
Proofs in
Satisfiability Modulo Theories

Clark Barrett (NYU)
Leonardo de Moura (Microsoft Research)
Pascal Fontaine (Inria, Loria, U. Lorraine)

APPA: All about Proofs, Proofs for All
∀X .XΠ

July 18, 2014

July 18, 2014 1 / 41

An overview of SMT solving

Outline

1 An overview of SMT solving

2 Proofs and SMT

3 Examples of SMT proofs

4 Applications and Challenges

July 18, 2014 2 / 41

An overview of SMT solving

Motivation

Automatic analysis of computer hardware and software requires
engines capable of reasoning efficiently about large and complex
systems.

Boolean engines such as Binary Decision Diagrams and SAT solvers
are typical engines of choice for today’s industrial verification
applications.

However, systems are usually designed and modeled at a higher level
than the Boolean level and the translation to Boolean logic can be
expensive.

A primary goal of research in Satisfiability Modulo Theories (SMT) is to
create verification engines that can reason natively at a higher level of
abstraction, while still retaining the speed and automation of today’s
Boolean engines.

July 18, 2014 3 / 41

An overview of SMT solving

Satisfiability Modulo Theories

Is the following formula satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer is
yes.

However, if we only consider models that obey the axioms for
read and write then the answer is no.

July 18, 2014 4 / 41

An overview of SMT solving

Satisfiability Modulo Theories

Is the following formula satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer is
yes.

However, if we only consider models that obey the axioms for
read and write then the answer is no.

July 18, 2014 4 / 41

An overview of SMT solving

Satisfiability Modulo Theories

Is the following formula satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer is
yes.
However, if we only consider models that obey the axioms for
read and write then the answer is no.

July 18, 2014 4 / 41

An overview of SMT solving

Satisfiability Modulo Theories

T-satisfiability
For a theory T , the T -satisfiability problem consists of deciding
whether there exists a model A and variable assignment α such that
(A, α) |= T ∪ ϕ for a given formula ϕ.

SAT and Theories
An SMT solver uses a fast SAT solver for Boolean reasoning
Coupled with specialized theory solvers for theory reasoning

July 18, 2014 5 / 41

An overview of SMT solving

What is SMT good for?

Generic Reasoning

Given some conditions X, is it possible for Y to happen, and if so
how?
X and Y must be expressible in logic
SMT offers a lot of expressive power
Possibility to define a new theory if all else fails

What SMT is NOT good for

Reasoning in the presense of uncertainty (e.g. probabilities)
Heavy use of quantifiers
Difficult constraints with no Boolean structure (e.g. Linear
Programs)

July 18, 2014 6 / 41

An overview of SMT solving

Proofs and SMT: a history

First Attempts

Cooperating Validity Checker (CVC), 2002a

First SMT solver to attempt proof-production
Wanted to be able to independently certify results
Aid in finding and correcting correctness bugs
Surprisingly - most important contribution was use in producing
explanations of inconsistency

aStump, Barrett, Dill. CVC: A Cooperating Validity Checker, CAV ’02.

July 18, 2014 7 / 41

An overview of SMT solving

Proofs and SMT: a history

Communication with skeptical proof assistants

CVC Lite, 2005a

Successor to CVC, ad hoc proof format
Translator from proof format to HOL Light
Provide access to efficient decision procedures within HOL Light
And enable use of HOL Light as a proof-checker for CVC Lite

haRVey, 2006b

Integration with Isabelle/HOL
CVC3, 2008c

Effort to certify SMT-LIB benchmark library
Found benchmarks with incorrect status
Found bug in CVC3

aMcLaughlin, Barrett, Ge. Cooperating Theorem Provers: A Case Study Combining HOL-Light and CVC
Lite, PDPAR ’05.

bFontaine, Marion, Merz, Nieto, Tiu. Expressiveness + Automation + Soundness: Towards Combining SMT
Solvers and Interactive Proof Assistants, TACAS ’06.

cGe, Barrett. Proof Translation and SMT-LIB Benchmark Certification: A Preliminary Report, SMT ’08.

