On proof mining by cut-elimination

Alex Leitsch
Vienna University of Technology



Aim

» Are proofs just verifications?



Aim

» Are proofs just verifications?

» proofs may provide more information



Aim

» Are proofs just verifications?

» proofs may provide more information
Proof Mining:

» Extraction of explicit information from proofs



Aim

» Are proofs just verifications?

» proofs may provide more information
Proof Mining:

» Extraction of explicit information from proofs

» to this aim use Cut-Elimination.
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Cut-Elimination

Cut: Rule for using lemmas in a proof.

Cut-Elimination:
» Elimination of lemmas from proofs.
» Transformation to elementary proofs.

» Obtain proofs with sub-formula property.



Cut-Elimination

Applications:
proofs of theorems in number theory may use topological
structures. Cut-elimination yields proofs without topology.
other applications:

> extraction of bounds via Herbrand's theorem

» extraction of programs from proofs



Gentzen’s Hauptsatz:

For every (LK-) proof ¢ of a formula A there exists
a proof ¢’ of A without cuts; ¢’ can be constructed
algorithmically.



Sequent Calculus

Sequent: A+ B, for finite multi-sets of formulas A, B.
Ai,...,ApF By, ..., By represents

/\ A,' — \/ Bj.

F: separation-symbol.

LK: calculus on sequents, based on logical and structural rules.
axioms: A+ A for atoms A.



The logical rules of LK

A-introduction:
ATFEA B.TFA
ArBrra ™Mt ANBTEA N
F-AA THAB
F-AAANB

12

V-introduction:
ATHFA BTEA

AVB,TFA

M-A A r-A,B
rEaAvBY N TraAvB VT
—-introduction:
MEALA BTk A
ASB L FALA, !
ATEAB
r-AAB
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The logical rules of LK

—-introduction:

FrFAA y ATEA
SATHEA TFA-A

V-introduction (eigenvariable cond. for V : r):

Alx/t),TF A M- A, A(x/y)

(Vx)A(x),T A A, (Yx)A(x)
J-introduction (the eigenvariable conditions for 3 : / are these for
Vor):

Alx/y).TFA A AKX/

(@)AKX),TFA = FEA,(30AKx) ~ "



The structural rules of LK

weakening:
Ir=A . r=A
FI—A,AW'r A,FI—AW'I
contraction:
AATEA M-ALAA
ATra °°f A A
cut FEAA ANEA
’ ’ cut(A)
LMTEAA



example: proof with cut

Let p =
P FPE) v Few)
PG FPEVRE 1 QB FPBIVRE)
PG) = 3 (PO)V QL) ~ " Qb F 3 (PL) VAL " 0
P(a) v Q(b) F 3y(P(y) vV Q(y)) ’ 3y(P(y) V Q(y)), Vx.mP(x) - 3z.Q(z) .
P(a) v Q(b), Vx.—P(x) F 32.Q(z) e
for x =
P(a) F P(a) |
B Sl AR ol S
P(a), =P(a) . Q(a) F Q(a)

Pla). ~P(a) F Q@) """ Q). ~Pla)F Q) '/
P(a) VvV Q(a), ~P(a) - Q(«)
P(a) VvV Q(«), =P(a) - 3z.Q(2)
P(a)V Q(«),Vx.—P(x) F 3z.Q(z)
Jy(P(y) V Q(y)),¥x.—P(x) F 3z.Q(z)

3: 1/



proof without cut

) =
P(a)F P(a) |

P -PEE . QB)FQBL)

P(2).~P() - Q(b) "~ Q(b).~P(a)F Q(b) "

P(a) v Q(b),—P(a) - Q(b) _
P(a) v Q(b),~P(a) F 32.Q(z) -vf/
P(a) v Q(b),¥x.mP(x) - 3z.Q(z)




Gentzen’s method of cut-elimination:

» reduction of rank and grade.
> “peeling” the cut-formulas from outside.

» elimination of an uppermost cut.

The method can be described as a
normal form computation

based on a set of rules R.



Gentzen’s method of cut-elimination:

» reduction of rank and grade.
> “peeling” the cut-formulas from outside.

» elimination of an uppermost cut.

