
BreakIDGlucose
On the importance of row interchangeability in SAT

Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe

University of Leuven
{jo.devriendt,bart.bogaerts,maurice.bruynooghe}@cs.kuleuven.be

Abstract. Symmetry is a topic studied by both the Satisfiability (SAT)
and the Constraint Programming (CP) community. However, few at-
tempts at transferring results between both communities have been made.
This paper makes the link by investigating how symmetries from Con-
straint Satisfaction Problems (CSPs) transfer to symmetries of their SAT
encodings. We point out that important symmetry groups studied in CP
correspond to piecewise row symmetries of their SAT encoding, which
-using a CP result- can be broken efficiently. We then show that the
standard static symmetry breaking techniques for SAT fail to break
these symmetries efficiently, and investigate how this can be mitigated.
We also identify the Piecewise Row Interchangeability Detection prob-
lem, and we design a first automatic row interchangeability detection
scheme for SAT. We implemented hese ideas in the BreakIDGlucose SAT
solver, which detects and completely breaks interchangeable row symme-
try. BreakIDGlucose’s first place in the hard combinatorial track of the
2013 SAT competition shows the potential of row symmetry exploitation.

1 Introduction

Symmetry is a well-explored topic in many fields concerned with combinatorial
search and optimisation. For Constraint Programming (CP) and Satisfiability
(SAT) solving, many different forms of symmetry have been identified, and many
different kinds of symmetry exploitation techniques have been devised.

Typically, each symmetry exploitation technique consists of two phases: the
symmetry detection step, to identify which symmetries are present in the prob-
lem, and the symmetry breaking step, in which symmetry is used to reduce the
search space. Often, symmetry detection is done prior to solving [1, 2], but run-
time symmetry detection approaches exist as well [3]. The same holds for the
symmetry breaking step, where static symmetry breaking [4] adds constraints
to the problem that cut away a set of symmetrical solution candidates prior to
solving, while dynamic symmetry breaking [5, 6] avoids symmetrical parts of the
search tree at runtime by adjusting the solving mechanism.

In this paper, our focus is identifying symmetries in SAT problems, and con-
structing strong static symmetry breaking constraints for these. A well-known
result for symmetry in Constraint Satisfaction Problems (CSP) is that complete
symmetry breaking constraints exist for CSPs with interchangeable row symme-
try, which are CSPs whose variables form a matrix for which the order of the



rows is irrelevant. To the best of our knowledge however, no symmetry break-
ing approaches exist for SAT problems that both detect interchangeable row
symmetry and construct complete symmetry breaking constraints for it.

We formally show in this paper that value and variable interchangeable CSPs
can be encoded as SAT problems with interchangeable row symmetry. We pro-
pose a first rudimentary attempt to detect and completely break interchangeable
row symmetry present in a CNF theory. We implemented the resulting tech-
niques in a symmetry breaking preprocessor for CNF theories, and coupled this
with the Glucose SAT solver [7]. The resulting system, BreakIDGlucose, went
on to obtain the gold medal of the SAT+UNSAT crafted track of the 2013 SAT
competition [8], indicating that state-of-the-art SAT solvers can be improved
significantly by detecting and breaking row interchangeability symmetry.

The rest of this paper is structured as follows. In Section 2, we introduce
CP and SAT symmetry terminology, thereby identifying different forms of sym-
metry, and explaining how these reduce to a CSP’s SAT encoding. Section 3
explains how row interchangeability can be detected and completely broken in
SAT. Section 4 explains implementation details of BreakIDGlucose and discusses
experimental results, while Section 5 concludes this paper.

2 Symmetry in CP and SAT

2.1 CP and SAT terminology

A CSP is a triple (V,D,C) where V denotes a set of variables, D denotes the
domain of possible values for these variables, and C is a set of constraints. An
assignment to a CSP Π = (V,D,C) is a function α : V → D. We abstract the
set of constraints C as a function C : (V → D)→ B, denoting which assignments
satisfy the constraints. We use B = {t, f} to denote the set of boolean values. An
assignment α is a solution if it satisfies the constraints in C, i.e., if C(α) = t.
We call the set of all assignments to a CSP its assignment space and the set of
solutions its solution space.

As running example throughout this paper, we use the pigeonhole problem
(PH), where given a set of pigeons and a set of holes, an assignment of pigeons
to holes must be found such that at most one pigeon is assigned to each hole.
It is provably hard for a SAT-solver to solve unsatisfiable PH instances in a
straightforward encoding [9], but exploiting the symmetry present in PH can
make this problem trivial to solve.

Example 1. PH can be modelled as a CSP PHCSP = (V,D,C), where V repre-
sents the set of pigeons and D the set of holes. The constraints C are satisfied
iff at most one pigeon is assigned to each hole.

A SAT-problem is a special case of a CSP, where D = B. To distinguish a
SAT-problem from a CSP, we represent it as a tuple (W,T ), where W is a set
of Boolean variables, and T is a set of clauses, also known as a CNF theory,
representing the constraints. A clause is a set of literals, while a literal l is a



variable w ∈W or its negation ¬w. In line with our CSP terminology, a solution
to a SAT-problem is an assignment α for which T (α) = t.

