SAT-Based Model Checking with Interpolation

Orna Grumberg

Technion, Haifa, Israel

iPRA workshop July 2014

The beautiful slides are mostly borrowed from Yakir Vizel

Focus of the talk

- Interpolants in the propositional logic and their use in verification
- Interpolation for other logics is used, for instance, for software verification

 Linear arithmetic, Reals, and others

Model Checking

• Given a system and a specification, does the system satisfy the specification.

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

System model

Modeling

- System is modeled as (V,INIT,T), where:
 V is a finite set of variables
 - S set of states all valuations of V
 - INIT $\in 2^{\vee}$ is the set of initial states
 - T \subseteq 2^V×2^V is the set of transitions
- A safety property of the form AG P
 - "P holds in every reachable state of the system"
 - P is a formula over V

Translation to Propositional Formulas

- Four states:
 - Two Boolean variables: v₁ v₂
- INIT: $\neg v_1$
- T:
 - $v_1' = \neg v_1 \lor (v_1 \land v_2)$
 - $v_2' = (v_1 \land v_2)$
- $P: \neg v_1 \lor \neg v_2$ (Bad = $\neg P = v_1 \land v_2$)

Example

T is a conjunction of constraints, one per component.

T = ^{ g = a ^ b, p = g V c, c' = p }

Reachability Analysis

- Problem definition:
 - Does the transition system have a finite run ending in a state satisfying ¬P?
 - More precisely, is there a sequence of states s₀...s_k s.t.:
 - $s_0 \in I$ and $s_k \in \neg P$
 - for all $0 \le i \le k$, $(s_i, s_{i+1}) \in T$
- Using automata-theoretic methods, model checking safety properties reduces to reachability analysis.

Forward Reachability Analysis Does AG P hold?

Termination when

- either a bad state satisfying ¬p is found
- or a fixpoint is reached: $\mathbf{R}_{j} \subseteq \bigcup_{i=0, j-1} \mathbf{R}_{i}$

Main limitation

The state explosion problem:

Space and time requirements grow with the size of the model

SAT-based Model Checking

Main idea

- Translate the model and the specification to propositional formulas
- Use efficient tools (SAT solvers) for solving the satisfiability problem
- At the beginning it was mainly used for finding CEXs

DPLL-style SAT solvers

GRASP, CHAFF, MiniSAT, Glucose

- Objective:
 - Check whether a CNF formula is satisfiable or not
 - Either return a satisfying assignment
 - Or "UNSAT" and a refutation proof
- Approach:
 - Decision: Choose arbitrary variable+value for an unassigned variable
 - Propagate implications
 - Add conflict clauses to avoid rechecking assignments

Circuit to SAT

Can the circuit output be 1?

Biere, et al. TACAS99

Unfold the model k times:

 $U = T^{(0)} \wedge T^{(1)} \wedge \dots \wedge T^{(k-1)}$

- Use SAT solver to check satisfiability of $I^{<0>} \land U \land \neg P^{<k>}$
- If unsatisfiable:
 - property has no counterexample of length k
 - can produce a refutation proof

INIT(V⁰) \land **T(V⁰**, V¹) \land ¬P(V¹)

INIT(V⁰) \land T(V⁰, V¹) \land T(V¹, V²) $\land \neg$ P(V²)

INIT(V⁰) \land **T(V⁰, V¹)** \land ... \land **T(V^{k-1}, V^k)** \land ¬**P(V^k)**

Terminates

- with a counterexample or
- with time- or memory-out

The method is suitable for **falsification**, not verification

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

SAT-Based Verification unbounded model checking

- Uses BMC for falsification
- Simulates forward reachability analysis for verification
- Identifies a termination condition
 - all reachable states has been found: "fixpoint"

Interpolants Craig 57

 Given an unsatisfiable pair (A,B) of propositional formulas

 $-A(X,Y) \wedge B(Y,Z)$ is unsatisfiable

- There exists a formula I such that: $-A \Rightarrow I$
 - $-I \land B$ is unsatisfiable
 - -I is over Y, the common variables of A and B

Interpolation (cont.)

