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Focus of the talk 

•  Interpolants in the propositional logic 
and their use in verification 
 

•  Interpolation for other logics is used, 
for instance, for software verification 
– Linear arithmetic, Reals, and others 
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Model Checking 

•  Given a system and a specification, does 
the system satisfy the specification. 

 System 
model property 

MC 

Yes	
  No+CEX	
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Outline 

•  Background on model checking 
 
•  SAT-based model checking with interpolation 

•  Model checking with interpolation sequence 
 
•  Model checking with backward and forward 

interpolations 
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System model 
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Modeling 

•  System is modeled as (V,INIT,T), where: 
– V is a finite set of variables 

•  S – set of states – all valuations of V 
–  INIT ∈	
  2V is the set of initial states 
– T ⊆ 2V×2V is the set of transitions 

 
•  A safety property of the form AG P 
–  “P holds in every reachable state of the 

system” 
–  P is a formula over V 
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Translation to Propositional Formulas 
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•  Four states:  

•  Two Boolean variables: v1 v2 

•  INIT: ¬v1 
•  T :  

•  v1’ = ¬v1 ∨ (v1 ∧ v2) 
•  v2’ = (v1 ∧ v2) 

•  P: ¬v1 ∨ ¬v2   ( Bad = ¬P = v1 ∧ v2 ) 



Example 
T is a conjunction of constraints, one per 

component. 

a 
b c p 

g 

g = a ⋀ b 

p = g ∨ c 

c' = p 

 
T = ∧{ 
          g = a ⋀ b, 
          p = g ∨ c, 
          c' = p 
        } 
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Reachability Analysis 

•  Problem definition: 
– Does the transition system have a finite run 

ending in a state satisfying ¬P ? 
 

– More precisely, is there a sequence of states 
s0…sk s.t.: 
•  s0 ∈ I  and  sk ∈ ¬P 
•  for all 0 ≤ i < k,   (si ,si+1) ∈ T 
 

•  Using automata-theoretic methods, model 
checking safety properties reduces to 
reachability analysis. 
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INIT 

Forward Reachability Analysis 

Bad=¬P 

Does AG P hold? 

R1=Img(INIT,T) R2=Img(R1,T) 

…Rn=Img(Rn-1,T) 
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Termination when 
•  either a bad state satisfying ¬p is 

found 
•  or a fixpoint is reached: Rj ⊆ ∪i=0,j-1 Ri  
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Main limitation 

The state explosion problem: 
 
Space and time requirements grow with 

the size of the model 
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SAT-based Model Checking 
 

Main idea 
 
•  Translate the model and the specification to  

propositional formulas 

•  Use efficient tools (SAT solvers) for solving 
the satisfiability problem 

•  At the beginning it was mainly used for 
finding CEXs 
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DPLL-style SAT solvers 

•  Objective: 
–  Check whether a CNF formula is satisfiable or not 

•  Either return a satisfying assignment 
•  Or “UNSAT” and a refutation proof 
 

•  Approach: 
–  Decision: Choose arbitrary variable+value for an 

unassigned variable 
–  Propagate implications 
–  Add conflict clauses to avoid rechecking assignments 

GRASP, CHAFF, MiniSAT, Glucose 
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Circuit to SAT 

a 
b 

c p 

g 

Can the circuit output be 1? 

input 
variables output 

variable 

(a	
  ∨	
  ¬g)	
  ∧	
  (b	
  ∨	
  ¬ g) 
∧(¬ a	
  ∨	
  ¬ b	
  ∨	
  g) 

(¬ g ∨ p) ∧ (¬ c ∨ p) 
∧(g ∨ c ∨ ¬ p) 

CNF(p) 

p is satisfiable when the 
formula CNF(p) ∧  p 
is satisfiable 
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Bounded model checking 