July 18, 2014 8 / 41

An overview of SMT solving

Proofs and SMT: a history

Additinal solvers support proofs

Fx7, 2008a

Quantified reasoning, custom proof-checker
MathSAT4, 2008b

Internal proof engine for unsat cores and interpolants
Z3, 2008c

Proof traces - single rule for theory lemmas
veriT, 2009d

Proof production a primary goal in veriT

aMoskal. Rocket-Fast Proof Checking for SMT Solvers, TACAS ’08.
bBruttomesso, Cimatti, Franzén, Griggio, Sebastiani. The MathSAT 4 SMT Solver, CAV ’08.
cde Moura, Bjørner. Proofs and Refutations, and Z3, LPAR ’08.
dBouton, de Oliveira, Déharbe, Fontaine. veriT: An Open, Trustable and Efficient SMT-Solver, CADE ’09.

July 18, 2014 9 / 41

An overview of SMT solving

Proofs and SMT: a history

Current Status
No agreed-upon format for proofs in SMT
Solvers targeting self-contained, independently-checkable proofs

CVC4, veriT
Proof traces

Z3
Solvers using proof technology to drive other features (e.g.
interpolants)

MathSAT, SMTInterpol

July 18, 2014 10 / 41

An overview of SMT solving

Satisfiability Modulo Theories ≈ SAT + expressiveness

Satisfiability of first-order formulas
with interpreted and non-interpreted predicates and functions

Interpreted: Axioms (e.g. arrays) or Structure (e.g. linear arithmetic)

SAT solvers

¬
[
(p⇒ q)⇒

[
(¬p⇒ q)⇒ q

]]
congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f(a) 6= f(b) ∨ (p(a) ∧ ¬p(b))

]
in combination with arithmetic
a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧

[
f(a) 6= f(b) ∨ (p(a) ∧ ¬p(b+ x))

]
quantifiers
. . .

Alt-Ergo, Barcelogic, CVC4, MathSAT, OpenSMT, SMTInterpol, veriT, Yices, z3 . . .

July 18, 2014 11 / 41

An overview of SMT solving

Standard input language: SMT-LIB 2.0

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
In SMT-LIB 2.0 format:

(set-logic QF_UFLRA)
(set-info :source | Example formula in SMT-LIB 2.0 |)
(set-info :smt-lib-version 2.0)
(declare-fun f (Real) Real)
(declare-fun q (Real) Bool)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun x () Real)
(assert (and (<= a b) (<= b (+ a x)) (= x 0)

(or (not (= (f a) (f b)))
(and (q a) (not (q (+ b x)))))))

(check-sat)
(exit)

July 18, 2014 12 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]

Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable
New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

July 18, 2014 13 / 41

An overview of SMT solving

From propositional SAT to SMT: in practice

online decision procedures
theory checks propositional assignment on the fly

small explanations
unsat core of propositional assignment
discard classes of propositional assignments (not one by one)

theory propagation
instead of guessing propositional variable assignments, SAT solver
assigns theory-entailed literals

ackermannization, simplifications, and other magic

July 18, 2014 14 / 41

An overview of SMT solving

Theory and quantifier reasoning

theory reasoning techniques specific to theories. . .
. . . but (mostly) interact similarly with the SAT solver
uninterpreted symbols and equality: congruence closure
linear arithmetic: mostly simplex
quantifiers: mostly instantiation

More details to come later (with proof production)

July 18, 2014 15 / 41

Proofs and SMT

Outline

1 An overview of SMT solving

2 Proofs and SMT

3 Examples of SMT proofs

4 Applications and Challenges

July 18, 2014 16 / 41

Proofs and SMT

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬pq(a) ∨ pq(b+x)

SMT proof: interleaving of SAT proof and theory reasoning proof

July 18, 2014 17 / 41

Proofs and SMT

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]

New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬pq(a) ∨ pq(b+x)

SMT proof: interleaving of SAT proof and theory reasoning proof

July 18, 2014 17 / 41

Proofs and SMT

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬pq(a) ∨ pq(b+x)

SMT proof: interleaving of SAT proof and theory reasoning proof

July 18, 2014 17 / 41

Proofs and SMT

From propositional SAT to SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

New theory clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬pq(a) ∨ pq(b+x)