Example 2. A PH with a set of pigeons P and a set of holes H can also be
modelled as a SAT-problem PHSAT = (W,T ). W then consists of a Boolean
variable wph for each (p, h) ∈ P × H, while the CNF-theory T requires that
exactly one wph is assigned t for each p ∈ P , and at most one wph is assigned t
for each h ∈ H.

CSPs can be encoded as SAT problems. Several common encoding procedures
are based on the fact that an assignment α to a CSP Π = (V,D,C) is a subset of
V ×D, and hence finding an α can be seen as finding a function α′ : V ×D → B.
More formally:

Definition 1. Let (V,D) be a pair with V a set of variables and D a set of
values and let W be a set of Boolean variables. An encoding of (V,D) to W is
a bijection Enc : V ×D →W .

Definition 2. Let α be an assignment to a CSP Π = (V,D,C) and Enc an
encoding. Then the encoded assignment of α is the unique assigment αenc such
that α(v) = d⇔ αenc(Enc(v, d)) = t.

For symmetry purposes, we are not interested in how the constraints are
encoded exactly, but only how variables, values, assignments and symmetries
are encoded. As such, we refer to any encoding procedure that makes use of an
encoding bijection as defined above as a standard encoding. Examples of standard
encoding procedures are direct encoding [10] and support encoding [11].

Definition 3. Let Π = (V,D,C) be a CSP. The standard encoding of Π is the
SAT-problem Πenc = (W,T ) such that there exists an encoding Enc and

– T (αenc) = C(α) for each assignment α to Π
– T (β) = f if β is not the encoded assignment of some α

We denote the variable Enc(v, d) by wvd. Assignments β to Πenc that are not
encoded assignments of some assignment α to Π are those β that do not corre-
spond to a function V → D.

Example 3. It is clear from our definitions in Examples 1 and 2 that PHSAT is
a standard encoding of PHCSP , with Enc(p, h) = wph.

2.2 Symmetry

This section introduces some terminology and results about symmetry from the
field of constraint programming. Firstly, we define a symmetry as a permutation
on the assignment space which preserves satisfaction to the constraints[12]:

Definition 4. A symmetry S for a CSP (V,D,C) is a permutation on the as-
signment space S : (V → D)→ (V → D) such that C(α) = C(S(α)).



It follows directly from the definition that symmetries of a CSP Π form algebraic
groups under the composition relation. Given a set of symmetries Σ, a symmetry
group GΣ is the set of symmetries generated by Σ. A symmetry class SC is a
set of assignments that is closed under the symmetries in GΣ , i.e., for each
α ∈ SC and S ∈ GΣ , also S(α) ∈ SC. Note that the symmetry classes of two
different assignments are either disjoint or identical, hence, the symmetry classes
of a symmetry group partition the assignment space. Since symmetries preserve
satisfaction of the constraints, either all assignments in a symmetry class are
solutions or none is a solution.

Example 4. In PH, it does not matter which holes are assigned to which pigeons.
So, a permutation on the assignment space which swaps the holes to which two
pigeons are assigned is a symmetry.

Note that by Definition 4, every permutation on the assignment space of an
unsatisfiable CSP is a symmetry. This makes Definition 4 a very general notion
of symmetry, and in practice, only particular types of symmetry are used to
speed up search. We now identify some common types of symmetry, using [2]
as reference. One such symmetry type is that of variable symmetry, which is
induced by a permutation on the set of variables of a CSP.

Definition 5. Let P be a permutation on the set of variables V . Then SP :
α 7→ α ◦P is the permutation induced by P on the assignment space. If SP is a
symmetry, it is called a variable symmetry.

Similarly, a value symmetry is induced by a permutation on the set of values:

Definition 6. Let Q be a permutation on the set of values D. Then SQ : α 7→ Q◦
α is a permutation induced by Q on the assignment space. If SQ is a symmetry,
it is called a value symmetry.

CSPs where all permutations on V induce variable symmetries are variable in-
terchangeable, while CSPs where all permutations on D induce value symmetries
are value interchangeable [2].

Example 5. In PHCSP , any permutation of the pigeons induces a variable sym-
metry, while any permutation on the holes induces a value symmetry. So PHCSP

is both variable and value interchangeable.

Other interesting symmetries are those derived from matrix-structured vari-
able sets:

Definition 7. Given a CSP Π = (V,D,C), a variable matrix of Π is a bijection
M : Ro×Co→ V , where Ro and Co are index sets. We typically denote M(r, c)
as vrc. A row of a variable matrix is the set of variables {vrc1 , . . . , vrcn} which
share the same first index r ∈ Ro. A column of a variable matrix is the set of
variables {vr1c, . . . , vrmc} which share the same second index c ∈ Co.

Note that the bijection Enc used for directly encoding a CSP Π, is also a variable
matrix of Πenc. Even stronger: there is a bijection between variables of Π and
rows of Enc and between values of Π and columns of Enc.



Example 6. The encoding Enc : P ×H →W : (p, h) 7→ wph is a variable matrix
for PHSAT , which in turn is a standard encoding of PHCSP . A row of Enc is
the set of wph ∈W that share the same pigeon, while a column is the set of wph
that share the same hole.

