Computer-aided cryptographic proofs

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

July 18, 2014



Motivation

» Cryptography is a small but important part of security
» Proofs are a small but important part of cryptography
» Hard to get right

» Often iterate over extended period (>10 years)

» [n our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor. Bellare and Rogaway, 2004-2006

» Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect). Halevi, 2005




Computer-aided cryptographic proofs

provable security

deductive verification of parametrized probabilistic programs

» adhere to cryptographic practice
= same proof techniques
1= same guarantees
= same level of abstraction

» leverage existing verification techniques and tools
= program logics, VC generation, invariant generation
i SMT solvers, theorem provers, proof assistants, CAS
= certified compilers



EasyCrypt

(B. Grégoire, P.-Y. Strub, F. Dupressoir, B. Schmidt, C. Kunz)

» Initially a weakest precondition calculus for pRHL
» Now a full-fledged proof assistant
= Proof engine inspired from SSREFLECT
= Calls to SMT and CAS
1w Embedding of rich probabilistic language w/ modules
(neither shallow nor deep)
= Support for different program logics
= Reasoning in the large

Applications

» PKCS encryption
» Verification of cryptographic systems
» Key-exchange protocols under weaker assumptions




Reductionist proofs

- -

*

Definition D —




Reductionist statement

Game INDCPA(A) :
(sk, pk) < K();
(mo, m1) +— Ay (pk),
b& {01}

C* + 5pk(mb);

b Ax(c*);

return (b’ = b)

Encryption Ep(m) :
r& {0,134

S« H(r)em;

y ()|l s:
return y

Game OW(T)
(sk, pk) + K();
y & {0, 1}
x* < for(¥);

Yy I(x);
return (y' = y)

For every INDCPA adversary A, there exists an inverter Z st

’
Prinpcpaca) [0/ = b] — 5| = Prowr) [Y' = Y]




A language for cryptographic games

C == skip skip
| V& assignment
| V&D random sampling
| ¢ C sequence
| if&thenCelseC conditional
| while£doC while loop
|

V<« P(E,...,E) procedure call

» &: (higher-order) expressions
» D: discrete sub-distributions
» P: procedures

} user extensible

. oracles: concrete procedures
. adversaries: constrained abstract procedures



Reasoning about programs
» Probabilistic Hoare Logic

F{P}c{Q} ¢
» Probabilistic Relational Hoare logic
F{P} c1 ~ ¢ {Q}

» Ambient logic

Applications
Allows deriving judgments of the form
Prc1 ’m1 [A1] o 6
or
Pre, m, [A1] © Pre,,m, [Az]
or

Pre,,m, [A1] — Pre, m,[A2]| < Pre, m,[F]




pRHL: probabilistic relational Hoare logic

» Judgment
):{P} Ci ~ Co {Q}

where P and Q denote relations on memories
» Validity

Ymy, mp. (my,ma) E P = ([c1] my, [c2] mo) E QF

» Definition of -* drawn from probabilistic process algebra

Application
Assume E {P} ¢; ~ ¢ {Q}and (my,my) = P
If Q2 Ayex X(1) = x(2) and FV(A) C X then

P Tei,my [A] = PrCanz [A]



Proof rule: assignments and conditionals

Assignments

F{Q{e()/x(1){e'(2)/x'(2)}} x e ~ x' e {Q}

E{Q[x(1) :=e(1)]} x+ e ~ skip {Q}
Conditionals

P = e(1) = €2
F{Pnre(1)} c1 ~ c] {Q} FE{PA-e(1)} cc ~ c;, {Q}
F{P} if ethen cy else c; ~ if € then c] else ¢; {Q}
F{Pnrne(1)} c1 ~ c {Q} FE{PA—-e(1)} cc ~ c {Q}
E{P} ifethencielsec; ~ ¢ {Q}




Proof rules: random assighment

Intuition
Let A be a finite set and let f, g : A — B. Define
> Cc=Xx& /,L y<+«fx
»C=x&uiy+—gx
Then [c] =[] (extensionally) iff there exists h: A =S Ast
» f=goh
» for all a, u(a) = p/(h(a))

his 1-1 and Va, u(a) = p/(h(a))
Vv, Q{hv/x()H{v/x(@2)}} x & p ~ x &/ {Q}




Adversaries

YO. £ {QA =w} z+ O(W) ~ 2 O(W) {QA =)
F{QA =y} x — A(Y) ~ x + A(Y) {QA =14}

» Adversaries perform arbitrary sequences of oracle calls
(and intermediate computations)

» No functional specification
» Given the same inputs, provide the same outputs



EasyCrypt toolchain

ZOOCrypt

FaultFinder ZKCrypt

N

/

o

Easy Crypt

Why3




ZooCrypt

Aautomated analysis of padding-based encryption schemes
Attack finding tool

Proof search for domain-specific logics

Interactive tutor

Generation of EasyCrypt proofs (ongoing)

v

v

v

v




Generic Group Analyzer

» Profusion of (non-standard) cryptographic assumptions

ww for efficiency reasons
= for achieving a construction

» Some assumptions are broken
» Heuristics: prove absence of algebraic attacks

= Master theorem: security from symbolic condition
i Use CAS or SMT to discharge symbolic condition

Example: DDH

» Cannot distinguish between (g*, g¥,g") and (g%, g¥, 9%)

» Symbolic condition: (x, y, xy) and (x, y, z) satisfy the same
linear equalities



FaultFinder

v

Goal: find physical attacks on implementations
Isolate post-conditions ¢ that enable attacks
» Given an implementation c, find faulted implemtation ¢ st

{v1c{o}

Use SMT-based synthesis
New attacks for RSA and ECDSA signatures

v

v

v



Conclusion

» Solid foundation for cryptographic proofs
» Formal verification of emblematic case studies

Different styles of proofs

EasyCrypt: proof objects

ZooCrypt: proof trees

GGA: traces

FaultFinder: proofs for attack finding

v

v

v

v

Further directions
» Proof Theory of Cryptographic Proofs
» Synthesis of “classical” cryptography

http://www.easycrypt.info



