Proofs for Satisfiability Problems

Marijn J.H. Heule

THE UNIVERSITY OF

TEXAS

—— AT AUSTIN ——

Joint work with
Armin Biere

VXX, July 18, 2014

1/32

Outline

Introduction

Proof Systems
Proof Search

Proof Formats
Proof Production
Proof Consumption
Applications

Conclusions

2/32

Introduction

3/32

Introduction: "Small Example”

(x5 VxgVX) AV VR)A(XV X3V X)A (X VX3V xg) A
(%6 VX1 VXs)A(xeVXoVx3)A(xaVx1Vxs)A(XVxgVxg) A
(5?9 V Xg V)(8) VAN ()(8 V X3V 5?9) AN (J(g V X3V)(8) VAN ()(6 V Xg V)(5) VAN
()(2 V 5&3 V 5@3) VAN ()(8 vV 5@3 V 5&3) VAN ()Qg V 5?3 V 5?1) VAN ()(8 V X6 V)Qz) VAN
(x7VxgVX)A(xeVXoVx)A(X1VXVx)A(xgVxVx)A
(X3\/)_(4\/)_(6)/\()_(1\/)_(7\/X5)/\()_(7\/X1\/Xﬁ)/\(X5\/X4\/X6) AN
(564 V Xg V 5&3) AN ()(2 V Xg V)(1) AN ()(5 vV 567 V)(1) VAN ()(7 vV)Qg V)Q3) VAN
(2 VxsVxg) A(xeVXsVxs)A(xsVxoVx3)A(XsV XV xo) A
(Xg\/)_(g\/Xl)/\()_(7\/X1\/X5)/\(Xl\/X4\/X3)/\(X1\/X9\/X4) VAN
(X3 Vx5 Vxs) A (X6 V X3V X)) A (X7 VX5V X0) A (X7 V X5V X2) A
()(4 V x7 V)(3) VAN ()(4 V 5?9 V 567) VAN ()Q; V 5?1 V)67) VAN ()(5 V)(1 V)67) VAN
()Q5 V X7 V 5&3) VAN (5?8 V 5@5 V 567) VAN ()(6 V X2 V)Qg) VAN ()Q3 V X2 V)Q;)

» Does there exist an assignment satisfying all clauses?

4/32

Introduction: "Small Example”

X5\/X8\/)_(2
X5 V X1 V Xs
5&9 V 5@5 V Xg
X2\/)_(3\/)_(8
X7\/X9\/)_(2

(
(
(
(
(
(X3 \/)_<4 \/)_<6
(
(
(
(
(
(

Xg\/)_(l\/)_(3
Xg\/)_(g\/X3
Xg\/X3\/)_<9
X8V)_(6\/)_(3
Xg V Xg V X
)_(1\/)_<7\/X5
X2\/X9\/X1
Xg\/)?4\/X5
)_<7\/X1\/X5
)_(6\/X3\/)_(9
X4\/)_(9\/)_<7
X5 V X V X7

%5 V X3V %
XQ\/Xl\/X3
Xg\/)_(3\/X8
Xg\/)_(?,\/)_(l
)_(1\/)_(9\/X4
)_(7\/X1\/X6
X5\/)_<7\/X1
X5\/X9\/X3
X1V Xxg V X3
)_(7\/X5\/Xg
X5\/)_(1\/X7
X V X0 V X3

)_(5 \/X3 \/Xg)
)_(1 \/Xg \/X4)
X6 \/)_(g \/X5)
)_(8 \/X6 \/)_(2)
Xg V X1 \/)_(2)
)_(5 V Xy \/)_(6)
X7V Xo V Xg)
)_(5 \/)_(7 \/Xg)
X1 \/)_(9 \/)_<4)
X7 \/)_(5 \/)_Q)
X5 \/>_<1 \/X7)
)_(8 V X \/X5)

)_<4\/X9\/)_(8
X2\/X5\/X4
Xg\/)_(g\/Xl
X3V X5 V Xg
Xq V X7V X3
X6\/X7\/)_<3

) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (
) A () A () A (

» How to make (compact) proofs for unsatisfiable problems?

>>>>>>>>>> >

5/32

Proof Systems

Proof Systems: Resolution Rule and Resolution Chains

Resolution Rule

xVaV...Va) (RVbV...Vb
J
(alv...\/a,-vblv...\/bj)

» Many SAT techniques can be simulated by resolution.

7/32

Proof Systems: Resolution Rule and Resolution Chains

Resolution Rule

(x\/alv...\/a,-) ()_(\/bl\/...\/bj)
(alv...\/a,-vbl\/...\/bj)

» Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
» (¢) = (évE\/c)o(é\/b)o(avE)
» (AVe):=(aVvb)o(avec)o(aVvbVe)

» The order of the clauses in the chain matter

7/32

Proof Systems: Resolution Proofs versus Clausal Proofs
Consider the formula F := (bVc) A(aVec) A(aVb) A (3Vb) A (avb) A (bVE)

A resolution graph of F is:

A resolution proof consists of all nodes and edges of the resolution graph
» Graphs from CDCL solvers have ~ 400 incoming edges per node

> Resolution proof logging can heavily increase memory usage (x100)

A clausal proof is a list of all nodes sorted by topological order
» Clausal proofs are easy to emit and relatively small
» Clausal proof checking requires to reconstruct the edges (costly)

8/32

Proof Systems: Extended Resolution and Generalizations

Extended Resolution Rule

Given a Bioolean formula F without the Boolean variable x, the clauses
(xvavb)A(xVa)A(xV b) are redundant with respect to F.