The symmetries occurring on matrix-structured variable sets are induced by
row and column permutations:

Definition 8. Given is a CSP Π = (V,D,C) and a variable matrix M of Π. An
M -row permutation P is a variable permutation such that P (vrc) = vP ′(r)c for
some permutation P ′ on M ’s Ro indices. An M -row symmetry is a symmetry
induced by an M -row permutation.
An M -column permutation Q is a variable permutation such that Q(vrc) =
vrQ′(c) for some permutation Q′ on M ’s Co indices. An M -column symmetry
is a symmetry induced by an M -column permutation.

A CSP is row interchangeable for some variable matrixM if allM -row permu-
tations induce a symmetry. A CSP is column interchangeable for some variable
matrix M if all M -column permutations induce a symmetry [2]. With M tr the
transpose of M , M -column symmetries are M tr-row symmetries, and vice versa.

Example 7. PHSAT is both row interchangeable and column interchangeable for
Enc.

2.3 Symmetry Breaking Constraints

As mentioned in the introduction, one way to exploit symmetry is by posting
symmetry breaking constraints which reduce the set of symmetrical solutions of
a CSP:

Definition 9. A set of constraints B is symmetry breaking for a symmetry
group G of a CSP Π if for each symmetry class SC of G there exists an as-
signment α ∈ SC such that B(α) = t, and if there exists an assignment α in
some symmetry class SC of G such that B(α) = f.

This definition guarantees that not all solutions are cut away. Nonetheless, we
want symmetry breaking constraints to cut away as much of the search tree as
possible. Ideally, we want symmetry breaking constraints to be complete:

Definition 10. A set of symmetry breaking constraints B is complete for some
symmetry group of a CSP Π if for each symmetry class SC, there exists exactly
one assignment α ∈ SC such that B(α) = t.

This notion of complete symmetry breaking constraints corresponds to the clas-
sic notion of sound and complete symmetry breaking constraints [4], but since
unsound symmetry breaking constraints are self-defeating, we rather use the
above terminology.

We recall three important symmetry breaking results obtained in CP:

Proposition 1. [13] Let Π = (V,D,C) be a CSP with interchangeable variables
and corresponding symmetry group GΣ. There exists a set of complete symmetry
breaking constraints B for GΣ that is polynomial in the size of V ×D.



Proposition 2. [13] Let Π = (V,D,C) be a CSP with interchangeable values
and corresponding symmetry group GΣ. There exists a set of complete symmetry
breaking constraints B for GΣ that is polynomial in the size of V ×D.

Proposition 3. [14, 15] Let Π = (V,D,C) be a CSP with interchangeable rows
for some variable matrix M and corresponding symmetry group GΣ. There exists
a set of complete symmetry breaking constraints B for GΣ that is polynomial in
the size of V ×D.

The constraints for Proposition 3 use a lexicographic order ≤lex on the rows of
an assignment, and state that in each solution each two consecutive rows r1 and
r2 are lexicographically increasing: r1≤lex r2. This way, for every symmetry class
of SC of GΣ , only the assignment which has its rows ordered lexicographically
can be a solution.

Note that Proposition 3 does not tell anything about the case where for
some variable matrix both the rows are interchangeable and the columns are
interchangeable. Currently, no polynomially sized symmetry breaking constraints
are known to completely break the symmetry group arising from interchangeable
rows and columns for the same variable matrix [15, 4].

2.4 Symmetry encodings

In this subsection we transfer symmetry properties from CSPs to their stan-
dard encodings in SAT. We first define what happens with variable and value
permutations:

Definition 11. Given is a CSP Π = (V,D,C), Π’s standard encoding Πenc =
(W,T ), a variable permutation P of Π and a value permutation Q of Π.
The permutation P enc : W → W : wvd 7→ wP (v)d is the encoded variable
permutation of P . The permutation Qenc : W → W : wvd 7→ wvQ(d) is the
encoded value permutation of Q.

Since there is a bijection between rows and columns of Enc and respectively vari-
ables and values of Π, an encoded variable permutation is an Enc-row permuta-
tion of Πenc and an encoded value permutation is an Enc-column permutation
of Πenc.

Encoded variable permutations have the following useful property:

Lemma 1. Let P be a variable permutation and α an assignment for some CSP,
then the following equation holds:

(α ◦ P )enc = αenc ◦ P enc

Proof. First we write the lemma in a more verbose form:

∀wvd ∈W : (α ◦ P )enc(wvd) = t⇔ (αenc ◦ P enc)(wvd) = t



Using the definitions of standard encodings and encoded permutations, we can
simply transform the left hand side to the right hand side of the equivalence:

(α ◦ P )enc(wvd) = t⇔ (α ◦ P )(v) = d

⇔ α(P (v)) = d

⇔ αenc(wP (v)d) = t

⇔ αenc(P enc(wvd)) = t

ut

A similar lemma with similar proof exists for value permutations:

Lemma 2. Let Q be a value permutation and α an assignment for some CSP,
then the following equation holds:

(Q ◦ α)enc = αenc ◦ (Q−1)enc

We can now show that each standard encoding of a CSP with variable sym-
metry exhibits again variable symmetry:

Proposition 4. Given a CSP Π = (V,D,C), Π’s standard encoding Πenc =
(W,T ) and a variable permutation P , then P induces a symmetry for Π if and
only if P enc induces a symmetry for Πenc.