Interpolants from proofs

- When A A B is unsatisfiable, SAT solvers return a proof of unsatisfiability in the form of a resolution graph
- Given a resolution graph,
 I can be derived in linear time

Pudlak,Krajicek 97, McMillan 03

- I over-approximates the states reachable from INIT in one transition
 - It satisfies P and cannot reach a bad state in two transitions or less

- I is fed back to the formula
 - A new interpolant I' is computed
 - Iterative process

Using Interpolation (i=2)

$INIT(V_0) \wedge T(V_0, V_1) \wedge T(V_1, V_2) \wedge (\neg q(V_1) \vee \neg q(V_2))$

$I_1'(V_0) \wedge T(V_0,V_1) \wedge T(V_1,V_2) \wedge (\neg q(V_1) \vee \neg q(V_2))$

$I_k'(V_0) \wedge T(V_0,V_1) \wedge T(V_1,V_2) \wedge (\neg q(V_1) \vee \neg q(V_2))$

 In ITP, short BMC formulas can prove the nonexistence of long CEXs

– INIT is replaced by \mathbf{I}_k which overapproximates \mathbf{S}_k

- If a satisfying assignment is found, the counterexample might be spurious

 Since INIT is over-approximated
- Increase k and start with the original INIT

- A fixpoint is checked whenever a new interpolant is computed
- For iteration i, every new interpolant is checked for inclusion in all previously computed interpolants for the same i

 -I_n ⇒ INIT v V_{j=1,n-1} I_j

- In ITP, a computed interpolant is fed back into the BMC problem
- BMC problem is solved with a SAT solver

Problems:

- 1. "Big" interpolant causes the BMC problem to be hard to solve
- 2. Non-CNF interpolant needs to be translated to CNF

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

Interpolation-Sequence

If A₁ ∧ A₂ ∧ ... ∧ A_k is unsatisfiable, then there exists an *interpolation-sequence* I₀, I₁,..., I_{k+1} for (A₁,..., A_k) such that:
 I₀=T and I_{k+1}=F

$$I_{0} - I \quad \text{diff} \quad I_{k+1} - I$$

$$I_{j} \wedge A_{j+1} \Rightarrow I_{j+1}$$

$$I_{j} - \text{ over common variables of } A_{1}, \dots, A_{j} \text{ and } A_{j+1}, \dots, A_{k}$$

• Each I_j can be computed as the interpolant of $A=A_1 \land \ldots \land A_j$ and $B=A_{j+1} \land \ldots \land A_k$ - All I_j 's should be computed on the same resolution graph

Reachability with Interpolation-Sequence

Vizel, Grumberg, FMCAD 2009

Unsatisfiable BMC formula partitioned in the following manner:

Reachability with Interpolation-Sequence

Reachability with Interpolation-Sequence

 Compute a sequence of reachable states from BMC formulas

- Forward Sequence: <F₀,F₁,...,F_n>

- Sequence is over-approximated $-F_{i}(V) \wedge T(V,V') \Rightarrow F_{i+1}(V')$ $-F_{i} \Rightarrow P$
- Integrated into the BMC loop to detect termination

The Analogy to Forward Reachability Analysis

Checking if a "fixpoint" has been reached

- $F_n \Rightarrow V_{j=1,n-1} F_j$
- Similar to checking fixpoint in forward reachability analysis : $R_k \subseteq U_{j=1,k-1} R_j$
- But here we check inclusion for every $2 \le k \le n$ - No monotonicity because of the approximation
- "Fixpoint" is checked with a SAT solver

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

Forward Reachability Analysis

Interpolants

- Given an unsatisfiable pair (A,B) of propositional formulas
- Then, there exists a formula I such that: $-A \Rightarrow I$
 - $-I \land B$ is unsatisfiable
 - -I is over the common variables of A and B
- I = Itp(A,B)

Approximated Forward Reachability

- F(V) a set of states
- For the unsatisfiable formula
 F(V) ∧ T(V,V') ∧ ¬P(V'), define:
 A = F(V) ∧ T(V,V')
 B = ¬P(V')

• Approximated forward reachability

Duality In a SAT Query

• INIT(V) \land T(V,V') \land -P(V')

Do we reach the bad states?

We tend to read it "Forward"
 – From left to right

Duality In a SAT Query

• INIT(V) \land T(V,V') \land -P(V')

Do we reach the initial states?

