Credo quia absurdum (?)

Proof Generation for Saturating First-Order Theorem Provers

Stephan Schulz Geoff Sutcliffe
gk DHBW OFb

First-order proofs

Stephan Schulz

Agenda

Structure and Representation of Proofs
Proof Generation
Proof Applications

Conclusion

First-order proofs Stephan Schulz

Structure and Representation of Proofs J

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1, A, ..., An} = C

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1, A, ..., An} = C
iff

{A1, A, ..., Ap,—C} is unsatisfiable

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1, A, ..., An} = C
iff
{A1, A, ..., Ap,—C} is unsatisfiable
iff

cnf({A1, Ao, Ap, —C}) is unsatisfiable

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1, Az, ..., A} EC
iff
{A1, A, ..., Ap,—C} is unsatisfiable
iff
cnf({A1, A2, Ap, ~C}) is unsatisfiable
iff

cnf({A1 , Ao, Ap, —|C}) FO

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1,As,... . A} =C

iff
{Ay, Ao, ..., Ay, —C} is unsatisfiable Clausification
iff

cnf({Aq, Ao, Ap, —C}) is unsatisfiable
iff

Refutation
cnf({A1 5 A2, An, ﬂC}) FO

First-order proofs Stephan Schulz

|deal: Proofs as Sequences of Proof Steps

A derivation is a list of steps
Each step carries a clause/formula
Each step is either. ..

» Assumed (e.g. axioms, conjecture)
» Logically derived from earlier steps
A proof is a derivation that either. ..
» derives the conjecture
» derives a contradiction from the negated conjecture

Good mental model!)

First-order proofs Stephan Schulz

Reality: Proofs as Sequences of Proof Steps

Initial clauses/formulas
» Axioms/Conjectures/Hypotheses
» Justified by assumption

Derived clauses/formulas

» Justified by reference to (topologically) preceding steps
» Defined logical relationship to predecessors

» Most frequent case: theorem of predecessors
» Exceptions: Skolemization, negation of conjecture, ...
(Introduced definitions)
» Don'’t affect satisfiability/provability
» Justified by definition

First-order proofs Stephan Schulz

Logical Languages for FOF

Historical)
Problems Proofs/Derivations
» Otter “lists” » Otter “proof object”
» LOP (CNF only) » PCL (UEQ only)
» DFG » DFG (but nobody uses
» TPTP (vi,v2) DFG)
> ... > ...

First-order proofs

Stephan Schulz

Logical Languages for FOF

Historical
Problems Proofs/Derivations
» Otter “lists” » Otter “proof object”
» LOP (CNF only) » PCL (UEQ only)
» DFG » DFG (but nobody uses
» TPTP (vi,v2) DFG)
> ... > ...

Modern Convergence: TPTP v3

First-order proofs

Stephan Schulz

TPTP v3 language

Consistent syntax for different classes
» CNF is sub-case of FOF
» FOF is sub-case of TFF
Applicable for a wide range of applications
» Problem specifications
» Proofs/derivations
» Models
Easily parsable
» Prolog-parsable
» Lex/Yacc grammar
» Recursive-descent with 1-token look-ahead
Widely used and supported
» CASC

» Major provers (E, SPASS, Vampire, iProver, ..

» Used by integrators

)

First-order proofs Stephan Schulz

Example

fof (c_0_0, conjecture, (?[X3]: (human(X3)&X3!=john)), file(’humen.p’, someone_not_john)) .
fof(c_0_1, axiom, (?[X3]: (human (X3)&grade(X3)=a)), file(’humen.p’, someone_got_an_a)).
fof(c_0_2, axiom, (grade(john)=f), file(’humen.p’, john_failed)).
fof(c_0_3, axiom, (a!=f), file(’humen.p’, distinct_grades)).
fof(c_0_4, negated_conjecture, (7 (?[X3]: (human(X3)&X3!=john))),