•  Unfold the model k times: 
                  U = T<0> ∧ T<1> ∧ ... ∧ T<k-1> 

a 
b 

c p 

g a 
b 

c p 

g a 
b 

c p 

g 
... I<0> ¬P<k> 

•  Use SAT solver to check satisfiability of 
      I<0> ∧  U ∧  ¬P<k> 

•  If unsatisfiable: 
•  property has no counterexample of length k 
•  can produce a refutation proof  

Biere, et al. TACAS99 
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Bounded Model Checking 

INIT 

R1 

¬P	
  

INIT(V0) ∧T(V0,V1) ∧¬P(V1) 
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Bounded Model Checking 

INIT 

R1 R2 

¬P	
  

INIT(V0) ∧T(V0,V1) ∧T(V1,V2)∧¬P(V2) 
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Bounded Model Checking 

INIT 

R1 R2 

¬P	
  

……	
  

INIT(V0) 

Rk 

∧T(V0,V1) ∧…∧T(Vk-1,Vk)∧¬P(Vk) 
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Bounded Model Checking 

Terminates  
•  with a counterexample or  
•  with time- or memory-out 
 
The method is suitable for 
falsification, not verification 
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Outline 

•  Background on model checking 
 
•  SAT-based model checking with interpolation 

•  Model checking with interpolation sequence 
 
•  Model checking with backward and forward 

interpolations 
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• Uses BMC for falsification 
• Simulates forward reachability 

analysis for verification 
• Identifies a termination condition 

–  all reachable states has been found: 
“fixpoint” 
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Interpolants 

•  Given an unsatisfiable pair (A,B) of 
propositional formulas 
– A(X,Y) ∧	
 B(Y,Z) is unsatisfiable 

 
•  There exists a formula I such that: 
– A ⇒ I 
– I ∧ B is unsatisfiable  
– I is over Y, the common variables of A and B 

Craig 57 

23	
  



Interpolation (cont.) 

Interpolants from proofs 
•  When A ∧ B is unsatisfiable, SAT solvers 

return a proof of unsatisfiability in the 
form of a resolution graph 

•  Given a resolution graph, 
I can be derived in linear time 

Pudlak,Krajicek 97, McMillan 03 
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ITP – Interpolation-based MC 
McMillan, CAV 2003 

∧T(V,V1)	
 ∧	
 T(V1,V2)∧T(V2,V3)∧(¬P(V1)	
 ∨… ∨¬P(V3)) 

A	
   B	
  

I 
•  I over-approximates the states 

reachable from INIT in one transition 
– It satisfies P and cannot reach a bad state in 

two transitions or less 

INIT(V) 
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ITP – Interpolation-based MC 
McMillan, CAV 2003 

∧T(V,V1)	
 ∧	
 T(V1,V2)∧T(V2,V3)∧(¬P(V1)	
 ∨… ∨¬P(V3)) 

A	
   B	
  

I’ 

•  I is fed back to the formula 
– A new interpolant I’ is computed 
– Iterative process 

I(V) 
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I1 

I2 

0 0 1 1( ) ( , ) ( )INIT V T V V p V∧ ∧¬

1 0 0 1 1( ) ( , ) ( )I V T V V p V∧ ∧¬

2 0 0 1 1( ) ( , ) ( )I V T V V p V∧ ∧¬ BAD 
¬p 
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I’1 

))()((),(),()( 2121100 VqVqVVTVVTVINIT ¬∨¬∧∧∧

))()((),(),()(' 21211001 VqVqVVTVVTVI ¬∨¬∧∧∧

))()((),(),()(' 2121100 VqVqVVTVVTVIk ¬∨¬∧∧∧

.	
  

.	
  

.	
  