SMT proof: interleaving of SAT proof and theory reasoning proof

July 18, 2014 17 / 41

Proofs and SMT

SMT in practice

online decision procedures
theory checks propositional assignment on the fly
No influence on proof
small explanations
unsat core of propositional assignment
discard classes of propositional assignments (not one by one)
No influence on proof (small theory clauses)

theory propagation
instead of guessing propositional variable assignments, SAT solver
assigns theory-entailed literals
May need explanation (theory clause)
ackermannization, simplifications, and other magic
Sometimes cumbersome to prove

Challenge: collect enough information

July 18, 2014 18 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)

And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)

And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c

, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b

, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b

, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Congruence closure

Consider the terms: a, b, c, f(a), f(b)
And literals: a = c, c = b, f(a) 6= f(b)

each term in its equivalence class

equality −→ class merge

congruence −→ class merge

detect conflicts

In practice: efficient (merge, congruence and conflict detection)

Theory reasoning proof, from graph:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from transitivity: a 6= c ∨ c 6= b ∨ a = b

resolution compute the theory clause: a 6= c ∨ c 6= b ∨ f(a) = f(b)

July 18, 2014 19 / 41

Proofs and SMT

Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from another theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ a = b

resolution compute the theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ f(a) = f(b)

Over-simplification :
delayed theory combination
model-based combination

July 18, 2014 20 / 41

Proofs and SMT

Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from another theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ a = b

resolution compute the theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ f(a) = f(b)

Over-simplification :
delayed theory combination
model-based combination

July 18, 2014 20 / 41

Proofs and SMT

Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from another theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ a = b

resolution compute the theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ f(a) = f(b)

Over-simplification :
delayed theory combination
model-based combination

July 18, 2014 20 / 41

Proofs and SMT

Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from another theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ a = b

resolution compute the theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ f(a) = f(b)

Over-simplification :
delayed theory combination
model-based combination

July 18, 2014 20 / 41

Proofs and SMT

Theory reasoning proofs
Combination of theories

Theory reasoning proof, with combination of theories:

conflict f(a) 6= f(b) with an implied literal

entailed by congruence: a 6= b ∨ f(a) = f(b)

and a = b comes from another theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ a = b

resolution compute the theory clause:
¬a ≤ b ∨ ¬b ≤ a+ x ∨ x 6= 0 ∨ f(a) = f(b)

Over-simplification :
delayed theory combination
model-based combination

July 18, 2014 20 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1

, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1

, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x

inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x

And also
integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Theory reasoning proofs
Linear arithmetic

Many linear arithmetic decision procedures based on simplex
Simplex detects inconsistency
Farkas lemma can be used to provide certificate

y > 1, x < 1, y ≤ x
inconsistency

x < 1
+ y ≤ x
− y > 1

0 < 0

Clause: ¬y > 1 ∨ ¬x < 1 ∨ ¬y ≤ x
And also

integers: branches, cuts
simplifications, bound propagations. . .

July 18, 2014 21 / 41

Proofs and SMT

Quantifiers and proofs

Quantifiers mainly come from instantiation
Proof is simply

¬∀xϕ(x) ∨ ϕ(t)

∀xϕ(x) is an abstract Boolean variable for the SAT solver
Resolution, again
Skolemization is a problem though

July 18, 2014 22 / 41

Proofs and SMT

Other theories

Other theories
arrays
inductive data types
bit-vectors
strings
non-linear arithmetic

July 18, 2014 23 / 41

Examples of SMT proofs

Outline

1 An overview of SMT solving

2 Proofs and SMT

3 Examples of SMT proofs

4 Applications and Challenges

July 18, 2014 24 / 41

Examples of SMT proofs

CVC4 proof (1/3)

(check
(% a var_real
(% b var_real
(% x var_real
(% f (term (arrow Real Real))
(% q (term (arrow Real Bool))
(% @F1 (th_holds (<=_Real (a_var_real a) (a_var_real b)))
(% @F2 (th_holds (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))))
(% @F3 (th_holds (= Real (a_var_real x) (a_real 0/1)))
(% @F4 (th_holds (or (not (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))))