» All existing techniques can be simulated by extended resolution

» For several techniques it is not known how to do the simulation

Blocked Clauses [Kullmann'99]

A clause C is blocked on literal / € C w.r.t. a formula F is all resolvents
of C and D with | € D are tautologies.

Example

Consider the formula F = (xV a) A (xV b). Clause (xVaV 5) is blocked
on x with respect to F, because (xV aV b)o, (xVa)=(aVvbVa)and
(x Vavb)o,(xVb)=(aV bV b) are both tautologies.

Theorem: Addition of an arbitrary blocked clause preserves satisfiability.

9/32

Proof Systems: Pigeon Hole Principe Proofs

Classic problem: Can n pigeons be in n — 1 pigeon holes?

n — 1 holes:

AR RE S

Hard for resolution: proofs are exponential in size!

ER proofs can be exponentially smaller [Cook'76]

» reduce a problem with n pigeons and n — 1 holes
into a problem with n — 1 pigeons and n — 2 holes

10/32

Proof Search

11/32

Proof Search: Conflict-Driven Clause Learning (CDCL)

The leading search paradigm is conflict-driven clause learning:
» During each step the current assignment is extended,;
» If the assignment is falsified a conflict clause is computed;
» Each conflict clause can be expressed as a resolution chain;
» Decisions are based on variables in recent conflict clauses.

CDCL solvers use lots of pre- or in-processing techniques:
» Most techniques can be expressed using resolution chains;
» Weakening techniques can be ignored for UNSAT proofs;

» Some techniques are even difficult to express using
extended resolution and its generalizations: e.g. Gaussian
elimination, cardinality resolution, and symmetry breaking.

12/32

Proof Formats

13/32

Proof Formats: The Input Format DIMACS

E:=(bVvc)A(ave)A(aVb)A(aVvb)A(aVvb)A(bVE)

The input format of SAT solvers is known as DIMACS

» header starts with p cnf followed by

] p cnf 3 6
the number of variables (n) and the 52 30
number of clauses (m) 1 30
» the next m lines represent the clauses -1 20
» positive literals are positive numbers -1 -2 0
» negative literals are negative numbers 1 -20
» clauses are terminated with a 0 230

Most proof formats use a similar syntax.

14/32

Proof Formats: TraceCheck Overview

TraceCheck is the most popular resolution-style format.

E =

(bvc)A(aVe)A(avb)A(aV

A(aVb)A

(bVv)

TraceCheck is readable and resolution chains make it relatively compact

(trace
(clause
(literals

)
)
)
<antecedents)
lit)
)
)

{{(clause)}

(pos)(literals) (antecedents)
(lit)} 0"
{(pos)} 0"
{pos) | (neg)
S
“— (pos)

| (max—idx)

WooJdo Ul WNR

-2 3
1 3
-1 2
-1 -2
1 -2
2 -3
-2 0
3 0
0 6

NRkP B OO OO OO

©ONUGIOOOOOoOOo

o Wwo
o

15/32

Proof Formats: TraceCheck Examples

TraceCheck is the most popular resolution-style format.
E:=(bvc)r(ave)an(avb)a(avb)a(aVvb)A(bVE)

TraceCheck is readable and resolution chains make it relatively compact

The clauses 1 to 6 are input clauses

1 -2 300
Clause 7 is the resolvent 4 and 5: 2 1 300
» (b):=(avh)o(aVh) 3-1 200
; . 4 -1 -2 00
Clause 8 is the resolvent 1, 2 and 3:
_ B 5 1 -200
> (c):=(bVc)o(avb)o(aVe) 6 2 -3 00
» NB: the antecedents are swapped! 7 -2 0450
Clause 9 is the resolvent 6, 7 and 8: 8 3 01230
> e:=(bVE)o(b)o(c) 9 0 6780

16/32

Proof Formats: TraceCheck Don't Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.

» Clauses are not required to be sorted based on the clause index

8 3 01230 7-2 0450
7-2 0450 8 3 01230

» The antecedents of a clause can be in arbitrary order

~

7-2 0 -2 0
8 3 0 0

40 4 5
120 8 3 12

5 0
3 30

» For learned clauses, the literals can be omitted using *

7 x5 40 7-2 0450
8 x3120 8 3 01230

17/32

Proof Formats: Reverse Unit Propagation (RUP)

Unit Propagation
Given an assignment ¢, extend it by making unit clauses true
— until fixpoint or a clause becomes false

Reverse Unit Propagation (RUP)

A clause C = (L V bV -V Ix) has reverse unit propagation
w.r.t. formula F if unit propagat|on of the assignment
o=C=(LANhLNA...NI)on F results in a conflict.

