA-QE-R
iff projectz(V A =Q) = —~R since R € D
iff R = gwse,;(V,Q). Note: for “sound views" just this direction is relevant

Q [=gwsep (V. R)
iff projectz(V A -R) = —-Q

iff VA-RE-Q since Q € D
iff VAQER
iff gsnc,; (V,Q) = R. since Re U

See [W 14a] 36

Proof Sketch for Slide 11
Assumption: R € D
R is a split rewriting of @ w.r.t. V and D
iff YDB € D:DB=Riff DBAV = Q
iff YDBeD:DBERIff DBE-VVQ
iff projectys(—R) = projects(V A Q)
iff =R = projecty(V A —Q) since R € D
iff R=gwscp(V,Q).

e Note: The GWSC is the only solution!
e This seems to supersede material in [W 14a3]

37

Proof Sketch for Slide 15

EVeFA(re X)— (G« H)
iff =EVeFAz2ANX -5 (G H)ANNVzFA-2zAN-X — (G« H))
iff =E(X—>MeFAx— (G H)AN((FzFA-2A-(G< H)) — X)
iff X =EVeFAx— (G H)andIz FA-2A-(G <+ H) = X.

38

	References
	Appendix