(and (= Bool (apply _ _ q (a_var_real a)) btrue)
(= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))))

(: (holds cln)

(decl_atom (<=_Real (a_var_real a) (a_var_real b)) (\ v1 (\ a1
(decl_atom (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))) (\ v2 (\ a2
(decl_atom (= Real (a_var_real x) (a_real 0/1)) (\ v3 (\ a3
(decl_atom (= Real (a_var_real a) (a_var_real b)) (\ v4 (\ a4
(decl_atom (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))) (\ v5 (\ a5
(decl_atom (= Bool (apply _ _ q (a_var_real a)) btrue) (\ v6 (\ a6
(decl_atom (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse) (\ v7 (\ a7
(decl_atom (<=_Real (a_var_real b) (a_var_real a)) (\ v8 (\ a8
(decl_atom (= Real (a_var_real a) (+_Real (a_var_real b) (a_var_real x))) (\ v9 (\ a9
(decl_atom (and (= Bool (apply _ _ q (a_var_real a)) btrue)

(= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))
(\ v10 (\ a10

July 18, 2014 25 / 41

Examples of SMT proofs

CVC4 proof (2/3)

; CNFication
(satlem _ _ (asf _ _ _ a1 (\ l1 (clausify_false (contra _ @F1 l1)))) (\ C1
(satlem _ _ (asf _ _ _ a2 (\ l2 (clausify_false (contra _ @F2 l2)))) (\ C2
(satlem _ _ (asf _ _ _ a3 (\ l3 (clausify_false (contra _ @F3 l3)))) (\ C3
(satlem _ _ (ast _ _ _ a5 (\ l5 (asf _ _ _ a6 (\ l6 (clausify_false (contra _

(and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ l5) @F4)) l6)))))) (\ C4
(satlem _ _ (ast _ _ _ a5 (\ l5 (asf _ _ _ a7 (\ l7 (clausify_false (contra _

(and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ l5) @F4)) l7)))))) (\ C5

; Theory lemmas
; ~a4 ^ a1 ^ a8 => false
(satlem _ _ (asf _ _ _ a4 (\ l4 (ast _ _ _ a1 (\ l1 (ast _ _ _ a8 (\ l8
(clausify_false (contra _ l1
(or_elim_1 _ _ (not_not_intro _ (<=_to_>=_Real _ _ l8)) (not_=_to_>=_=<_Real _ _ l4))))))))))
(\ C6

; a2 ^ a3 ^ ~a8 => false
(satlem _ _ (ast _ _ _ a2 (\ l2 (ast _ _ _ a3 (\ l3 (asf _ _ _ a8 (\ l8 (clausify_false
(poly_norm_>= _ _ _ (<=_to_>=_Real _ _ l2) (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _
(pn_var a) (pn_var x)) (pn_var b)) (\ pn2
(poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
(poly_norm_> _ _ _ (not_<=_to_>_Real _ _ l8) (pn_- _ _ _ _ _ (pn_var b) (pn_var a)) (\ pn8
(lra_contra_> _ (lra_add_>_>= _ _ _ pn8 (lra_add_=_>= _ _ _ pn3 pn2)))))))))))))))) (\ C7

; a4 ^ ~a5 => false
(satlem _ _ (ast _ _ _ a4 (\ l4 (asf _ _ _ a5 (\ l5 (clausify_false
(contra _ (cong _ _ _ _ _ _ (refl _ f) l4) l5)))))) (\ C8

July 18, 2014 26 / 41

Examples of SMT proofs

CVC4 proof (3/3)

; a3 ^ a4 ^ ~a9 => false
(satlem _ _ (ast _ _ _ a3 (\ l3 (ast _ _ _ a4 (\ l4 (asf _ _ _ a9 (\ l9 (clausify_false
(poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
(poly_norm_= _ _ _ l4 (pn_- _ _ _ _ _ (pn_var a) (pn_var b)) (\ pn4
(poly_norm_distinct _ _ _ l9 (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _
(pn_var b) (pn_var x)) (pn_var a)) (\ pn9
(lra_contra_distinct _ (lra_add_=_distinct _ _ _
(lra_add_=_= _ _ _ pn3 pn4) pn9))))))))))))))) (\ C9