Proof. We know from Definitions 4 and 5 that P induces a symmetry for Π if
and only if for every assignment α, C(α) = C(α ◦ P ).
Similarly, P enc induces a symmetry for Πenc if and only if for every assignment
β, T (β) = T (β ◦ P enc). Also, since P is a variable permutation, β represents a
function iff β ◦ P enc represents a function. So T (β) = f = T (β ◦ P enc) for every
β that does not represent a function. As a result, P enc induces a symmetry if
and only if for every encoded assignment αenc, T (αenc) = T (αenc ◦ P enc).

We know from Definition 3 that C(α) = T (αenc) and C(α ◦ P ) = T ((α ◦
P )enc). Combining this with Lemma 1 results in:

C(α) = T (αenc)

C(α ◦ P ) = T ((α ◦ P )enc) = T (αenc ◦ P enc)

Which can only hold if C(α) = C(α ◦ P )⇔ T (αenc) = T (αenc ◦ P enc), meaning
P induces a symmetry if and only if P enc induces a symmetry. ut

An analog result holds for value symmetries (proof omitted):

Proposition 5. Given a CSP Π = (V,D,C), Π’s standard encoding Πenc =
(W,T ) and a value permutation Q, then Q induces a symmetry for Π if and
only if Qenc induces a symmetry for Πenc.

Proposition 4 and 5 show that the standard encoding of both a CSP with variable
symmetry and a CSP with value symmetry, exhibit variable symmetry. As a
result, since variable permutations encode to Enc-row permutations and value
permutations encode to Enc-column permutations, the following corollary holds:



Corollary 1. Let Π = (V,D,C) be a CSP and Πenc = (W,T ) its standard
encoding. Π is variable interchangeable iff Πenc is row interchangeable for Enc.
Π is value interchangeable iff Πenc is column interchangeable for Enc.

Example 8. In Example 3 it was argued that PHSAT is a standard encoding of
PHCSP . In Example 5 it was pointed out that PHCSP is both variable and value
interchangeable. Because of Corollary 1, it is no coincidence that we argued in
Example 7 that PHSAT is both row and column interchangeable for Enc.

Corollary 1 establishes a formal connection between variable and value inter-
changeability in a CSP Π, and respectively row and column interchangeability
in a matrix encoding of Π. This connection is known in literature [16, 15], but
so far no formal proof was presented.

2.5 Piecewise symmetry

It rarely happens that a CSP is interchangeable for all of its variables or all of its
values at once. The notions of piecewise variable interchangeability and piecewise
value interchangeability [2] remedy this.

Definition 12.

We define a piecewise row interchangeable or column interchangeable CSP in
the same way:

Definition 13. A CSP Π = (V,D,C) is piecewise row interchangeable for some
partition {V1, . . . , Vn} and a variable matrix Mi for each Vi, if Π is row inter-
changeable for each Mi. Similarly, Π is piecewise column interchangeable for
some partition {V1, . . . , Vm} and a variable matrix Mj for each Vj, if Π is col-
umn interchangeable for each Mj.

Note that we allow the number of rows and columns of different variable matrices
M... to be different. Corollary 1 then generalizes to the piecewise case:

Corollary 2. Let Π = (V,D,C) be a CSP and Πenc = (W,T ) its standard
encoding. If Π is piecewise variable interchangeable for some partition V =
{V1, . . . , Vn} of V , then Πenc is piecewise row interchangeable for V and the
variable matrices EncV i : Vi × D → WV i : (v, d) 7→ Enc(v, d) for Vi. If Π
is piecewise value interchangeable for some partition D = {D1, . . . , Dm} of D,
then Πenc is piecewise column interchangeable for D and the variable matrices
EncDj : V ×Dj → WDj : (v, d) 7→ Enc(v, d) for Dj. WV i and WDj denote the
appropriate subsets of W that make EncV i and EncDj bijections.

3 Breaking and detecting row interchangeability in SAT

In the previous section, we showed that SAT encodings of (piecewise) variable
or value interchangeable CSPs are respectively (piecewise) row or column inter-
changeable. Since a CNF theory has no inherent rows or columns, we will ignore
column interchangeability for the rest of this paper, as it is merely another way



of looking at row interchangeability. Note that we also are not investigating
symmetry groups arising from both row and column interchangeable variable
matrices, which is a related but different topic.

Now, given that a row interchangeability symmetry group can be broken very
efficiently, one should strive to exploit row interchangeability in SAT theories.
Two obstacles currently block our path. The first is that it is unknown how
one can efficiently infer from a CNF theory that a significant subset of variables
can be structured as a row interchangeable variable matrix. This is contrasts
with higher level CP languages such as MiniZinc [17], or relational languages
such as FO(·) [18] and Alloy [19], where symmetry groups that reduce to row
interchangeability in a lower level CNF theory are easily detectable 1. Secondly,
even if a set of symmetry inducing permutations swapping consecutive rows of
a variable matrix is given, current SAT symmetry breaking mechanisms would
use this knowledge in an incomplete way: they might post incomplete symmetry
breaking constraints for the row interchangeability symmetry group.

We continue this section by summarizing how symmetry detection and static
symmetry breaking are currently implemented in SAT. Next, we explain the
shortcomings of this approach with respect to interchangeable rows. Finally, we
propose a complete row interchangeability breaking approach for SAT, and give
a first attempt at row interchangeability detection for SAT.