28	
  



•  In ITP, short BMC formulas can prove the 
nonexistence of long CEXs 
–  INIT is replaced by Ik which over-

approximates Sk 
 

•  If a satisfying assignment is found, the 
counterexample might be spurious 
– Since INIT is over-approximated 

 
•  Increase k and start with the original 

INIT 
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•   
 

•  A fixpoint is checked whenever a new 
interpolant is computed 
 

•  For iteration i, every new interpolant is 
checked for inclusion in all previously 
computed interpolants for the same i 
–  In ⇒ INIT ∨ Vj=1,n-1 Ij 

30	
  



•  In ITP, a computed interpolant is fed 
back into the BMC problem 

•  BMC problem is solved with a SAT solver 

Problems: 
1.  “Big” interpolant causes the BMC 

problem to be hard to solve 
2.  Non-CNF interpolant needs to be 

translated to CNF 
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Outline 

•  Background on model checking 
 
•  SAT-based model checking with interpolation 

•  Model checking with interpolation sequence 
 
•  Model checking with backward and forward 

interpolations 
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Interpolation-Sequence 

•  If A1 ∧	
  A2	
  ∧ … ∧ Ak is unsatisfiable, then there 
exists an interpolation-sequence I0, I1,…, Ik+1 
for  (A1,… ,Ak ) such that: 

I0=T   and   Ik+1=F 
Ij	
  ∧	
  Aj+1	
  ⇒ Ij+1	
  	
  

Ij - over common variables of A1,… ,Aj and Aj+1,… ,Ak 

•  Each Ij can be computed as the interpolant of  
A=A1 ∧ … ∧ Aj  and  B=Aj+1	
  ∧ … ∧ Ak 
–  All Ij’s should be computed on the same resolution graph 
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Reachability with  
Interpolation-Sequence 

INIT(V0)∧T(V0,V1)∧T(V1,V2)∧T(V2,V3)∧…∧T(Vk-1,Vk) ∧¬P(Vk) 

A1	
   A3	
   Ak	
   Ak+1	
  

I1 I3 Ik T F 

A2	
  

I2 

•  Unsatisfiable BMC formula partitioned in the 
following manner: 

Vizel , Grumberg, FMCAD 2009 
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Reachability with  
Interpolation-Sequence 

INIT(V0)∧T(V0,V1)∧T(V1,V2)∧T(V2,V3)∧…∧T(Vk-1,Vk) ∧¬P(Vk) 

A1	
   A3	
   Ak	
   Ak+1	
  

I1 I3 Ik T F 

I0=T   and   Ik+1=F 
Ij	
  ∧	
  Aj+1	
  ⇒Ij+1	
  	
  

Ij - over common variables of A1,… ,Aj and Aj+1,… ,Ak 

A2	
  

I2 
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Reachability with  
Interpolation-Sequence 

•  Compute a sequence of reachable states 
from BMC formulas 
– Forward Sequence: <F0,F1,…,Fn> 

•  Sequence is over-approximated 
– Fi(V)∧T(V,V‘) ⇒ Fi+1(V‘) 

– Fi ⇒ P 
•  Integrated into the BMC loop to detect 

termination 
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I1,1	
  

0 0 1 1 2 2( ) ( , ) ( , ) ( )INIT V T V V T V V p V∧ ∧ ∧¬

I1,2	
  
I2,2	
  

0 0 1 1( ) ( , ) ( )INIT V T V V p V∧ ∧¬

F1	
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INIT	
   R1	
  

INIT	
  

R2	
   R3	
  

F1	
   F2	
   F3	
  

BAD	
  
¬p	
  

0 0 1 1 2 2 3 3( ) ( , ) ( , ) ( , ) ( )INIT V T V V T V V T V V p V∧ ∧ ∧ ∧¬0 0 1 1( ) ( , ) ( )INIT V T V V p V∧ ∧¬

I1,1	
  

0 0 1 1 2 2( ) ( , ) ( , ) ( )INIT V T V V T V V p V∧ ∧ ∧¬

I2,2	
  I1,2	
  

F1	
   F2	
  

I3,3	
  
I2,3	
  I1,3	
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Checking if a “fixpoint” has been 
reached 

•  Fn ⇒ Vj=1,n-1 Fj 

•  Similar to checking fixpoint in forward 
reachability analysis : 
Rk ⊆ Uj=1,k-1 Rj 

•  But here we check inclusion for every 2 ≤ k ≤ n 
–  No monotonicity because of the approximation 

 

