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SSMT formula Q : ϕ

1 prefix Q of quantified variables

∃x ∈ Dx : Dx is finite. E.g. {1, 2, 5, 6}

R

y[v1 7→p1,...,vn 7→pn] :
n∑

i=1

pi = 1. E.g.

{1 7→ 0.5, 2.5 7→ 0.21, 7 7→ 0.11, 10 7→ 0.18}
2 SMT formula ϕ (matrix), e.g.
ϕ = (x < 2 ∨ sin(y)) ∧ (a = true)....
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∃x : ϕ I.e., for some value ϕ holds.

R

x : ϕ I.e., for random values ϕ holds.

Randomized quantification to describe probabilistic events:

Figure:

R

x[head 7→0.5,tail7→0.5]
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Stochastic Satisfiability Modulo Theories: Symantic

The semantics of an SSMT formula Φ is given by its maximum probability
of satisfaction Pr(Φ) defined as follows:

Pr(ε : ϕ) =

{
0 if ϕ is unsatisfiable,
1 if ϕ is satisfiable,

Pr(∃x ∈ Dx �Q : ϕ) = maxv∈DxPr(Q : ϕ[v/x ]),

Pr(

Rdx x ∈ Dx �Q : ϕ) =
∑
v∈Dx

dx(v) · Pr(Q : ϕ[v/x ])

The quantifier-free SMT formula Φ is called the matrix of Φ
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Example:

Φ = ∃x ∈ {2, 3, 4},

R

[17→ 0.2,27→ 0.4,3 7→ 0.4]y ∈ {1, 2, 3} : (x + y > 3 ∨ 2 · y − x > 3) ∧ (x < 4)

x

y y y

x = 2 x = 3 x = 4

unsat sat sat sat sat sat unsat unsat unsat

y = 1 y = 2 y = 3 y = 1 y = 2 y = 3 y = 1 y = 2 y = 3

Pr = 0 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 0 Pr = 0 Pr = 0

Pr = 0.8 Pr = 1.0 Pr = 0.0

Pr(Φ) = max(0.8, 1.0) = 1.0

q

Figure: An example of SSMT formula, the selected part will be traversed and the
other part will be pruned from the search space.
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Resolution Calculus for SAT and SMT

(Sound and Complete SAT resolution calculus)

(
(C1 ∨ x) ∧ (C2 ∨ ¬x)

)
(C1 ∨ C2)

x ,¬x /∈ (C1 ∨ C2) (SAT-Resolution [Rob65])
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SMT Theories (R,Q,Z)

Simple bounds i.e. x < 3

relax by ICP as in iSAT
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Resolution Calculus for SAT and SMT

SMT Theories (R,Q,Z)

Simple bounds i.e. x < 3

relax by ICP as in iSAT

(Sound and Complete SMT resolution calculus)

(
Q : (C1 ∨ x ∼ a) ∧ (C2 ∨ x ∼′ b)

)
(C1 ∨ C2)

Qx : (x ∼ a) ∧ (x ∼′ b) ` false

(SMT-Resolution)
where ∼,∼′∈ {≤, <,≥, >}.
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Resolution of SSMT

(Base case) (
c ∈ ϕ

)
c0

(RR.1)

Example 1

∃x ∈ {1, 5, 6}, R

[47→0.3,177→0.7]y : (x ≤ 3 ∨ y > 10 ∨ z > 12) ∧ (x > 5)

(x ≤ 3 ∨ y > 10 ∨ z > 12)0, (x > 5)0

(1)
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Resolution of SSMT

(Falsification rule)

 c ⊆ {x ∼ a | x ∈ Var(c)}, 6|= c ,Q(c) = Q1x1...Qixi ,
for each τ : Var(ϕ) ↓i→ SB with ∀x ∈ Var(ϕ) : τ(x) in ffc(x ∼ a) :

|= ϕ[τ(x1)/x1]...[τ(xi )/xi ]


c1

(RR.2)

Example 1

∃x ∈ {1, 5, 6}, R

[47→0.3,177→0.7]y : (x ≤ 3 ∨ y > 10 ∨ z > 12) ∧ (x > 5)

(y ≤ 10)1 ∧ (z ≤ 12)1

(1)
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Resolution of SSMT

(Resolution in case of free variable) (x ∼ a ∨ c1)p1 , (x ∼′ b ∨ c2)p2 ,Qx /∈ Q,
(∃x : x ∼ a ∧ x ∼′ b) ` False, 6|= (c1 ∨ c2)

p = max(p1, p2)


(c1 ∨ c2)p

(RR.3e)

Example 1

∃x ∈ {1, 5, 6}, R

[47→0.3,177→0.7]y : (x ≤ 3 ∨ y > 10 ∨ z > 12)0 ∧ (z ≤ 12)1

(y > 10 ∨ x ≤ 3)1

(1)
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Resolution of SSMT

(Resolution rule between clauses)


(x ∼ a ∨ c1)p1 , (x ∼′ b ∨ c2)p2 , (Qx : x ∼ a ∧ x ∼′ b ` False)