3.1 Breaking Row Symmetry in SAT

In SAT, symmetry is often detected by converting a SAT problem Π to a graph
G with the property that automorphisms of G correspond to permutations of
literals of Π that induce a symmetry of Π. Graph automorphism detection
tools [20, 21] are used to detect generators of the graph automorphism group,
which then correspond to generators of a symmetry inducing permutation group
of Π. The detected symmetry can be broken statically, e.g., by Shatter [22],
or dynamically, e.g., by Symmetry Propagation [23], two methods that are de-
signed to break any symmetry induced by a permutation of literals. Many other
approaches exist, of which we briefly mention SymChaff [24]. SymChaff expects
so-called k-complete multiclass symmetry specifications to be given as part of
its input, and can break these symmetries completely dynamically. We suspect
that k-complete multiclass symmetry groups actually are row interchangeability
symmetry groups, but we are not able to confirm this link yet.

The most convenient of these symmetry breaking approaches is the static
symmetry breaking approach taken by Shatter, a preprocessor for SAT solvers
that works on any CNF theory. It uses Saucy [20] for symmetry detection and
extends the CNF theory with symmetry breaking constraints. Below, we explain

1 The original context that led to this research was symmetry exploitation for the IDP
system [18]. As pointed out in [14], when searching for a relation R : D1× . . .×Dn,
it is possible to break the symmetry induced by the permutation group of a single
disjoint domain Di with a polynomially sized symmetry breaking constraint. This is
consistent with our findings, where the reduction of domain independent relational
constraints to SAT induces row interchangeability in the resulting CNF theory.



this approach in detail and argue that it fails to exploit row interchangeability.

Given a SAT problem Π = (W,T ), Saucy outputs a set of permutations of
literals of Π such that each of these permutations induce a symmetry of Π. From
now on, we denote this induced set of symmetries by Σ, which is a minimal set
of generators of a symmetry group GΣ of Π. For this section, we assume that
these symmetries are induced by permutations of variables only, since these
induce variable symmetries, which we are interested in . This is neither a very
restrictive nor an essential assumption.

Following [25], Shatter uses a total order <W on the Boolean variables in W
to induce a total lexicographic order <lex on the assignment space: α1<lex α2 if
for some w, α1(w) = f and α2(w) = t while for every w′<W w, α1(w′) = α2(w′).
Shatter then extends the CNF theory with a symmetry breaking constraint φσ ≡
α≤lex σ(α) for each σ ∈ Σ. Together, these constraints cut away all assignments
that are lexicographically larger than their image under the symmetries in Σ,
but not necessarily under all symmetries in the group GΣ .

This approach still has one free parameter, namely the ordering <W. Since
each variable w typically has an integer identifier id(w), Shatter pragmatically
determines w<W w′ iff id(w) < id(w′). However, as we shall see in Example 9,
the ordering is actually very important and choosing the correct ordering can
make the difference between breaking the entire symmetry group and breaking
almost nothing.

Example 9. Let PH32 = (W,T ) be a standard encoding of a pigeonhole instance
with 3 pigeons and 2 holes, where W consists of variables wij , i ∈ {1, 2, 3}, j ∈
{1, 2} and variable wij denotes whether pigeon i is assigned hole j. The mapping
M : (i, j) 7→ wij is a variable matrix for PH32 where every row of M represents
a pigeon, and every column a hole.

Now, we focus on the interchangeability of pigeons, or equivalently, on the
M -row interchangeability. Suppose that Saucy detects that all pigeons are in-
terchangeable, and returns a minimal set of generator permutations that induce
the interchangeable pigeon symmetry group. For example, Saucy returns P12

and P13, where Pij is the permutation that swaps pigeon i with pigeon j, or
equivalently, the permutation that swaps row i with row j in M .

Suppose the order on the variables <W is defined as follows:

w11<W w12<W w21<W w22<W w31<W w32. (1)

Shatter then posts constraints that intuitively read as “pigeon 1 resides in a
hole smaller than or equal to the hole in which pigeon 2 resides” and “pigeon 1
resides in a hole smaller than or equal to the hole in which pigeon 3 resides”. It
is clear that these constraints do not break all symmetries, because for example,
they do not relate pigeon 2 and pigeon 3. This is a suboptimal outcome, since we
already mentioned in Proposition 3 that there exists a short symmetry breaking
constraint that completely breaks a row interchangeability symmetry group. This
constraint is quite simple: just state that all rows must be lexicographically
ordered. In other words, the constraints “pigeon 1 resides in a hole smaller than
or equal to the hole in which pigeon 2 resides” and “pigeon 2 resides in a hole



smaller than or equal to the hole in which pigeon 3 resides” would break the
M -row interchangeability symmetry group completely. This is simply due to the
transitivity of the “smaller than or equal to” relation, which implies that also
pigeon 1’s hole is smaller than or equal to pigeon 3’s hole.

Now we see the importance of the variable ordering: had Shatter used the
variable ordering

w21<W w22<W w11<W w12<W w31<W w32, (2)

its constraints would have completely broken the M -row interchangeability sym-
metry group.