- We tend to read it "Forward"
 From left to right
- We can also read it "Backward"
 - From right to left
 - Does the pre-image of the bad states intersect the initial states

Approximated Backward Reachability

- B(V) a set of states
- For the unsatisfiable formula INIT(V) \lapha T(V,V') \lapha B(V'), define:
 A = T(V,V') \lapha B(V')
 B = INIT(V)
- Approximated backward reachability

Dual Approximated Reachability (DAR)

(Vizel, Grumberg and Shoham, TACAS 2013)

- Compute two sequences of reachable states
 - Forward Sequence: <F₀,F₁,...,F_n>
 - Backward Sequence: <B₀,B₁,...,B_n>
- Sequences are over-approximations
 - For the forward sequence:
 - $F_i(V) \wedge T(V,V') \Rightarrow F_{i+1}(V')$
 - $F_i \Rightarrow P$
 - For the backward sequence
 - $B_{i+1}(V) \leftarrow T(V,V') \wedge B_i(V')$
 - $B_i \Rightarrow \neg INIT$

Dual Approximated Reachability (DAR)

- Two main phases during the computation
 - -Local Strengthening
 - No unrolling
 - Global Strengthening
 - Limited unrolling
 - In case the Local Strengthening fails

Local Strengthening

What if F_1 and B_1 intersect each other?

There might be a counterexample

Local Strengthening What if F_1 and B_1 intersect each other? $F_1(V) \wedge T(V,V') \wedge B_0(V')$ $F_0(V) \wedge T(V,V') \wedge B_1(V')$ F_1 B_1 B₀=¬P F₀=INIT 52

- Compute forward and backward interpolants
 - $-F_2$ is the forward interpolant
 - Backward interpolant strengthens the already existing B_1

Compute forward and backward interpolants

 B₂ is the backward interpolant
 F'₁ is strengthening the already existing F₁

Local Strengthening Fails

$F_{g}(V) \wedge T(V,V') \wedge B_{g}(V')$

Global Strengthening

- Apply unrolling gradually
 - Start from the initial states
 - Try to reach the backward sequence using an increasing number of T's

Global Strengthening

$F_{0}(Vf_{0}(V) \top (V V T V V V T V V T V V T V V T V V T V V T V V T V V T V$

Global Strengthening Interpolation sequence for UNSAT formula

$$\begin{array}{c|c} A_{1} & A_{2} & A_{3} & A_{4} \\ \hline F_{0}(V) \wedge T(V,V') & T(V',V'') & T(V'',V''') & B_{1}(V''') \\ \hline T & I_{1} & I_{2} & I_{3} & F \end{array}$$

Global Strengthening

 $F_0(V) \land T(V,V') \land T(V',V'') \land T(V'',V''') \land B_1(V''')$

- Formula is unsatisfiable
 - Extract an interpolation-sequence: I_1 , I_2 , I_3
 - $-I_{j}$ over-approximates states reachable in j steps
- Use I_i to strengthen F_i
 - Example: $F_3' = F_3 \wedge I_3$
 - $-F_3' \wedge B_1$ is unsatisfiable
- Re-Apply Local Strengthening $-F_3(V) \wedge T(V,V') \wedge -P(V')$ is unsatisfiable

Global Strengthening

- If a CEX exists Full unrolling
- Otherwise, gradually unroll the model
 Try to reach the Backward sequence
- When the backward sequence is not reachable
 - Extract interpolation sequence
 - Strengthen forward sequence
 - Reapply Local Strengthening

Checking if a "fixpoint" has been reached

- $F_k \Rightarrow V_{j=1,n-1} F_j$
- But we also have the backward sequence $B_k \Rightarrow V_{j=1,n-1} \, B_j$
- Same principle applies here check inclusion for every $2 \le k \le n$

(Local) Summary

- Use both Forward and Backward traversals in a tight manner
- Mostly local No unrolling
 Inspired by IC3/PDR
- When unrolling is used, it is restricted
 Experiments confirm

(Global) Summary

We presented several methods for SATbased (unbounded) model checking

- Over-approximate the (forward) reachability analysis
- Apply different methods for making the over-approximation more precise
 - Reduce number of spurious counterexamples
 - (Hopefully) help termination (fixpont)

Thank You