; a9 ^ a6 ^ a7 => false
(satlem _ _ (ast _ _ _ a9 (\ l9 (ast _ _ _ a6 (\ l6 (ast _ _ _ a7 (\ l7 (clausify_false
(contra _ (trans _ _ _ _ (trans _ _ _ _ (symm _ _ _ l6) (cong _ _ _ _ _ _
(refl _ q) l9)) l7) b_true_not_false)))))))) (\ C10

; Resolution proof
(satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ C6 C1 v1) (Q _ _ (Q _ _ C7 C2 v2) C3 v3) v8)
(Q _ _ (Q _ _ (Q _ _ (Q _ _ (R _ _ C9 C10 v9) C3 v3) C4 v6) C5 v7) C8 v5) v4)
(\ x x)))

July 18, 2014 27 / 41

Examples of SMT proofs

veriT proof (1/2)

(set .c1 (input :conclusion ((and (<= a b) (<= b (+ a x)) (= x 0)
(or (not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))))

(set .c2 (and :clauses (.c1) :conclusion ((<= a b))))
(set .c3 (and :clauses (.c1) :conclusion ((<= b (+ a x)))))
(set .c4 (and :clauses (.c1) :conclusion ((= x 0))))
(set .c5 (and :clauses (.c1) :conclusion

((or (not (= (f b) (f a))) (and (q a) (not (q (+ b x))))))))
(set .c6 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (q a))))
(set .c7 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (not (q (+ b x))))))
(set .c8 (or :clauses (.c5) :conclusion

((not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))
(set .c9 (eq_congruent :conclusion ((not (= a b)) (= (f b) (f a)))))
(set .c10 (la_disequality :conclusion ((or (= a b) (not (<= a b)) (not (<= b a))))))
(set .c11 (or :clauses (.c10) :conclusion ((= a b) (not (<= a b)) (not (<= b a)))))
(set .c12 (resolution :clauses (.c11 .c2) :conclusion ((= a b) (not (<= b a)))))
(set .c13 (la_generic :conclusion ((not (<= b (+ a x))) (<= b a) (not (= x 0)))))
(set .c14 (resolution :clauses (.c13 .c3 .c4) :conclusion ((<= b a))))
(set .c15 (resolution :clauses (.c12 .c14) :conclusion ((= a b))))
(set .c16 (resolution :clauses (.c9 .c15) :conclusion ((= (f b) (f a)))))
(set .c17 (resolution :clauses (.c8 .c16) :conclusion ((and (q a) (not (q (+ b x)))))))
(set .c18 (resolution :clauses (.c6 .c17) :conclusion ((q a))))
(set .c19 (resolution :clauses (.c7 .c17) :conclusion ((not (q (+ b x))))))

July 18, 2014 28 / 41

Examples of SMT proofs

veriT proof (2/2)

(set .c20 (eq_congruent_pred :conclusion ((not (= a (+ b x))) (not (q a)) (q (+ b x)))))
(set .c21 (resolution :clauses (.c20 .c18 .c19) :conclusion ((not (= a (+ b x))))))
(set .c22 (la_disequality :conclusion

((or (= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c23 (or :clauses (.c22) :conclusion

((= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c24 (resolution :clauses (.c23 .c21) :conclusion

((not (<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c25 (eq_congruent_pred :conclusion

((not (= a b)) (not (= (+ a x) (+ b x))) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c26 (eq_congruent :conclusion ((not (= a b)) (not (= x x)) (= (+ a x) (+ b x)))))
(set .c27 (eq_reflexive :conclusion ((= x x))))
(set .c28 (resolution :clauses (.c26 .c27) :conclusion ((not (= a b)) (= (+ a x) (+ b x)))))
(set .c29 (resolution :clauses (.c25 .c28) :conclusion

((not (= a b)) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c30 (resolution :clauses (.c29 .c3 .c15) :conclusion ((<= a (+ b x)))))
(set .c31 (resolution :clauses (.c24 .c30) :conclusion ((not (<= (+ b x) a)))))
(set .c32 (la_generic :conclusion ((<= (+ b x) a) (not (= a b)) (not (= x 0)))))
(set .c33 (resolution :clauses (.c32 .c4 .c15 .c31) :conclusion ()))

