
Computer-aided cryptographic proofs

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

July 18, 2014

Motivation

◮ Cryptography is a small but important part of security

◮ Proofs are a small but important part of cryptography

◮ Hard to get right

◮ Often iterate over extended period (≥10 years)

◮ In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a

crisis of rigor. Bellare and Rogaway, 2004-2006

◮ Do we have a problem with cryptographic proofs? Yes, we

do [...] We generate more proofs than we carefully verify

(and as a consequence some of our published proofs are

incorrect). Halevi, 2005

Computer-aided cryptographic proofs

provable security

=

deductive verification of parametrized probabilistic programs

◮ adhere to cryptographic practice

☞ same proof techniques

☞ same guarantees

☞ same level of abstraction

◮ leverage existing verification techniques and tools

☞ program logics, VC generation, invariant generation

☞ SMT solvers, theorem provers, proof assistants, CAS

☞ certified compilers

EasyCrypt
(B. Grégoire, P.-Y. Strub, F. Dupressoir, B. Schmidt, C. Kunz)

◮ Initially a weakest precondition calculus for pRHL

◮ Now a full-fledged proof assistant

☞ Proof engine inspired from SSREFLECT

☞ Calls to SMT and CAS

☞ Embedding of rich probabilistic language w/ modules

(neither shallow nor deep)

☞ Support for different program logics

☞ Reasoning in the large

Applications

◮ PKCS encryption

◮ Verification of cryptographic systems

◮ Key-exchange protocols under weaker assumptions

Reductionist proofs

Definition

Construction

Assumption

Attack

Attack

Reduction

Reductionist statement

Game INDCPA(A) :
(sk , pk)← K();
(m0,m1)← A1(pk);
b $← {0, 1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk (m) :
r $← {0, 1}ℓ;
s ← H(r)⊕m;
y ← fpk (r)‖s;
return y

Game OW(I)
(sk , pk)← K();
y $← {0, 1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

For every INDCPA adversary A, there exists an inverter I st

∣

∣

∣

∣

PrINDCPA(A)

[

b′ = b
]

−
1

2

∣

∣

∣

∣

≤ PrOW(I)

[

y ′ = y
]

A language for cryptographic games

C ::= skip skip

| V ← E assignment

| V $← D random sampling

| C; C sequence

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

◮ E : (higher-order) expressions

◮ D: discrete sub-distributions

◮ P: procedures

}

user extensible

. oracles: concrete procedures

. adversaries: constrained abstract procedures

Reasoning about programs
◮ Probabilistic Hoare Logic

� {P}c{Q} ⋄ δ

◮ Probabilistic Relational Hoare logic

� {P} c1 ∼ c2 {Q}

◮ Ambient logic

Applications

Allows deriving judgments of the form

Prc1,m1
[A1] ⋄ δ

or

Prc1,m1
[A1] ⋄ Prc2,m2

[A2]

or

|Prc1,m1
[A1]− Prc2,m2

[A2]| ≤ Prc2,m2
[F]

pRHL: probabilistic relational Hoare logic

◮ Judgment

� {P} c1 ∼ c2 {Q}

where P and Q denote relations on memories

◮ Validity

∀m1,m2. (m1,m2) � P =⇒ (Jc1K m1, Jc2K m2) � Q♯

◮ Definition of ·♯ drawn from probabilistic process algebra

Application

Assume � {P} c1 ∼ c2 {Q} and (m1,m2) |= P

If Q △
=

∧

x∈X x〈1〉 = x〈2〉 and FV(A) ⊆ X then

Prc1,m1
[A] = Prc2,m2

[A]

Proof rule: assignments and conditionals

Assignments

� {Q{e〈1〉/x〈1〉}{e′〈2〉/x ′〈2〉}} x ← e ∼ x ′ ← e′ {Q}

� {Q[x〈1〉 := e〈1〉]} x ← e ∼ skip {Q}

Conditionals

P ⇒ e〈1〉 = e′〈2〉
� {P ∧ e〈1〉} c1 ∼ c′

1 {Q} � {P ∧ ¬e〈1〉} c2 ∼ c′
2 {Q}

� {P} if e then c1 else c2 ∼ if e′ then c′
1 else c′

2 {Q}

� {P ∧ e〈1〉} c1 ∼ c {Q} � {P ∧ ¬e〈1〉} c2 ∼ c {Q}

� {P} if e then c1 else c2 ∼ c {Q}

Proof rules: random assignment

Intuition

Let A be a finite set and let f ,g : A→ B. Define

◮ c = x $← µ; y ← f x

◮ c′ = x $← µ′; y ← g x

Then JcK = Jc′K (extensionally) iff there exists h : A
1−1
→ A st

◮ f = g ◦ h

◮ for all a, µ(a) = µ′(h(a))

h is 1-1 and ∀a, µ(a) = µ′(h(a))

� {∀v ,Q{h v/x〈1〉}{v/x〈2〉}} x $← µ ∼ x $← µ′ {Q}

Adversaries

∀O. � {Q∧ =W} z ← O(~w) ∼ z ← O(~w)
{

Q∧ ={z}

}

� {Q∧ =Y} x ← A(~y) ∼ x ← A(~y)
{

Q∧ ={x}

}

◮ Adversaries perform arbitrary sequences of oracle calls

(and intermediate computations)

◮ No functional specification

◮ Given the same inputs, provide the same outputs

EasyCrypt toolchain

ZooCrypt FaultFinder ZKCrypt

EasyCryptUser Why3

CertiCrypt CompCert

StealthCert

ZooCrypt

Aautomated analysis of padding-based encryption schemes

◮ Attack finding tool

◮ Proof search for domain-specific logics

◮ Interactive tutor

◮ Generation of EasyCrypt proofs (ongoing)

◮ Generated ≥ 106 padding-based encryption schemes

◮ Proved chosen-plaintext security for 11%

◮ Found attacks for 88%

◮ About .5% unknowns

◮ Interactive tutor

Generic Group Analyzer

◮ Profusion of (non-standard) cryptographic assumptions

☞ for efficiency reasons

☞ for achieving a construction

◮ Some assumptions are broken

◮ Heuristics: prove absence of algebraic attacks

☞ Master theorem: security from symbolic condition

☞ Use CAS or SMT to discharge symbolic condition

Example: DDH

◮ Cannot distinguish between (gx ,gy ,gxy) and (gx ,gy ,gz)

◮ Symbolic condition: (x , y , xy) and (x , y , z) satisfy the same

linear equalities

FaultFinder

◮ Goal: find physical attacks on implementations

◮ Isolate post-conditions φ that enable attacks

◮ Given an implementation c, find faulted implemtation ĉ st

{ψ}ĉ{φ}

◮ Use SMT-based synthesis

◮ New attacks for RSA and ECDSA signatures

Conclusion

◮ Solid foundation for cryptographic proofs

◮ Formal verification of emblematic case studies

Different styles of proofs

◮ EasyCrypt: proof objects

◮ ZooCrypt: proof trees

◮ GGA: traces

◮ FaultFinder: proofs for attack finding

Further directions

◮ Proof Theory of Cryptographic Proofs

◮ Synthesis of “classical” cryptography

http://www.easycrypt.info

