### Interpolants from Clausal Proofs

Arie Gurfinkel<sup>1</sup> <u>Yakir Vizel<sup>2</sup></u>

#### iPRA 2014 Vienna, Austria

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
 Computer Science Department, Technion, Israel



- SAT with DRUP proofs
- Interpolationoriented BCP in Trim
- Learn sharedderived clauses in Replay

# CDCL SAT solvers

- Check satisfiability of a CNF formula
  - CNF is conjunction of clauses and
  - Clause is a disjunction of literals
- Basic steps:
  - Arbitrary decisions for un-assigned vars
  - Propagate values (BCP)
  - Analyze conflicts and change decisions

SAT solvers can generate refutation proofs

# The Implication Graph (BCP)



## **Propositional Resolution**



## Analyzing a Conflict

- Decisions made by the SAT solver may lead to a conflict
  - A clause is evaluated to false under the current assignment
- The implication graph is used to guide resolution steps
- The result is a learnt clause
   Prevents the same conflict from re-appearing

### **Refutation Proofs**

- A formula is UnSAT when the empty clause can be derived from the original formula
- Resolution proof
  - A DAG that tracks resolution steps leading from the original clauses to the empty clause
    - Leaves original clauses
    - Intermediate nodes learnt/derived clauses
- Clausal proof
  - A sequence of learnt clauses
    - In the order they are learnt





- Record learnt clauses in the order they are learnt
  - A learnt clause is derived by Trivial Resolution from some previous clauses
    - If prior to learning c, the CNF is X, then c is derived by Trivial Resolution if running BCP on X ^¬c leads to a conflict
- for our example, clausal proof is <X, c>



X

 $g_1$ 

 $a_1 \vee g_1 \vee g_2$   $a_1 \vee \neg g_1 \vee g_3 \neg a_1 \vee g_2 \vee g_3 \vee \neg g_4 \neg a_1 \vee g_2$   $a_1 \vee g_4 \neg g_2 \vee g_3 \neg g_3$ 

- $X, (g_2 \vee g_3), (g_3)$
- $X \land \neg g_2 \land \neg g_3$ 
  - $-\neg a_1$  $-g_1, \neg g_1 \rightarrow \text{conflict}$

X

 $\mathcal{G}_1$ 

 $a_1 \vee g_1 \vee g_2$   $a_1 \vee \neg g_1 \vee g_3$   $\neg a_1 \vee g_2 \vee g_3 \vee \neg g_4$   $\neg a_1 \vee g_2$   $a_1 \vee g_4$   $\neg g_2 \vee g_3$   $\neg g_3$ 

- $X, (g_2 \vee g_3), (g_3)$
- X  $\land$  ( $g_2 \lor g_3$ )  $\land \neg g_3$ 
  - $-g_2$  $-\neg g_2 \rightarrow \text{conflict}$

### **DRUP** Proof

Marijn et al. FMCAD'13

 Extends a clausal proof by tracking deleted clauses

– A SAT solver deletes learnt clauses

- <X, c<sub>1</sub>, c<sub>2</sub>, c<sub>3</sub>, c<sub>2</sub>\*, c<sub>4</sub>, c<sub>1</sub>\*, c<sub>3</sub>\*,...> – Why?
- Introduced for SAT-solvers certification



## Interpolants

 Given an unsatisfiable pair (A,B) of propositional formulas

 $-A(X,Y) \wedge B(Y,Z)$  is unsatisfiable

- There exists a formula I such that:
  - -A 
    ightarrow I
  - $-I \land B$  is unsatisfiable
  - I is over the common variables of A and B





Х

 $g_1$ 

 $a_1 \vee g_1 \vee g_2$   $a_1 \vee \neg g_1 \vee g_3 \neg a_1 \vee g_2 \vee g_3 \vee \neg g_4 \neg a_1 \vee g_2$   $a_1 \vee g_4 \neg g_2 \vee g_3 \neg g_3$ 

- <X,(g<sub>3</sub>)>
- X ∧ ¬g<sub>3</sub>
  - *− ¬g*<sub>2</sub>
  - $-\neg a_1$
  - $-g_1$ ,  $\neg g_1 \rightarrow \text{conflict}$

### Conflict Clauses



### Shared Derivable Clauses

- Given an unsatisfiable pair (A,B) of propositional formulas
- A clause c is shared-derivable iff
  - c is over the common variables of A,B
  - c is derived using only A clauses

• Or, A => c

### Partial CNF Interpolants

- Given an unsatisfiable pair (A,B) of propositional formulas
- Find shared-derivable clauses in the proof and
  - Log them as a CNF formula g
  - Treat them as B clauses during the computation
- Interpolant is  $I \land g$



### Sequence Interpolants

 Given an unsatisfiable tuple (A,B,C) of propositional formulas

 $-A(X,Y) \wedge B(Y,Z) \wedge C(Z,W)$  is unsatisfiable

- There exist formulae  $I_{1_i} I_2$  such that:
  - $A \rightarrow I_1$
  - $-\, \mathtt{I}_1 \, \land \, \mathtt{B} \rightarrow \mathtt{I}_2$
  - $-I_2 \land C \rightarrow FALSE$
  - $-I_1$  is over the common variables of A and (B,C)
  - $-I_2$  is over the common variables of (A,B) and C

### Sequence Interpolants

• A sequence of partial CNFs

It is more complex to maintain the sequence property

- A clause is shared-derivable iff:
  - It is derived using only shared-derivable clauses from previous partitions and from clauses within its own partition

## Sequence Interpolants





### **Restructuring Proofs**

- Proofs generally do not have this "special" structure
- Need to force this structure on the proof
  - CNF interpolants are exponentially weaker than general interpolants
  - Must be efficient
  - We do not want to disturb the SAT solver

### **Restructuring Proofs**

- <u>Observation/Intuition</u> let c be a clause over <u>shared vocabulary</u> then one of the following must hold:
  - c is shared-derivable
  - c can be derived using shared-derivable clauses



## Info

Visit our web site

- <u>http://arieg.bitbucket.org/avy/</u>
- <u>Come to our CAV talk...</u>

Thank You