These observations for the pigeon hole problem can be generalized:

Proposition 6. Given a SAT problem Π = (W,T ) with variable matrix M :
Ro × Co → W such that Π is M -row interchangeable. Assume without loss of
generality that Ro = {1, . . . , n} and Co = {1, . . .m}. Let <W be the total order
defined by wij <W wkl if i < k or if i = k and j < l and let σi,j denote the
symmetry induced by swapping row i and j. Then, the set of constraints

α≤lex σi,i+1(α) for 0 < i < n

breaks the M -row interchangeability symmetry group completely.

Proof. Applying Shatter’s equivalency preserving compression techniques for
symmetry breaking constraints turns α≤lex σi,i+1(α) into a small constraint stat-
ing that the assignment to the variables of row i is lexicographically smaller than
or equal to the assignment to the variables of row i+ 1. Hence, Proposition 6 is
in fact a reformulation of the constraints used to break row interchangeability
completely in CSPs [14, 15].

Proposition 6 shows that if the order on the variables correctly follows the matrix
structure and the set of symmetry inducing generators consists of the permuta-
tions that swap two consecutive rows, then the symmetry breaking constraints
posted by Shatter are complete. Hence, a good way to improve Shatter is to
ensure that the chosen variable ordering and the set of symmetry generators are
compatible. As we explain later, this is the approach we took with BreakID.

3.2 Detecting Row Symmetry in SAT

We remark again that detecting a set of symmetry inducing permutations that
swap two consecutive rows is not a trivial task, simply because a CNF theory has
no builtin notion of rows or matrices. A good symmetry detection tool however
should be able to extract the row interchangeable matrix structure of (a subset
of) variables, if such structure is present. Currently, Saucy is not “row inter-
changeability aware”, and hence getting the right symmetry inducing generators
is not guaranteed; the only guarantee Saucy gives is that the set of generator
permutations is minimal. For instance, in Example 9, Saucy could also have
returned the set {P123, P13}, which still induces the row interchangeability sym-
metry group, but which reveals less of the matrix structure of PH32. We give a



first attempt to remedy this symmetry detection problem in this section.

Taking into account that we want to detect multiple row interchangeability
symmetry groups, we formalise the symmetry detection problem as follows:

Problem 1 (Piecewise Row Interchangeability Detection for CNF (PRID)). Given
a SAT problem Π = (W,T ), PRID consists of finding a partition {W1, . . . ,Wn}
of W and a set {M1, . . . ,Mn} such that

– every Mi is a variable matrix of Wi,
– Π is Mi-row interchangeable for every i,
– the sum of the number of rows of each Mi is maximal.

The third condition ensures that the detected symmetry groups are significant,
and avoids a trivial solution to the PRID problem by partitioning W into sin-
gleton sets.

To the best of our knowledge, the PRID problem has not been mentioned
in literature, let alone solved. In the rest of this subsection, we design a first
attempt at an algorithm for PRID. We give a rough sketch.

First, remark that in Example 9 we assumed Saucy returned a set Σ of
generator permutations that already contained some structure: the generator
permutations were row swaps of the known variable matrix. Permutations that
swap rows carry a partial structure of their corresponding variable matrix in
them, so it makes sense to investigate those closer. A first characterization of
a row swapping permutation P is that P is an involution: P = P−1. So if we
have a set of symmetry inducing involutions, they might encode row swapping
permutations on some unknown variable matrix. This leads to the following
terminology:

Given an involution P , a candidate row of P is a sequence of variables c =
w1, . . . , wn, such that

– variable w does not occur in c if P (w) = w,
– if P (w) 6= w, then either w occurs in c or P (w) occurs in c (but not both).

Given a candidate row c = w1, . . . , wn of P , its symmetrical counterpart is the
candidate row P (c) = P (w1), . . . , P (wn). Since P is an involution, P (P (c)) = c,
which partitions all candidate rows of P into pairs of symmetrical counter-
parts {c, P (c)}. Note that if P is a symmetry inducing involution for a prob-
lem Π, then each such pair of symmetrical counterparts actually represents a
row-interchangeable variable matrix with two rows for Π.

Now, let Σ be a set of generator permutations detected by Saucy, and let
P1, P2 ∈ Σ be two symmetry inducing involutions. If P1 and P2 share a common
candidate row c, but do not share any other variables, then M = {P1(c), c, P2(c)}
forms a set of three interchangeable rows. And if M contained a candidate row
c2 of some other involution P3 ∈ Σ, but M does not contain any variables from
the symmetrical counterpart P3(c2), then M can be extended with P3(c2) as
fourth row.



These observations lead to the following algorithm sketch:
Initially, the algorithm searches for two involutions P1, P2 ∈ Σ that share a

candidate row and that do not share any other variables. These form a variable
matrix Mi with three rows. Then the algorithm searches iteratively for more
involutions which share a row with Mi, but no other variables. If one is found,
Mi is extended with another row. If no more can be found, Mi is added to the
set of detected variable matrices, and all permutations Q that share a variable
with M are removed from Σ. Then the search restarts by looking for two new
P ′1, P

′
2 ∈ Σ to form a new variable matrix.

By removing all permutations Q that share a variable with a variable matrix,
we guarantee that the detected variable matrices share no variables, and hence
the above algorithm outline finds a variable matrix partition as required by the
PRID problem.