The method can be described as a
normal form computation

based on a set of rules R.
Computational features:

> very slow.

» weak in detecting redundancy.



Example of a Gentzen reduction:

P@aFPla) P(b) - P(b) P(a) F P(a)

P P@E) | IPCIFPB) T P APBF PE) N

(Vx)P(x) F P(a) A P(b) - f P(a) A P(b) F (3x)P(x) a;tr
(Vx)P(x) F (3x)P(x)
rank = 3, grade = 1.
reduce to rank = 2, grade = 1:
PE)FPG) - POIEPEB)

(VX)P(x)F P(a) "~ (Vx)P(x) F P(b) /\'. P(a) - P(a) .

(Vx)P(x) F P(a) A P(b) - P(a) A P(b) - P(a) j:\ut

(Vx)P(x) F P(a)
(Vx)P(x) F (3x)P(x)




P(a) F P(a) P(b) F P(b)
|_

)P P@) " 9PGF P(D) \ZZ_’r Pa)FPG)
(Vx)P(x) - P(2) » P(b) PG AP FP@E)
(Vx)P(x) F P(a)

(Vx)P(x) F (3x)P(x)

rank = 2, grade = 1. Reduce to grade = 0, rank = 3:

P(a) - P(a)

(Yx)P(x) F P(a) P(a) + P(a)
(Yx)P(x) F P(a)

(Vx)P(x) F (3x)P(x)

eliminate cut with axiom:

Vil

cut

. r

P(a) - P(a)
(Vx)P(x) - P(a)
(Vx)P(x) F (Ix)P(x)

. r



Cut-elimination by Resolution

based on a structural analysis of LK-proofs.

sub-derivations into cuts

v 6 "\

sub-derivation into end sequent

CL(y): characteristic clause set,

carries substantial information on derivations of cut formulas.
clause = atomic sequent.

cut-elimination = reduction to atomic cuts.
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Example: ¢
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¥1
(Vx)(P(x) = Q(x)) - (3y)

(P(a) = Q(y))

$1 =

P .
%»

Sl==
S5
LT
eoe
oo |~
€
s|ls
Pm.WQ
LT
U/U\\.U/
PPWP\

P(u) = Qu) = (Fy)(P(u) = Q(y))

(v)(P(x) = Q(x)) = Gy)(P(u) = Qy))
() (P(x) = Q(x)) F (Vx)(Fy)(P(x) = Q(¥))

Vil

r

{P(u) F} > {F Q(u)}.

S —



cut

©2

¥1
(Vx)(P(x) = Q(x)) = (3y)(P(a) = Q(y))

¥2 =

Q(v) F Q(v)

P(a) - P(a)

o
_~m
e
—~| >
S [ —
<INl
._,%@
SRS
S

L m
IS
O | = —
NS
\%%Q
=T

“ =

Q.

3/

Gy)(P(a) = Q) F By)(P(a) = Q(y))
(") (Fy)(P(x) = Qy)) = (Fy)(P(a) = Qy))

{ P(a)} U{Q(v) F}.

5/



cut-ancestors in axioms:
S1={P(u) b}, S2={F Q(u)}, S3={F P(a)}, Sa ={Q(v)F}.
S5=5 x5 ={P(u)F Q(u)}.

S =5US, = {F P(a); Q(v)+}.
characteristic clause set:

CL(p) =SUS ={P(u)F Q(u); F P(a); Q(v)F}.



Projection of ¢ to CL(yp)

» Skip inferences leading to cuts.

» Obtain cut-free proof of end-sequent + a clause in CL(yp).

proof © of S

4
cut-free proof ¢(C) of So C.



Let ¢ be the proof of the sequent
S: (Vx)(P(x) = Q(x)) F (3y)(P(a) — Q(y)) shown above.
CL(¢) = {P(u) - Q(u); F P(a); Q(v)F}.
Skip inferences in ¢1 leading to cuts:
P(u)F P(u) Q(u)F Q(u)

P(u), P(u) = Qu) = Q(u)
P(u), (vx)(P(x) = Q(x)) F Q(u)

—:
Vil




@ proof of

S (W)(P(x) = Q(x) F (By)(P(a) = Q(y))
CL(¢) = {P(u) - Q(u); F P(a); Q(v)F}.