inference (assume_negation, [status (cth)], [c_0_0])) .
fof(c_0_5, negated_conjecture, (![X4]:(human(X4) |X4=john)),

inference (variable_rename, [status (thm)], [inference (fof_nnf, [status (thm)], [c_0_4]1)1)) .
fof(c_0_6, plain, ((human(eskl_0)&grade(eskl_0)=a)),
inference (skolemize, [status(esa)], [inference (variable_rename, [status (thm)], [c_0_11)1)) .
cnf (c_0_7,negated_conjecture, (X1=john| "human (X1)),
inference (split_conjunct, [status (thm)], [c_0_5])) .
cnf (c_0_8,plain, (human (eskl_0)),
inference (split_conjunct, [status (thm)], [c_0_61)) .
cnf (c_0_9,plain, (grade (eskl_0)=a),
inference (split_conjunct, [status (thm)], [c_0_61)) .
cnf (c_0_10,negated_conjecture, (eskl_0=john),
inference (spm, [status (thm)], [c_0_7, c_0_8]))
cnf (c_0_11,plain, (grade (john)=£f),
inference (split_conjunct, [status (thm)], [c_0_2])) .
cnf(c_0_12,plain, (a!=£f),
inference (split_conjunct, [status (thm)], [c_0_3])) .
cnf(c_0_13,plain, (Sfalse),
inference (sr, [status (thm)], [inference (rw, [status (thm)],
[inference (rw, [status (thm)], [c_0_9, c_0_10]), c_0_11]), c_0_12]), [’proof’]).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_101),
c_0_111),
c_0_121),
['proof']).

First-order proofs Stephan Schulz

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']l).

First-order proofs Stephan Schulz

Language
(cnf, fof, tff, ...)

cnf (c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

First-order proofs

Stephan Schulz

Language
(cnf, fof, tff, ...)

Name
(arbitrary, but
unique)

cnf (c_0_13,
plain,
($false),

inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),

c_0_12]),
['proof']).

First-order proofs Stephan Schulz

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture, ...

cnf (c_0_13,
plain
($false),
inference(sr, [status(thm)],

[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_12]),
['proof']).

First-order proofs Stephan Schulz

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture,
J ! Logical formula

(the empty clause in this case)

cnf (c_0_13,
plain
($false)
inference(sr, [status(thm)],

[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_12]),
['proof']).

First-order proofs Stephan Schulz

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture,
J ! Logical formula

(the empty clause in this case)

cnf (c_0_13,
plain
($false)
inference(sr, [status(thm)],

[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_12]),
['proof']).

Source
(derivation from premises)

First-order proofs Stephan Schulz

Language
(cnf, fof, tff, ...)

Type
(axiom,lemma,

)

Name
(arbitrary, but
unique)

conjecture,
J ! Logical formula

(the empty clause in this case)

cnf (c_0_13,
plain
($false)
inference(sr, [status(thm)],

[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),

c_0_12]),

['proof!]).

Source

Optional “useful
information” (this step
concludes the proof)

(derivation from premises)

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_101),
c_0_111),
c_0_121),
['proof']).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference (zxw, [status(thm)],
[inference(zw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_12]),
['proof']).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),

[inference (rw, [status (thm)],
[inference (xw, [status (thm)],
[c_0.9, c_0_10D),
_0_11D),
c_0_12D),

['proof']).

First-order proofs

Stephan Schulz

“Useful
information”: logical
status (formula is
theorem of premises)

cnf(c_0_13,
plain,
($false),

[inference (. [status(thm)],
[inference (xw, [status (thm)],

[c_09, c_0_10D),
c0_11D),
©.0.12]),

['proof']).