We write: F A C |—1 €

A clause sequence Gy, ..., C,, is a RUP proof for formula F
» FA (:i VANCERIVAN (:}4,1 A (f} F‘l €
» C,, =

18/32

Proof Formats: RUP, DRUP, RAT, and DRAT

RUP and extensions is the most popular clausal-style format.

E:=(bvc)r(ave)an(avb)a(avb)a(aVvb)A(bVE)

RUP is much more compact than TraceCheck because it does not
includes the resolution steps.

(proof
(lemma,
(delete

)
)
)
(lit)
)
)

{(lemma)}

(delete){(lit) } “0"

{pos) | (neg)

uln | u2n | .

w_n <pOS>

| (max — idx)

-2 0
3.0
0

E/\(b)|—1€
EA(B)A(E)Fre
EAN(b)A(c)Fre

19/32

Proof Formats: Open Issues and Challenges

How get useful information from a proof?
» Clausal or variable core
» Resolution proof from a clausal proof

v

Interpolant
Proof minimization

v

v

Inside the SAT solver or using an external tool?
» What would be a good API to manipulate proofs?

How to store proofs compactly?
» Question is important for resolution and clausal proofs
» Current formats are "readable" and hence large
» Time for a binary format? How much can be saved?

20/32

Proof Production

Producing Resolution Proofs

Producing a resolution proof from a SAT solver can hard

» Expressing some powerful techniques in CDCL solvers as
resolution chains is non-trivial (e.g. clause minimization),
both figuring out the antecedents and the resolution order;

» Storing the resolution graph requires a lot of memory and
requires techniques to reduces the memory consumption;

» It is not clear how to deal with techniques that go beyond
resolution (e.g. bounded variable addition).

22/32

Producing Clausal Proofs

In most cases, emitting a clausal proof is easy and cheap
» Learning: Add a clause to the proof;
» Strengthening: Add the shortened clause, delete original;
» Weakening: Delete the clause;
» Works for several techniques based on extended resolution;
» Dump all actions directly to disk, no memory overhead.

For some techniques it is not known how to do it elegantly

» in particular: Gaussian elimination, cardinality resolution,
and symmetry breaking.

23/32

Producing Proofs with Generalized Extended Resolution

VIR
\
\
7
, 1
. /, 1 1
. ‘ 4 1 \
. . ’ ’) \
s 7’
’ ' ’ 4
@

24/32

Proot Consumption

25/32

Proof Consumption

Resolution Proofs

Validating resolution proofs consists of checking whether the
added clauses can be constructed from the list of antecedents.

» Validation can be challenging due to the enormous size of
proofs, i.e., file /O costs are much higher than CPU time.

Clausal Proofs

Validating resolution proofs consists of finding the antecedents.

26/32

Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph

on the left. The clausal proof @

s {(B). (3), (c). }. (e) o

One can obtain smaller

cores using reconstruction

heuristics [FMCAD13]. @ @ @ @ @ @

27/32

Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph @
on the left. The clausal proof

is {(b), (3), (c). e}

One can obtain smaller
cores using reconstruction
heuristics [FMCAD13].

Reconstruction starts

@ w/o incoming edges and
traverses the proof in
reverse order and marks

using conflict analysis.

27/32

Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph @
on the left. The clausal proof

is {(b), (3), (c). e}

One can obtain smaller
cores using reconstruction
heuristics [FMCAD13].

Reconstruction starts

@ w/o incoming edges and
. traverses the proof in

reverse order and marks
using conflict analysis.

27/32

Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph @
on the left. The clausal proof

is {(b), (3), (c). e}

One can obtain smaller
cores using reconstruction
heuristics [FMCAD13].

Reconstruction starts

@ w/o incoming edges and
G traverses the proof in
reverse order and marks

using conflict analysis.

27/32

Applications

Applications

Validating the output of SAT solvers:
» Voluntary during SAT Competition (SC) 2007, 2009, 2011,
» Mandatory during SC 2013 (DRUP) and 2014 (DRAT);
» Validating output is about as expensive as SAT solving;
» Debug SAT solvers especially in combination with fuzzing.

Produce unsatisfiable cores:

» Useful for many applications: minimal unsatisfiable core
extraction, MaxSAT, diagnosis, model checking, and SMT.

Resolution proofs are useful for extracting interpolants:
» However, resolution proofs are huge and hard to obtain;
» This was the state-of-the-art until the invention of 1C3.

29/32

Conclusions

30/32

Conclusions

Proofs of unsatisfiability useful for several applications:
» Validate results of SAT solvers;
» Extracting minimal unsatisfiable cores;
» Computing Interpolants;
» Tools that use SAT solvers, such as theorem provers.

Challenges:
» Reduce size of proofs on disk and in memory;
» Reduce the cost to validate clausal proofs;

» How to deal with Gaussian elimination, cardinality
resolution, and symmetry breaking?

31/32

Thanks!

33333

	Introduction
	Proof Systems
	Proof Search
	Proof Formats
	Proof Production
	Proof Consumption
	Applications
	Conclusions