For C; = F P(a) we obtain the projection ¢(():

P(a) F P(a)
P(a) - P(a), Q(v)
F P(a) = Q(v), P(a)
~G)(PG) ~ Q). P "
(Vx)(P(x) = Q(x)) - (Fy)(P(a) = Q(y)), P(a) ~

wr
—.r
31




The Method CERES

given proof ¢,

» extract characteristic clause set CL(¢),
» compute the projections of ¢ to clauses in CL(yp),
» construct an R-refutation 7 of CL(y),

> insert the projections of ¢ into v = CERES normal form of ¢.



@ proof of
S: (Vx)(P(x) = Q(x)) F (3y)(P(a) — Q(y))

CL(¢) ={G : P(u)F Q(u), G :F P(a), G3: Q(u) +}.
a resolution refutation § of CL(¢p):

- P(a) P(u)F Q(u)
FQ(a) Q(v)
',

R

ground projection 7y of §:

FP(a) P(a)F Q(a)
FQ(a)

R Q)+

- R

viao = {u <+ a,v « a}.



end sequent S of p, S =BF C.
’y =
FP(a) P(a)F Q(a)
F Q(a)

R Q(a) -

E R

CERES-normal form ¢(vy) =

(x2) (x1)
B+ C,P(a) P(a),BF C,Q(a) (x3)
cut
B,BF C,C,Q(a) Q(a),BF C
B,B,B+-C,C,C .
S contractions

cut




Generality of CERES

CERES does not only work for LK.

» any sound sequent calculus for classical logic (with cut) does
the job.

> unary rules do not “count”.

> necessary: auxiliary formulas, principal formulas, ancestor
relation

Example: LKDe

LK + equality rules + definition introduction.

Important to formalization of mathematical proofs.
Corresponding clausal calculus: resolution + paramodulation.



Experiments with CERES

» underlying theorem prover: Prover9.

» very large proofs can be handled.

> Analysis of an example from C. Urban.
mathematically different proofs obtained by CERES.

> Analysis of Fiirstenberg's proof of the infinity of primes.
Extraction of Euclid’s construction.



instantiation sequents

instantiation sequent:

Let S be a sequent of the form
(Vx1)F1, ..., (YX0)Fa - (331) G, - - -, (3Ym) Gm,

where VX; stands for (Vxi;)...(Vxy,i). Let Fi = F,-’717 . Fi,,k,- and

Gj = Gjy,... Gj,, where the F  are instances of Fj, the G/,

instances of the G;. Then a sequent of the form
S*: ]:1,.7:2,...]:,, |—g1,...gm

is called an instantiation sequent of S



instantiation sequents: examples

S = (Vx)P(x) F P(a) A P(b).
P(a) = P(a) A P(b),
P(b) - P(a) A P(b),
P(a), P(b) - P(a) A P(b)
are instantiation sequents of S.
51 = P(a), (Vx)(P(x) — P(f(x)) = (3y)P(f(f(y)))
P(a), P(a) — P(f(a)), P(f(a)) — P(f(f(a))) - P(f(f(a)))

is an instantiation sequent of 5.



an application of cut-elimination: Herbrand’s theorem

Let ¢ be an LK-proof of a sequent S of the form
(Vx1)Fi, ..., (YXn)Fn = (3%1) G, - .., (3Ym) Gm,

where VX; stands for (Vxi;)...(Vx. ;). Then there exists an
instantiation sequent S* of S which is LK-provable. $* is called a
Herbrand sequent of S.

proof (given in Gentzen's midsequent theorem) by
» cut-elimination on ¢ yielding a proof 1,

» construction of §* via ¢ by induction on the number of
inferences in 1 and by permuting the order of inferences

full cut-elimination is not necessary: quantifier-free cuts are
admitted!



construction of a Herbrand sequent

given a proof ¢ without quantified cuts of

SZ (V)_(l)Fl, ceny (V)?n)Fn F (Hyl)Gl, ey (Hym)Gm

> collect all instances F, G/ appearing in ¢,
» construct an instantiation sequent §* of S with this instances.