First-order proofs Stephan Schulz

“Useful
information”: logical
status (formula is
theorem of premises)

cnf(c_0_13,
plain,
($false),

[inference (. [status(thm)],
[inference (xw, [status (thm)],

[c_0.9, c_0_10D),
011D,

co_12D),

['proof']).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference(rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference (rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a!=f

First-order proofs Stephan Schulz

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference (rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a!=f

Innermost inference:
Rewrite c_0_9 with
c_0_10

First-order proofs Stephan Schulz

Intermediate
inference: Rewrite the
result of the innermost

cnf(c_0_13, inference with
plain, c_0_11
($false),

inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference (rw, [status(thm)],
[c_0_9, c_0_10]),
c_0_111),
c_0_121),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a!=f

Innermost inference:
Rewrite c_0_9 with
c_0_10

First-order proofs Stephan Schulz

Outermost (final)
inference: Cut off a literal from
the result of the intermediate
inference with c_0_12

Intermediate
inference: Rewrite the

result of the innermost

inference with
c_0_11

cnf(c_0_13,
plain,
($false),
inference(sr, [status(thm)],
[inference(rw, [status(thm)],
[inference (rw, [status(thm)],

[c_0_9, c_0_10]),

c_0_111),
c_0_12]),
['proof']).

c_0_9: grade(eskl_0)=a
c_0_10: eskl_O=john
c_0_11:grade(john)=f
c_0_12: a!=f

Innermost inference:
Rewrite c_0_9 with
c_0_10

First-order proofs Stephan Schulz

Compl[ie]mentary Example

fof(c_0_1,
axiom,
(?[X3]: (human (X3) &grade (X3)=a)),
file("humen.p’, someone_got_an_a)) .

First-order proofs Stephan Schulz

TPTP v3 idiosyncrasies

No inference semantics

» Rules are just names

» Rules are system-dependent
Incomplete inference description

» “Rules are just names”
» Syntactic support not widely supported

First-order proofs Stephan Schulz

TPTP v3 idiosyncrasies

No inference semantics

» Rules are just names

» Rules are system-dependent
Incomplete inference description

» “Rules are just names”
» Syntactic support not widely supported

Workarounds:

» Inference status
» Proof reconstruction

First-order proofs Stephan Schulz

Proof Generation)

First-order proofs Stephan Schulz

Refutational Theorem Proving
{A1,As,... . A} =C

iff
{Ay, Ao, ..., Ay, —C} is unsatisfiable Clausification
iff

cnf({Aq, Ao, Ap, —C}) is unsatisfiable
iff

Refutation
cnf({A1 5 A2, An, ﬂC}) FO

First-order proofs Stephan Schulz

Clausification and Saturation

Clausification
» Terminating
» (Usually) deterministic
» (Usually) non-destructive
» Sometimes done by external tool

Saturation

» Many degrees of freedom
» Arbitrary search time
» Generating inferences
» Create new clauses
» Necessary for completeness
» Simplifying inferences
» Modify/remove existing clauses
» Necessary for performance

First-order proofs Stephan Schulz

Clausification and Saturation

Clausification

» Terminating
» (Usually) deterministic

» (Usually) non-destructive Recording
» Sometimes done by external tool clausification is
Saturation straightforward

» Many degrees of freedom > .ci-c;r?;t not always

» Arbitrary search time . _

» Generating inferences Efficiently recording
» Create new clauses saturation is difficult
» Necessary for completeness > ...some settle for

» Simplifying inferences inefficient

» Modify/remove existing clauses
» Necessary for performance

First-order proofs Stephan Schulz

Deduction vs. Simplification

s~tvS u#%#vVvR
olup«tl2vvSVR)

Superposition
if o = mgu(ulp, s), [...]

s~t u#%vvR
s~t up<+o(t)£2vVvR

Rewriting

if ulp = o(s)and o(s) > o(t)

First-order proofs Stephan Schulz

The Given-Clause Algorithm

P
(processed clauses)

» Aim: Move everything
from Uto P

9
(unprocessed clauses)

First-order proofs Stephan Schulz

» Aim: Move everything
from Uto P

The Given-Clause Algorithm
» Invariant: All
generating inferences

(processed clauses)
with premises from P

Gene- have been performed

rate

First-order proofs Stephan Schulz

The Given-Clause Algorithm

P
(processed clauses)

Simpli-
flable?