July 18, 2014 29 / 41

Examples of SMT proofs

z3 proof (1/2)

(let (($x82 (q b)) (?x49 (* (- 1.0) b)) (?x50 (+ a ?x49))
($x51 (<= ?x50 0.0)) (?x35 (f b)) (?x34 (f a))
($x36 (= ?x34 ?x35)) ($x37 (not $x36))
($x43 (or $x37 (and (q a) (not (q (+ b x))))))
($x33 (= x 0.0)) (?x57 (+ a ?x49 x)) ($x56 (>= ?x57 0.0))
($x44 (and (<= a b) (<= b (+ a x)) $x33 $x43))
(@x60 (monotonicity (rewrite (= (<= a b) $x51))

(rewrite (= (<= b (+ a x)) $x56))
(= $x44 (and $x51 $x56 $x33 $x43))))

(@x61 (mp (asserted $x44) @x60 (and $x51 $x56 $x33 $x43)))
(@x62 (and-elim @x61 $x51)) ($x71 (>= ?x50 0.0)))

(let ((@x70 (trans (monotonicity (and-elim @x61 $x33) (= ?x57 (+ a ?x49 0.0)))
(rewrite (= (+ a ?x49 0.0) ?x50)) (= ?x57 ?x50))))

(let ((@x74 (mp (and-elim @x61 $x56) (monotonicity @x70 (= $x56 $x71)) $x71)))
(let ((@x121 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))

(= $x82 (q a)))))
(let (($x38 (q a)) ($x96 (or (not $x38) $x82)) ($x97 (not $x96)))
(let ((@x115 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))

(= ?x35 ?x34))))
(let (($x100 (or $x37 $x97)))
(let ((@x102 (monotonicity (rewrite (= (and $x38 (not $x82)) $x97))

(= (or $x37 (and $x38 (not $x82))) $x100))))
(let (($x85 (not $x82)))
(let (($x88 (and $x38 $x85)))
(let (($x91 (or $x37 $x88)))
(let ((@x81 (trans (monotonicity (and-elim @x61 $x33) (= (+ b x) (+ b 0.0)))

(rewrite (= (+ b 0.0) b)) (= (+ b x) b))))
(let ((@x87 (monotonicity (monotonicity @x81 (= (q (+ b x)) $x82)) (= (not (q (+ b x))) $x85))))

July 18, 2014 30 / 41

Examples of SMT proofs

z3 proof (2/2)

(let ((@x93 (monotonicity (monotonicity @x87 (= (and $x38 (not (q (+ b x)))) $x88))
(= $x43 $x91))))

(let ((@x103 (mp (mp (and-elim @x61 $x43) @x93 $x91) @x102 $x100)))
(let ((@x119 (unit-resolution (def-axiom (or $x96 $x38))

(unit-resolution @x103 (symm @x115 $x36) $x97) $x38)))
(let ((@x118 (unit-resolution (def-axiom (or $x96 $x85))

(unit-resolution @x103 (symm @x115 $x36) $x97) $x85)))
(unit-resolution @x118 (mp @x119 (symm @x121 (= $x38 $x82)) $x82) false)))))))))))))))))

July 18, 2014 31 / 41

Applications and Challenges

Outline

1 An overview of SMT solving

2 Proofs and SMT

3 Examples of SMT proofs

4 Applications and Challenges

July 18, 2014 32 / 41

Applications and Challenges

Applications

Current Applications

Proof reconstruction within skeptical proof assistants a, b, c

Interpolant generation d, e, f

Unsat core computation g

aKeller. A Matter of Trust: Skeptical Communication Between Coq and External Provers, PhD Thesis, Ecole
Polytechnique, 2013.

bArmand, Faure, Grégoire, Keller, Thery, Werner. A Modular Integration of SAT/SMT Solvers to Coq through
Proof Witnesses, CPP ’11.

cBöhme. Proof Reconstruction for Z3 in Isabelle/HOL, SMT’09.
dReynolds, Tinelli, Hadarean. Certified Interpolant Generation for EUF, SMT ’11.
eHofferek, Gupta, Könighofer, Jiang, Bloem. Synthesizing Multiple Boolean Functions using Interpolation on

a Single Proof, FMCAD ’13.
fMcMillan. Interpolants from Z3 Proofs, FMCAD ’11.

gDéharbe, Fontaine, Guyot, Voisin. SMT Solvers for Rodin, Abstract State Machines ’12.