» then 5* is a Herbrand sequent.



construction of a Herbrand sequent: example

proof:

P(a) = P(a) P(f(a)) - P(f(2) L P(f(a) - P(f(a)) P(f(f(2))) - P(f(f(2)))
P(a), P(a) — P(f(a)) - P(f(a) ‘* P(f(a)), P(f(2)) — P(f(f(a) - P(F(F(2))
P(a), (Vx)(P(x) — P(f(x))) - P(f(a P(f(a), (Vx)(P(x) — P(f(x))) F P(f(f(a))) ot
P(a), (vx)(P(x) = P(f(x))), (VX)(P(x) = P(f(x))) = P(f((a)))

}_

P(a), (vx)(P(x) — P(f(x))) b P(f(f()))

a

X

extracted Herbrand sequent:

P(a), P(a) — P(f(a)), P(f(a)) — P(f(f(a))) - P(f((a))).



Herbrand sequents: importance

> reduction of a theorem in predicate logic to a theorem in
propositional logic.

» Herbrand sequents contain the key information of
mathematical proofs,

» quantifier-instances are crucial in "real” proofs,

» Herbrand sequents are compact representations of cut-free
proofs; this is important in automated proof analysis.

» Herbrand sequents are a basis for automated cut-introduction
methods.



Complexity of cut-elimination

» complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs ¢, of sequents S, s.t.

> llpall <257 and
» for all cut-free proofs ¢ of wp: [|1]| > s(n) where

s(0) =1, s(n+1) =25".

There exists no cheap way of cut-elimination in principle!



Complexity

Let e : IN?2 — IN be the following function

e(0,m) = m
e(n+1,m) = 2:¢(nm)

» f: INK 5 IN™ for k, m > 1 is called elementary if there exists
an n € IN and a Turing machine = computing f s.t. for the
computing time T, of m:

TTI'(’].? SRR /k) < e(”v ‘(llv SRR /k)|)

where | | = maximum norm on IN¥.

» 5:IN — IN is defined as s(n) = e(n, 1) for n € IN.

s and e are nonelementary.



Complexity of CERES

essential source of complexity:

» resolution refutation y of CL(yp).
» ||CL(¢)|| is at most exponential in ||¢]|.

» Computing the global m.g.u. ¢ and a p-resolution refutation
/' from ~y is at most exponential in ||v]|.

> Let
r(v") = max{||t|| | t is a term occurring in ¥'}.
Then r(v') < ||7/]| and, for any clause C € CL(y):
ICall ICI s r(+),

le(Coll < llp(O)l +r(v) < Nl * r(v).

IA



Complexity of CERES

@: LK-proof of S.

Let v be a resolution refutation of CL(y) and +' be a
corresponding ground projection.
Then there exists a CERES-normal form 1 of S s.t.

1l < e 191l r(7') = o]l



Complexity of CERES

> Resolution complexity:
Let C be an unsatisfiable set of clauses. Then the resolution
complexity of C is defined as

rc(C) = min{||y|| | v is a resolution refutation of C}.



Complexity of CERES

> Resolution complexity:
Let C be an unsatisfiable set of clauses. Then the resolution
complexity of C is defined as

rc(C) = min{||y|| | v is a resolution refutation of C}.

» Definition:
Let P be a class of skolemized proofs. We say that

CERES is fast on P

if there exists an elementary function f s.t. for all ¢ in P:

re(CL(p)) < f(ll¢ll)-



Efficiency of CERES

CERES is superior to Gentzen:
nonelementary speed-up of Gentzen by CERES:

> There exists a sequence of LK-proofs ¢, s.t.
> Jln] <247 and
» all Gentzen-eliminations are of size > s(n).
» CERES is fast on {¢, | n € IN}.

» There is no nonelementary speed-up of CERES by reductive
methods based on R!



CERES versus Gentzen

is it possible to prove fast cut-elimination of a class P by Gentzen,
but CERES "fails” on P?
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CERES versus Gentzen

is it possible to prove fast cut-elimination of a class P by Gentzen,
but CERES "fails” on P?

The answer is NO!

» no nonelementary speed-up of CERES by Gentzen!

» there is no class where CERES is slow, but Gentzen reduction
is fast.