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: Pis
interreduced

First-order proofs Stephan Schulz

The Given-Clause Algorithm

P
(processed clauses)

—
gl N

Chea:
Simpli?y

T

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: P is
interreduced

» Clauses added to U
are simplified with
respect to P

Simplify

9
(unprocessed clauses)

First-order proofs Stephan Schulz

Naive Proof Generation

Basic approach:

» Store (or dump) all intermediate proof steps
» Extract proof steps in post-processing

Problem: Necessary steps only known after the proof concludes

» Intermediate results are expensive to store
» Example: A ring with X* = X is Abelian
Proof search (E): 5.4s

Proof search with inference dump: 11.4s
Post-processing: 17.6s

Temporary file size: 480 000 steps, 117MB
Proof size: 154 steps, 31 kB

\4

vvyVvyy

Only suitable for small problems/short run-times J

First-order proofs Stephan Schulz

Optimized Proof Object Construction
Observation: Only
clauses in P are
premises!

P
(processed clauses)

4

Gene-

Simpli-
fiable?

Chea:
Simpli?y

T

Simplify

(unprocessed clauses)

20

First-order proofs

Stephan Schulz

Optimized Proof Object Construction

’ (archive)

Gene-

(d cl)
ocessed clauses A
Ppre !

Simpli-
fiable? |

Chea:
Simpli?y

T

Simplify

V)
(unprocessed clauses)

Observation: Only
clauses in P are
premises!

Proof recording:

» Simplified P-clauses
are archived
» Clauses record their
history
» Inference rules
» P-clauses
involved

20

First-order proofs

Stephan Schulz

Optimized Proof Object Construction

4

Gene-

Simpli-
fable?

Simplify

(d cl)
ocessed clauses A
Ppre !

(archive)

Chea:
Simpli?y

T

V)
(unprocessed clauses)

Observation: Only
clauses in P are
premises!

Proof recording:

» Simplified P-clauses
are archived
» Clauses record their
history
» Inference rules
» P-clauses
involved

Proof extraction

» Track parent relation
» Topological sort
» Print proof

20

First-order proofs Stephan Schulz

Optimized Proof Generation

Example: A ring with X* = X is Abelian

» Naive approach
» Proof search (E): 5.4s
» Proof search with inference dump: 11.4s
» Post-processing: 17.6s
» Temporary file size: 480 000 steps, 117MB
» Proof size: 154 steps, 31 kB

» Optimized approach
» Proof search (E): 5.5s
» Proof search with inference dump: -
» Post-processing: -
» Temporary file size: -
» Proof size: 154 steps, 31 kB

» Example is typical
» Optimized overhead: 0.24% over TPTP 5.4.0

21

First-order proofs Stephan Schulz

Proof Applications)

22

First-order proofs Stephan Schulz

Why Proofs?

Trust
» in the proof
» inthe ATP system ;
» in the specification

Understanding
» of the proof
» of the domain |
» of the search process

Learning
» of important domain statements
» of search control information
» of the domain structure

"Nc.», | think it was just Divine

intervention.”

23

First-order proofs Stephan Schulz

Proof Checking

Semantic proof checking
» Step-by-step check
» Verify semantic status (conclusion can be derived “somehow”
from premises)
» Use alternative theorem prover (or configuration)

Syntactic proof checking

» Show correctness of individual inference rule applications
» With TPTP syntax: Requires proof reconstruction
» E.g. Metis in Isabelle/Sledgehammer

24

First-order proofs Stephan Schulz

Proof Visualization

o0 0, confsture, OIG Gurman)R 1=,

Tofte_0_1axiom. (/X3 :(human (X3 & grade(X3)=a). folc 02, wsiom, gradefohn

in_failed).

(o103 wiom, =
cChy distinet_grades).

fileC humen '’ someone_not_john.