•  “Fixpoint” is checked with a SAT solver 
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Outline 

•  Background on model checking 
 
•  SAT-based model checking with interpolation 

•  Model checking with interpolation sequence 
 
•  Model checking with backward and forward 

interpolations 
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INIT 

Forward Reachability Analysis 

Bad=¬P 

R1=Img(INIT,T) R2=Img(R1,T) 

Rn=Img(Rn-1,T) 
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Interpolants 

•  Given an unsatisfiable pair (A,B) of 
propositional formulas 

•  Then, there exists a formula I such that: 
– A ⇒ I 
– I ∧ B is unsatisfiable  
– I is over the common variables of A and B 

•  I = Itp(A,B) 
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Approximated Forward Reachability 

•  F(V) – a set of states 
•  For the unsatisfiable formula  

F(V) ∧T(V,V’) ∧¬P(V’), define: 
A = F(V) ∧T(V,V’) 

B = ¬P(V’) 

•  Approximated forward reachability 
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INIT 

Backward Reachability Analysis 

Bad=¬P 

Does AGp hold? 

Bn=PreImg(Bn-1,T) B2=PreImg(B1,T) 
 

B1=PreImg(¬P,T) 
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Duality In a SAT Query 

•  INIT(V) ∧T(V,V’) ∧¬P(V’)  

•  We tend to read it "Forward" 
– From left to right 

Starting from 
the initial 
states	
  

and making 
one step 
forwards	
  

Do we reach 
the bad states?	
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and making 
one step 
backwards	
  
Starting from 
the bad states	
  

Duality In a SAT Query 

•  INIT(V) ∧T(V,V’) ∧¬P(V’)  

•  We tend to read it "Forward" 
– From left to right 

•  We can also read it "Backward" 
– From right to left 
– Does the pre-image of the bad states 

intersect the initial states 

Do we reach 
the initial 
states?	
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Approximated Backward Reachability 

•  B(V) – a set of states 
•  For the unsatisfiable formula              

INIT(V) ∧T(V,V’) ∧	
  B(V’), define: 
A = T(V,V’)	
 ∧	
 B(V’) 

B = INIT(V) 

•  Approximated backward reachability 
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Dual Approximated Reachability (DAR) 

•  Compute two sequences of reachable states 
– Forward Sequence: <F0,F1,…,Fn> 
– Backward Sequence: <B0,B1,…,Bn> 

•  Sequences are over-approximations 
– For the forward sequence: 

•  Fi(V)∧T(V,V‘) ⇒ Fi+1(V‘) 

•  Fi ⇒ P 
– For the backward sequence 

•  Bi+1(V) ⇐ T(V,V‘) ∧Bi(V‘) 

•  Bi ⇒ ¬INIT 

(Vizel, Grumberg and Shoham,TACAS 2013) 
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Dual Approximated Reachability (DAR) 

•  Two main phases during the computation 
– Local Strengthening 

•  No unrolling 
– Global Strengthening 

•  Limited unrolling 
•  In case the Local Strengthening fails 
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F0=INIT 

Dual Approximated Reachability 

B0=¬P 
B1	
  

INIT(V) ∧	
 T(V,V’)	
 ∧	
 ¬P(V’) 

F1	
  

A	
   B	
  A	
  B	
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F0=INIT 

Local Strengthening 

B0=¬P 
B1	
  F1	
  

What if F1 and B1 intersect each other? 

There might be a counterexample 
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F0=INIT 

Local Strengthening 

B0=¬P 
B1	
  

F1(V) ∧	
 T(V,V’)	
 ∧	
 B0(V’) 

F1	
  

What if F1 and B1 intersect each other? 