Characteristic Clause Sets and Cut-Reduction

Main Lemma:
Let ¢, ¢' be LK-derivations with ¢ > ¢’ for a cut reduction
relation > based on R. Then

CL(‘P) <ss CL(‘P,)-

proof:
by cases according to the definitions of > and R. O

R = set of cut-reduction rules extracted from Gentzen's proof.

<ss: subsumption relation on clause sets.



Characteristic Clause Sets and Cut-Reduction

theorem:
Let ¢ be an LK-deduction and v be a normal form of ¢ under a
cut reduction relation > based on R. Then

CL(‘P) <ss CL(w)-

Theorem:

Let ¢ be an LK-derivation and 1 be a normal form of ¢ under a
cut reduction relation >5 based on R. Then there exists a
resolution refutation 7 of CL(¢p) s.t.

v <ss RES(%).

RES(¢) = (canonic) resolution refutation of CL(%)).
results above improved by S. Hetzl and B. Woltzenlogel Paleo.



Characteristic Clause Sets and Cut-Reduction

Corollary 1:

Let ¢ be an LK-derivation and 1 be a normal form of ¢ under a
cut reduction relation >5 based on R. Then there exists a
resolution refutation 7 of CL(¢p) s.t.

I(7) < I(RES(s)) < I() 22,

Corollary 2:

Let ¢ be an LK-derivation and ¢ be a normal form of ¢ under a
cut reduction relation >5 based on R. Then there exists a
CERES-normal form x of ¢ s.t.

I(x) < I() * I(1)) = 22°/(),

proof:
X is defined by inserting the projections of ¢ into a refutation y of
CL(p).



Characteristic Clause Sets and Cut-Reduction

Corollary 3: a nonelementary speed-up of CERES by R is
impossible!

There exists no sequence of proofs (¢p)neN S.t.

(a) there exists an m and R-normal forms &, of ¢, s.t.
Inll < e(m, ||pnll) for all n

and

(b) for all k € N there exists a number m s.t. for all n > m and
for all CERES-normal forms % of ¢,

191 > e(k, llenll)-



An analysis of Fiirstenberg's proof

Flrstenberg's proof of the infinitude of primes
Arithmetic progressions can be used as a basis for a topology over
the natural numbers. We will denote an arithmetic progression by

v(a,b) ={a+bn|neIN}

forac IN and b € IN\ {0}.

Proposition:

By defining a set A C IN as open, when A is either empty or for
each x € A exists an a € IN'\ {0} such that v(x,a) C A, one
obtains a topology over IN.



An analysis of Fiirstenberg's proof

Lemma:
Every arithmetic progression starting at 0 is closed.

Theorem: There are infinintely many primes.

proof:
P: set of all primes. Assume P is finite. Define

X =Jin0.p) | p < P).

By the above lemma every v/(0, p) for p € P is closed,

so X is a finite union of closed sets and therefore closed.

Every number different from 1 has a prime divisor, thus X = {1}.
X is a complement of a closed set, so X is open.

But {1} is neither empty nor does it contain an arithmetic
progression, and so {1} is not open. Contradiction!



An analysis of Fiirstenberg's proof

1. step: formalization in 2nd-order arithmetic
(a) mev(k,l) = In(m=k+ nxl).
(b) DIV(/, k) =3m.l * m = k.
(c) PRIME(k) =1 < kAVI(DIV(l,k) = (I=1VI=
k)).
(d) XCY=VnlneX—neY), and
X=Y=XCYAYCX.

(e) neX=n¢X.
(f) A function p: IN — IN which enumerates primes is
one that fulfills the property:

Vivk(p(i) = k — PRIME(K)).

Definition of p needs the comprehension principle!



An analysis of Fiirstenberg's proof

(g) neS[]=3Im(m<1Anev(0,p(m))).
S[/] describes the set of all elements n which occur in
some (0, k), where k is one of the first / + 1 primes
enumerated by p. In mathematical notation we get

I
st = | #(0, p(m)).
m=0
(h) F[l] = Vk(PRIME(k) +> dm(m < | A k = p(m))).
F[/] is a formula which asserts that there are only
I + 1 primes, namely {p(0),...,p(/)}.
(i) O(X)=Vm(me X — 3l v(m, I+ 1) C X).
(i) C(X)=0(X).
(k) co(X)=VkIl k+1+1€X.