Recall that Saucy does not guarantee that any involutions are present in
its generator set Σ. However, the symmetry inducing permutation group GΣ
generated by Σ is guaranteed to contain any symmetry inducing row swapping
permutation. Hence, before we perform the above described row-interchangeable
matrix extraction, we try to find more involutions contained in GΣ . This is done
by a heuristic enumeration scheme: given the generator set Σ outputted by
Saucy, we take two elements σ, σ′ ∈ Σ. If σ ◦σ′ or σ′ ◦σ permutes relatively few
literals, we extend Σ with it. This process is repeated until timeout. Since row
candidates typically are relatively small involutions, the focus on small compo-
sitions hopefully increases the number of involutions in Σ which represent row
swaps in variable matrices.

To summarize: our answer to the PRID problem in CNF consists of two steps
(i) a heuristic method to generate a part of the permutation group generated by
the output of Saucy that hopefully contains many involutions, and (ii) a variable
matrix extraction phase based on involutions swapping two rows of a matrix.

4 BreakIDGlucose

4.1 BreakID: a Row Interchangeability Breaking Preprocessor

We implemented the row interchangeability detection and breaking techniques
presented in the previous section into BreakID [26], a symmetry breaking pre-
processor for SAT. Given a SAT problem Π = (W,T ), BreakID implements the
following steps:

1. Detect a generating set Σ of symmetry inducing variable and literal permu-
tations on the CNF using Saucy (as Shatter does).

2. Search heuristically for a large set of variable involutions Σ′ generated by
Σ, as explained in Section 3.2.

3. Extract disjoint variable matrices Mi and accompanying Mi-row permuta-
tions from Σ′, as explained in Section 3.2.

4. Break each symmetry group induced by an Mi-row interchangeability con-
straint completely by choosing the right order <W for the accompanying



Mi-row permutations σi,i+1, and post the appropriate α≤lex σi,i+1(α) con-
straints as explained in Section 3.1.

5. Use the order <W obtained in the previous step to break each symmetry σP
induced by a generator permutation P ∈ Σ by the same constraint Shatter
uses: α≤lex σP (α).

So BreakID actually is an extension of Shatter, generating extra symmetry break-
ing constraints for any detected row interchangeable variable matrix. Also, each
symmetry breaking constraint φ ≡ α≤lex σ(α) is converted to clausal form using
the same techniques as those used by Shatter [22]. This results in φ having a size
linear in the number of variables of Π. The number of constraints φ is bounded
by the number of variables of Π, hence the overall size of the symmetry breaking
constraint is quadratic in the number of variables of Π.

4.2 Experimental verification

To verify the relevance of the BreakID preprocessor, we sent two symmetry
breaking solvers to the 2013 international SAT competition. The first one was
BreakID coupled with state-of-the-art SAT solver Glucose 2.1 [7], the second
one consists of the Shatter preprocessor coupled to the same Glucose 2.1. We
denote these approaches with the terms BreakIDGlucose and ShatterGlucose re-
spectively. The results can be found at the SAT competition website [8], where
BreakIDGlucose obtained the gold medal on the SAT+UNSAT hard combinato-
rial track, while ShatterGlucose reached the 8th spot. BreakIDGlucose outper-
forming ShatterGlucose shows that interchangeable row symmetry is relevant in
today’s SAT competition problems, while BreakIDGlucose outperforming Glu-
cose 3.0 and other solvers shows that state-of-the-art solvers do not handle these
symmetries very well.

One particular problem submitted to the competition was the “tph” problem,
where two pigeons could be assigned to one hole, but 2n + 1 pigeons had to
be assigned to n holes, rendering the problem unsatisfiable. The only solver
equipped for this problem was Lingeling [27], which could detect the cardinality
constraints encoded in the clauses, and solve them with Gaussian elimination.
The results of ShatterGlucose and BreakIDGlucose on tph are compared to
Lingeling and all other solvers in Table 1.

Unsurprisingly, Lingeling has no problem with these instances, solving them
in less than a second. All (!) other solvers can only solve the smallest instance,
explained by the fact that their resolution proof is exponential [9]. ShatterGlu-
cose does a bit better: its detected symmetries allow it to prune away a (small)
part of the search tree. However, since ShatterGlucose cannot reason on row in-
terchangeability, none of the bigger instances were solved. BreakIDGlucose also
does better, even solving some of the larger instances, which can only be ex-
plained by the fact that BreakIDGlucose was able to detect and break most of
tph’s row interchangeability. However, for many tph instances, BreakIDGlucose
still did not find a solution, because its row interchangeability detection scheme
is still quite weak – if one cannot detect that all pigeons are interchangeable,
then the search space remains exponential.



Instance All other solvers ShatterGlucose BreakIDGlucose Lingeling

tph6.cnf 5̃00 3.3005 547.611 0.004
tph7.cnf 102.876 201.638 0.007
tph8.cnf 201.315 0.012
tph9.cnf 0.019
tph10.cnf 0.027
tph11.cnf 0.039
tph12.cnf 0.061
tph14.cnf 0.125
tph15.cnf 0.174
tph16.cnf 0.242
tph18.cnf 208.46 0.4799
tph19.cnf 212.754 0.6269
tph20.cnf 0.7999

Table 1. SAT13 competition results on tph in seconds. Blank means timeout (5000s)

While this experiment shows the potential of complete row interchangeability
breaking in SAT, it is clear that our heuristic detection scheme leaves much to
be desired. As a result, working out better detection algorithms for the PRID
problem seems a promising direction to speed up modern SAT solvers.