Qx ∈ Q, 6|= (c1 ∨ c2)

p =

{
max(p1, p2) if Q = ∃
p1 · Pr(x ∼′ b) + p2 · Pr(x ∼ a) if Q =

Rpx


(c1 ∨ c2)p

(RR.3)

Example 1

∃x ∈ {1, 5, 6}, R

[47→0.3,177→0.7]y : (y > 10 ∨ x ≤ 3)1 ∧ (y ≤ 10)1

(x ≤ 3)1
(1)
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[47→0.3,177→0.7]y : (x ≤ 3)1 ∧ (x > 5)0

∅1
(1)
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Generalized Craig Interpolants for SSMT

Idea: The same as GCI for SSAT [TF12]; namely:

A B
I ¬I

we apply the same procedure as in SSAT i.e. adding ¬SA,B
we combine the previous procedure with iSAT reasoning technique i.e.
simple bounds.

we can use either Pudlák or McMillan mechanisms.

this interpolant is the generalized one (SAT, SMT, and SSAT).
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Generalized Craig interpolation: Idea

A

B

V_a

V_b

V_ab

Figure: Generalized Craig interpolation [TF12]
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Generalized Craig interpolation: Idea
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Definition 1 (Generalized Craig Interpolation–Pudlák
extension)

Let A and B be some SMT formulae where VA := Var(A) \ Var(B)
= {a1, ..., aα}, VB := Var(B) \Var(A) = {b1, ..., bβ},
VA,B := Var(A) ∩ Var(B),

A∃ = ∃a1, ..., aα : A, and

B
∀

= ¬∃b1, ..., bβ : B.

An SMT formula I is called a generalized Craig interpolant for (A,B) if
and only if the following properties are satisfied:

Var(I) ⊆ VA,B ,

|=L (A∃ ∧ B
∀
)→ I,

|=L I → (A∃ ∨ B
∀
)
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Definition cont.

GCI is computed according to the following rules:

c `R.1 cp,

I =

{
False, c ∈ A
True, c ∈ B

.

(cp, I)

(GR.1)

`R.2 cp

I is any formula over VA,B

(cp, I)

(GR.2)
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Definition cont.

((x ∼ a ∨ c1)p1 , I1), ((x ∼ b ∨ c2)p2 , I2), (x ∼ a ∧ x ∼ b ` false)

(x ∼ a ∨ c1)p1 , (x ∼ b ∨ c2)p2 `R.3 (c1 ∨ c2)p,

I =


I1 ∨ I2 if x ∈ VA

I1 ∧ I2 if x ∈ VB

(x ∼ a ∨ I1) ∧ (x ∼ b ∨ I2) if x ∈ VA,B

((c1 ∨ c2)p, I)

(GR.3)

p =

{
max(p1, p2) if Q = ∃
p1 · Pr(x ∼ b) + p2 · Pr(x ∼ a) if Q =

Rp∗ (GR.4)
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Example 2

(y + 0.5 ≤ 2) ∧ (x ≤ 1.7)︸ ︷︷ ︸
A

∧ (a + 1 < 3.3 ∨ x − 1 ≥ 1) ∧ (2 · y ≥ 3.7 ∨ b ≤ 3)︸ ︷︷ ︸
B

R

.a ∈ {2 7→ 0.8, 3 7→ 0.2},∃.x ∈ {1, 2}, R

.y ∈ {1 7→ 0.5, 2 7→ 0.5}, R

.b ∈ {2 7→ 0.3, 3.2 7→ 0.7} :

(y + 0.5 ≤ 2)0,F(a + 1 < 3.3 ∨ x − 1 ≥ 1)0,T (x ≤ 1.7)0,F (2 · y ≥ 3.7 ∨ b ≤ 3)0,T
¬SA,B︷ ︸︸ ︷

(a 6= 2 ∧ x 6= 1 ∧ y 6= 1 ∧ b 6= 2)1, DC

GR.1 GR.1 GR.1 GR.1 GR.2

(a 6= 2 ∧ x 6= 1 ∧ y 6= 1)0.3, DC

GR.3

(a 6= 2 ∧ x 6= 1)0.15, y ≤ 1.5∧ DC

GR.3

(a + 1 < 3.3)0, x ≤ 1.7

GR.3

(a 6= 2)0.15, x = 2 ∨ (y ≤ 1.5 ∧DC)

GR.3

∅0.12, x = 2 ∨ (y ≤ 1.5 ∧DC)

GR.3
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Conclusion

An approach to compute Craig Interpolant for SSMT problems

CI is computed regardless of the linearity of a formula.

All SAT, SSAT, SMT (linear, non-linear, integer and rational)
problems are also covered by this approach.

iSAT interpolants are not simple ones, due to non-linear constraints
and ICP /.
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Future Work

proper approach to compute SA,B //.

slackness of interpolants /,.

integrate GCI with stochastic CEGAR loop.
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Thank you for Listening!

Any questions!
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