An analysis of Fiirstenberg's proof

translation to schema of first-order proofs:

Take two-sorted (individuals, sets) first-order logic.
(a), (b) and (c) can be taken over. For the others we get:
(d) xCy=Vn(nex—ney), and
x=y=xCyAyCx.
() nex=n¢x.
(f") Instead of p we introduce a finite set P[k] defined by

Plk] = {po} U~ U{pi}.

(g") S[k] =v(0,po) U---Uw(0, px).

(h) F[k] = vm(PRIME(m) & m e P[K]).

(i") O(x) =VYVm(m e x — 3l v(m, 1+ 1) C x).
() C(x) = O0(x).

(k) oo(x)=Vk3l k+/+1¢ x.



An analysis of Fiirstenberg's proof

» avoid (further) inductions!

» introduce three axioms provable in Peano arithmetic:

1. Every number greater than 0 has a predecessor,
2. every number is in a remainder class modulo / for some /,
3. every number has a prime divisor.

(1) PRE = Vk(0 < k — 3m k = m + 1)
(2) REM = VI(0 < | — Ym3k(k < | A m € v(k, 1))
(3) PRIME-DIV = Vm(m # 1 — 3I(PRIME(/) A DIV(/, m)))



An analysis of Fiirstenberg's proof

proof schema ¢1(k) (lemmas proving that {1} is open):
p1(k) =

1!)1,/f(k) 2,k (k)
F[k], PRIME-DIV F S[k] = {1} F[k], PRE, REM - C(SIK])

FIKL,T - C({1)) o Fo{1y) t
F[kl,T F O({1}) “

For I = F[k], PRIME-DIV, PRE, REM.
S[k] = (0, po) U -+ - Uv(0, px).
F[k] = Vm(PRIME(m) <+ m € P[k]).



An analysis of Fiirstenberg's proof

Main proof schema:

o(k) ==
<P_2
p1(k) :
: F Vx((O(x) A x # 0) = oo(x)) .- i
: F[k],T - O({1}) O({1}), {1} # 0+ oo({1})
F{1}#0 {1} #0,F[K],T F 0o({1}) cut :
F[k],T Foo({1}) oo({1}) F cut

FIA] T - _
PRIME-DIV, PRE, REM - —F[K]

r

F[k] = Ym(PRIME(m) > m € P[k]).



An analysis of Fiirstenberg's proof

the characteristic clause sets of the schema:
after tautology elimination and subsumption

CL, :=C, UAX where C, := AU U B; U{C,} for
i=0
Cr:= Fmo=1,s1(mg) = po,...,s1(mo) = pr,

0<piFpi=si(pi)+1

0 < pi - to = ss(pi, to) + (se(pi, to) * p;)

0 < pi, ss(pis to) = 0 to = 0+ (ss(pi, to) * pi)
0 < pi = ss5(pi, to) < pi
to=pi,mp*xng=to-mg=1,mg =ty
th=piF1l<ty

to=pi,l=nyg*xty -



An analysis of Fiirstenberg's proof

F mo =1, s1(mg) * sa(mg) = mo

= mo + (((k* (b + (1 +1))) + (/o *(mo+1)))+1)=

k4 ((k+(mo+1))* (b +1))
mo = ko + (ro * ((to + 1) * (t1 +1)))

= mo = ko + ((ro* (to + 1)) * (t1 + 1))
mo = ko + (ro * ((to + 1) * (t1 +1)))

= mo = ko + ((ro * (t1 + 1)) * (to + 1))
F(((to+1)*t1) +to) +1=(to+1)*(ta+1)



An analysis of Fiirstenberg's proof

resolution refutation schema for CL, defined.

>

obtained E,: 1 < t, I
fort, =po*...%p,+1

transform t, = po*...*p,+1linto E/: 1 < (s, +1)+ 1+
for some term s, by resolution and paramodulation.

derive G: F1<(w+1)+1.
G and E] resolve to I-. contradiction!

Euclid’s construction obtained by unification in the resolution
calculus!
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