F0(V) ∧	
 T(V,V’)	
 ∧	
 B1(V’) 
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F0=INIT 

Local Strengthening 

B0=¬P 
B1	
  

F1(V) ∧	
 T(V,V’)	
 ∧	
 ¬P(V’) 

F1	
  

•  Compute forward and backward interpolants 
–  F2 is the forward interpolant 
–  Backward interpolant strengthens the already existing B1 

F2	
  
B1	
  

A	
   B	
  A	
  B	
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F0=INIT 

Local Strengthening 

B0=¬P 

B2	
  

INIT(V) ∧	
 T(V,V’)	
 ∧	
 B1(V’) 
Must be UnSAT 

F1	
  

•  Compute forward and backward interpolants 
–  B2 is the backward interpolant 
–  F’1 is strengthening the already existing F1 

F2	
  
B1	
  F1	
  

A	
  B	
   A	
   B	
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F0=INIT 

Local Strengthening Fails 

B0=¬P 
B1	
  F2	
  

F3(V) ∧	
 T(V,V’)	
 ∧	
 ¬P(V’) 

F1	
  
F3	
   B2	
  

B3	
  

F2(V) ∧	
 T(V,V’)	
 ∧	
 B1(V’) F1(V) ∧	
 T(V,V’)	
 ∧	
 B2(V’) F0(V) ∧	
 T(V,V’)	
 ∧	
 B3(V’) 
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Global Strengthening 
•  Apply unrolling gradually  
– Start from the initial states 
– Try to reach the backward sequence using 

an increasing number of T’s 
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F0=INIT 

Global Strengthening 

B0=¬P 
B1	
  

B2	
  
B3	
  

F0(V) ∧	
 T(V,V’)	
 ∧	
 T(V’,V’’)	
 ∧	
 B2(V’’) F0(V) ∧	
 T(V,V’)	
 ∧	
 T(V’,V’’)	
 ∧	
 T(V’’,V’’’)∧	
 B1(V’’’) F0(V) ∧	
 T(V,V’)	
 ∧	
 T(V’,V’’)	
 ∧	
 T(V’’,V’’’)∧T(V’’’,V’’’’)∧¬P(V’’’’) 
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Global Strengthening 

F0(V) ∧	
 T(V,V’)	
 ∧	
 T(V’,V’’)	
 ∧	
 T(V’’,V’’’)∧	
 B1(V’’’) 

A1	
   A2	
   A3	
   A4	
  

I1 I2 I3 T F 
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Interpolation sequence for UNSAT formula 



Global Strengthening 

•  Formula is unsatisfiable 
–  Extract an interpolation-sequence: I1, I2, I3 
–  Ij over-approximates states reachable in j steps 

F0(V) ∧	
 T(V,V’)	
 ∧	
 T(V’,V’’)	
 ∧	
 T(V’’,V’’’)∧	
 B1(V’’’) 

•  Use Ij to strengthen Fj  
–  Example: F3’ = F3 ∧ I3 
–  F3’ ∧	
 B1 is unsatisfiable 

•  Re-Apply Local Strengthening 
–  F3(V) ∧	
 T(V,V’)	
 ∧	
 ¬P(V’) is unsatisfiable 
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Global Strengthening 

•  If a CEX exists – Full unrolling 
•  Otherwise, gradually unroll the model 
– Try to reach the Backward sequence 

•  When the backward sequence is not 
reachable 
– Extract interpolation sequence 
– Strengthen forward sequence 
– Reapply Local Strengthening 
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Checking if a “fixpoint” has been 
reached 

•  Fk ⇒ Vj=1,n-1 Fj 

•  But we also have the backward sequence 
 Bk ⇒ Vj=1,n-1 Bj 

 

•  Same principle applies here check inclusion for 
every 2 ≤ k ≤ n 
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(Local) Summary	
  
•  Use both Forward and Backward 

traversals in a tight manner 
 

•  Mostly local – No unrolling 
– Inspired by IC3/PDR 

 
•  When unrolling is used, it is restricted 
– Experiments confirm 
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(Global) Summary 
We presented several methods for SAT-
based (unbounded) model checking 
 
•  Over-approximate the (forward) 

reachability analysis 
•  Apply different methods for making the 

over-approximation more precise 
– Reduce number of spurious counterexamples 
–  (Hopefully) help termination (fixpont) 
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Thank You 
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