Chuen.p', someone._got_an_u).

cgated_conjecture, (-(2[X3 (human(X3 X3 =john).
inference(assume. n satus(ct]dc_0_0D)

Tollc_0_6, plain, ((human(esk 1_0)&grade(esk 1_0)=a) cnflc_0_1 1, plain, (grade(john)=
L0_41D). X 101D | | inferencefsplit_conjunet status(thm)] de_0_21)

negated_conjecture, ([X4 (-human(X1Xs=john)).
linferencetfof_nnf{satushm)] i

7. negated_conjecture, (X1 =johnl-human(X1)),

X cal(c_0_8, plain, (human
rence(spli_conjunct{staus(thm)] ¢ 0_51)).

skl
(sphe_conjunctsatus(thm

0),
infere [c0_61)

Cnl(e_0_9, plin, (grade(esk |
cnessPL omjonc e 5610

enfic_0_10. negated_conjecture, (esk1_0=john).
e s e 0 -0 b1

iner 1 ference(ri {statushm)] e 0_9.¢ 0_10]).¢ 0_11).¢.0_12])

‘ coflc.0.13, plin, (Sfas),

25

Stephan Schulz

First-order proofs

Proof Visualization

fof(c_0_3, axiom, (a!=f).

fof(c_0_2, axiom, (grade(john)=1). ‘

fof(c_0_1, axiom, (?[X3]:(human(X3)&grade(X3)=a))). ‘

fof(c_0_0, conjecture, (?[X3]:(human(X3)&X3 !=john))). ‘

2(X3]:(human(X3)&X.

!

fof(c_0_5. negated_conjecture, (![X4]:(~human(X4)IXd=john))). ‘

\

enf(e_0_7, negated_conjecture (X1=johnl~human(X1))). ‘

john)))). ‘

fof(c_0_4, negated_conjecture,

enf(c_0_11, plain (gradeohn)=h).

fof(c_0_6, plain, ((human(esk1_0)é&grade(esk1_0)=a))) ‘

cnf(c_0_8, plain (human(esk1_0))). ‘

enfic_0_9. plain (grade(esk1_0)=a)). ‘

enf(c_0_10, negated_conjecture (esk1_0=john)). ‘

25

First-order proofs Stephan Schulz

Another Example

26

First-order proofs Stephan Schulz

Another Example

(A ring with X* = X is Abelian)

26

First-order proofs Stephan Schulz

Interactive Visualization

SNENEET folim NN ok
00— s

Oile 00

[[ole|

ﬁVVVf‘VVVVV ARvAy VA VA V.V,
0 O CRO O OO0 ¢ f|]2900] o 0000
wiola ol I\ O :

First-order proofs Stephan Schulz

Learning

Heuristics learning
» Find formulas that frequently
appear in proofs
» Generalize and reuse
Axiom selection

» Learn relationship between
conjecture and useful axioms

NORMAL

PERSON SCIENTIST

THAT HATPENS EVERY

Image credit: http://xkcd.com/242/ 28

http://xkcd.com/242/

First-order proofs Stephan Schulz

Conclusion

Efficient proof generation is non-trivial, but possible
TPTP v3 is a useful and used standard for proof representation
Proof objects are useful for trust building and learning

Use of proof objects is still in its infancy - we need more tools

29

First-order proofs Stephan Schulz

Conclusion

Efficient proof generation is non-trivial, but possible

TPTP v3 is a useful and used standard for proof representation
Proof objects are useful for trust building and learning

Use of proof objects is still in its infancy - we need more tools

Proof presentation is a big open area J

29

First-order proofs Stephan Schulz

Ceterum Censeo. ..

Bug reports for E should include:

» The exact command line leading to the bug
All input files needed to reproduce the bug
A description of what seems wrong
The output of eprover —--version

vvyy

30

	Structure and Representation of Proofs
	Proof Generation
	Proof Applications
	Conclusion