July 18, 2014 33 / 41

Applications and Challenges

Challenges

Challenges

Challenge to collect and store proof information efficiently
Producing proofs for sophisticated preprocessing techniques
Producing proofs for modules that use external tools
Standardizing a proof format

July 18, 2014 34 / 41

Applications and Challenges

Lean Theorem Prover

New theorem prover started by L. de Moura and Soonho Kong.
Contributors: Jeremy Avigad, Cody Roux, Floris van Doorn,
Parikshit Khanna

Many thanks to: Georges Gonthier, Nikhil Swamy, Vladimir Voevodsky

Open source (Apache 2.0),
https://github.com/leanprover/lean

can be used as an automatic prover (SMT), and as a proof
assistant
Based on Type Theory, and incorporates ideas of many other
systems:
Agda, Coq, HOL-Light, Isabelle, PVS, ...

July 18, 2014 35 / 41

https://github.com/leanprover/lean

Applications and Challenges

Lean: Two Layers Architecture

First layer: type checker, APIs for creating terms, environment, ...
Configuration options: e.g., impredicative Prop, proof irrelevance,
...
Universe polymorphism.
5k lines of C++ code.

Second layer: additional (trusted) components.
Example: inductive datatypes (extra 500 lines of code).
We currently support two flavors/instances: Standard and HoTT.

July 18, 2014 36 / 41

Applications and Challenges

Lean: As a Library

Meant to be used as a standalone system and as a software
library.
Extensive API and can be easily embedded in other systems.
SMT solvers can use the Lean API to create proof terms that can
be independently checked.
APIs in C++, Lua (and Python coming soon).

July 18, 2014 37 / 41

Applications and Challenges

Lean: Proofs

More expressive language for encoding proofs provides several
advantages.
We can easily add new “proof rules” without modifying the proof
checker (i.e., type checker).
Proof rules such as mp and monotonicity used in Z3 are just
theorems in Lean.

July 18, 2014 38 / 41

Applications and Challenges

Lean: Automation

First, define theory, then prove theorems/properties, then
implement automation.
Example: suppose we are implementing a procedure for
Presburger Arithmetic.

theorem add_comm (n m:nat) : n + m = m + n
:= induction_on m

(trans (add_zero_right _) (symm (add_zero_left _)))
(take k IH,

calc n + succ k = succ (n+k) : add_succ_right _ _
... = succ (k + n) : {IH}
... = succ k + n : symm (add_succ_left _ _))

July 18, 2014 39 / 41

Applications and Challenges

Lean: Automation

Pre-processing steps such as Skolemization can be supported in
a similar way.

theorem skolem_th {A : Type} {B : A -> Type} {P : forall x : A, B x -> Bool} :
(forall x, exists y, P x y) = (exists f, (forall x, P x (f x)))

:= iff_intro
(assume H : (forall x, exists y, P x y), axiom_of_choice H)
(assume H : (exists f, (forall x, P x (f x))),

take x, obtain (fw : forall x, B x) (Hw : forall x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))

July 18, 2014 40 / 41

Applications and Challenges

Lean: Pre-processing

The pre-processing “issue” is addressed by providing a generic
rewriting engine that can use any previously proved theorems.
The engine accepts two kinds of theorems: congruence theorems
and (conditional) equations.
It also supports a λ-Prolog like engine.

theorem forall_or_distributel {A : Type} (p : Bool) (q : A -> Bool)
: (forall x, q x \/ p) = ((forall x, q x) \/ p)

theorem forall_or_distributer {A : Type} (p : Bool) (q : A -> Bool)
: (forall x, p \/ q x) = (p \/ forall x, q x)

July 18, 2014 41 / 41

	An overview of SMT solving
	Proofs and SMT
	Examples of SMT proofs
	Applications and Challenges