5 Conclusion

In this paper, we showed that the frequently occurring symmetry properties
of interchangeable variables and interchangeable values in CSPs map to inter-
changeable row symmetries in their standard SAT encoding. We then argued
that since SAT problems are CSP problems, and since interchangeable row sym-
metry groups can be completely broken in CSP with a simple row ordering con-
straint, that this must be possible in SAT as well. However, until now, no system
had been devised that could both detect and completely break interchangeable
row symmetries starting from a CNF theory. We proposed a first row inter-
changeability detection scheme for CNF, and constructed a polynomially sized
symmetry breaking constraint that indeed breaks interchangeable row symme-
try completely. Even though the row interchangeability detection mechanism is
very rudimentary and leaves much room for improvement, BreakIDGlucose still
realised significant speedups.

As a result, we are convinced that the PRID problem in CNF is an important
research question, worthy of attention of the SAT community. One idea to solve
PRID in CNF is to use computational algebra techniques to find the needed
consecutive M -row swapping permutations, or to adjust the current graph based
symmetry detection tools to actively look for involutions, as to improve variable
matrix extraction from the set of generating variable permutations. Another
area of further research is to investigate how other complete symmetry breaking
techniques relate to row interchangeability in SAT. For instance, the SymChaff
solver breaks its symmetry completely, which might point to a different way of
exploiting row interchangeability in SAT.



References

1. Mears, C., Garcia de la Banda, M., Wallace, M.: On implementing symmetry
detection. Constraints 14(4) (2009) 443–477

2. Van Hentenryck, P., Flener, P., Pearson, J., gren, M.: Compositional derivation of
symmetries for constraint satisfaction. In Zucker, J.D., Saitta, L., eds.: Abstrac-
tion, Reformulation and Approximation. Volume 3607 of LNCS. Springer Berlin
Heidelberg (2005) 234–247

3. Benhamou, B., Saıdi, M.R.: Dynamic detection and elimination of local symmetry
in CSPs

4. Walsh, T.: Symmetry breaking constraints: Recent results. CoRR abs/1204.3348
(2012)

5. Mears, C., Garcia de la Banda, M., Demoen, B., Wallace, M.: Lightweight dynamic
symmetry breaking. Constraints (2013) 1–48

6. Gent, I.P., Harvey, W., Kelsey, T., Linton, S.: Generic SBDD using computational
group theory. In: Principles and Practice of Constraint Programming–CP 2003,
Springer (2003) 333–347

7. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In Mi-
lano, M., ed.: Principles and Practice of Constraint Programming. LNCS. Springer
Berlin Heidelberg (2012) 118–126

8. Balint, A., Belov, A., Heule, M.J., Matti, M.J.: The 2013 international SAT com-
petition. http://satcompetition.org/2013/results.shtml (2013)

9. Haken, A.: The intractability of resolution. Theoretical Computer Science 39
(1985) 297 – 308 Third Conference on Foundations of Software Technology and
Theoretical Computer Science.

10. Walsh, T.: SAT v CSP. In: Principles and Practice of Constraint Programming -
CP 2000. Springer (2000) 441–456

11. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. 45(3) (1990) 99–118

12. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E.: Symmetry definitions for con-
straint satisfaction problems. In: Constraints. (2006) 115–137

13. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and dynamic
structural symmetry breaking. In Benhamou, F., ed.: Principles and Practice of
Constraint Programming - CP 2006. Volume 4204 of LNCS. Springer Berlin Hei-
delberg (2006) 695–699

14. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Appl. Math. 155(12) (June 2007) 1539–1548

15. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In Hentenryck, P., ed.:
Principles and Practice of Constraint Programming - CP 2002. Volume 2470 of
LNCS. Springer Berlin Heidelberg (2002) 462–477

16. Puget, J.F.: Breaking all value symmetries in surjection problems. In Beek, P.,
ed.: Principles and Practice of Constraint Programming - CP 2005. Volume 3709
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2005) 490–504

17. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In Bessiere, C., ed.: CP’07. Volume
4741 of LNCS., Springer (2007) 529–543

18. De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M.: Predicate logic as a
modelling language: The IDP system. CoRR abs/1401.6312 (2014)

19. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM’02) 11(2) (2002) 256–290

20. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An update.
In Strichman, O., Szeider, S., eds.: SAT. Volume 6175 of LNCS., Springer (2010)
113–127



21. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R.,
eds.: Proceedings of the Ninth Workshop on Algorithm Engineering and Experi-
ments and the Fourth Workshop on Analytic Algorithms and Combinatorics, SIAM
(2007) 135–149

22. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Transactions on Computers 55(5) (2006) 549–558

23. Devriendt, J., Bogaerts, B., Mears, C., De Cat, B., Denecker, M.: Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In: Proceedings of the
24th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’12.
(2012)

24. Sabharwal, A.: Symchaff: exploiting symmetry in a structure-aware satisfiability
solver. Constraints 14(4) (2009) 478–505

25. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. (1996)

26. Devriendt, J., Bogaerts, B.: BreakID, a symmetry breaking preprocessor for sat
solvers. https://bitbucket.org/krr/symbreaker (2013)

27. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition
2013. Proceedings of SAT Competition 2013 (2013) 51


