
Interactive Theorem Provers

from the perspective of Isabelle/Isar

Makarius Wenzel
Univ. Paris-Sud, LRI

July 2014

λ
→

∀
=Is

ab
el
le

β

α

Isar



1 Introduction



Notable ITP systems

LISP based:

ACL2 http://www.cs.utexas.edu/users/moore/acl2

PVS http://pvs.csl.sri.com

ML based:

HOL family: HOL4, HOL-Light, ProofPower, . . .

Coq http://coq.inria.fr

Isabelle/Isar http://isabelle.in.tum.de

Other:

Mizar http://www.mizar.org

Agda http://wiki.portal.chalmers.se/agda

See also: The Seventeen Provers of the World, F. Wiedijk (ed.), LNAI 3600, 2006.

1 Introduction 2

http://www.cs.utexas.edu/users/moore/acl2
http://pvs.csl.sri.com
http://coq.inria.fr
http://isabelle.in.tum.de
http://www.mizar.org
http://wiki.portal.chalmers.se/agda


The LCF family

LCF
Edinburgh LCF (1979)
Cambridge LCF (1985)

HOL (1984/1988)

Coq
Coc (1985/1988)
...
Coq 8.4pl4 (May 2014)

Isabelle
Isabelle (1986/1989)
Isabelle/Isar (1999)
...
Isabelle2013-2 (December 2013)

1 Introduction 3



TTY interaction

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

Interaction model:
manual copy-paste from editor window into prover process

1 Introduction 4



Proof General (and clones)

Interaction model: automated copy-paste and undo in the editor,
prover process in background

1 Introduction 5



Isabelle today: document-oriented interaction

1 Introduction 6



Example: functional specifications with proofs

datatype ′a seq = Empty | Seq ′a ( ′a seq)

fun concat :: ′a seq ⇒ ′a seq ⇒ ′a seq

where
concat Empty ys = ys

| concat (Seq x xs) ys = Seq x (concat xs ys)

theorem concat empty: concat xs Empty = xs

by (induct xs) simp all

theorem conc assoc: concat (concat xs ys) zs = concat xs (concat ys zs)

by (induct xs) simp all

1 Introduction 7



Example: unstructured proof “scripts”

theorem concat empty ′: concat xs Empty = xs

apply (induct xs)

apply simp

apply simp

done

theorem conc assoc ′: concat (concat xs ys) zs = concat xs (concat ys zs)

apply (induct xs)

apply simp

apply simp

done

1 Introduction 8



Example: abstract specifications and calculations

class group = times + one + inverse +

assumes group assoc: (x ∗ y) ∗ z = x ∗ (y ∗ z)

and group left one: 1 ∗ x = x

and group left inverse: inverse x ∗ x = 1

theorem (in group) group right inverse: x ∗ inverse x = 1

〈proof 〉

theorem (in group) group right one: x ∗ 1 = x

proof −
have x ∗ 1 = x ∗ (inverse x ∗ x) by (simp only: group left inverse)

also have . . . = x ∗ inverse x ∗ x by (simp only: group assoc)

also have . . . = 1 ∗ x by (simp only: group right inverse)

also have . . . = x by (simp only: group left one)

finally show ?thesis .
qed

1 Introduction 9



2 Proof Systems



Isabelle/Pure: formal context

Logical judgement:

Θ, Γ ` ϕ
• background theory Θ

(polymorphic types, constants, axioms; global data)

• proof context Γ (fixed variables, assumptions; local data)

Operations on theories:

• merge and extend: Θ3 = Θ1 ∪ Θ2 + τ + c :: τ + c ≡ t

• symbolic sub-theory relation: Θ1 ⊆ Θ2

• transfer of results: if Θ1 ⊆ Θ2 and Θ1, Γ ` ϕ then Θ2, Γ ` ϕ

2 Proof Systems 11



Isabelle/Pure: primitive inferences

Syntax (types and terms):
fun :: (type, type)type function space ′a ⇒ ′b
all :: ( ′a ⇒ prop) ⇒ prop universal quantification

∧
x . B x

imp :: prop ⇒ prop ⇒ prop implication A =⇒ B

Derivations (theorems): implicit theory Θ

A ∈ Θ
` A

(axiom)
A ` A

(assume)

Γ ` B [x ] x /∈ Γ

Γ `
∧
x . B [x ]

(
∧

-intro)
Γ `

∧
x . B [x ]

Γ ` B [a]
(
∧

-elim)

Γ ` B
Γ − A ` A =⇒ B

(=⇒-intro)
Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B
(=⇒-elim)

2 Proof Systems 12



Isabelle/Isar: block-structured reasoning

Universal context: fix and assume
{

fix x

have B x 〈proof 〉
}
have

∧
x . B x by fact

{
assume A

have B 〈proof 〉
}
have A =⇒ B by fact

Existential context: obtain

{
obtain a where B a 〈proof 〉
have C 〈proof 〉

}
have C by fact

2 Proof Systems 13



3 Proof Search



Isabelle/HOL proof methods

• rule: generic Natural Deduction (with HO unification)

• cases: elimination, syntactic representation of datatypes,
inversion of inductive sets and predicates

• induct and coinduct : induction and coinduction of types, sets,
predicates

• simp: equational reasoning by the Simplifier (HO rewriting),
with possibilities for add-on tools

• fast and blast : classical reasoning (tableau)

• auto and force: combined simplification and classical reasoning

• arith, presburger : specific theories

• smt : Z3 with proof reconstruction

3 Proof Search 15



Sledgehammer

Idea:

• heavy external ATPs / SMTs for proof search

• light internal ATP (Metis) for proof reconstruction

3 Proof Search 16



Automated disprovers — counter examples

• quickcheck based on random functional evaluation

• nitpick based on relational model finder

3 Proof Search 17



4 Proof Formats



Proof formats: open-ended, no standards

De-facto formats:

LCF and HOL: ML source as input and output

Coq: tactic scripts, e.g. Ltac, SSReflect

Isabelle/Isar:

• structured proof documents (Isar language)
• unstructured apply scripts (tactic emulation)

General LCF approach:
use ML to implement your own application-specific proof formats

4 Proof Formats 19



5 Proof Production



The “LCF approach”

Correctness by construction: (R. Milner, 1979)

1. abstract datatype thm in ML (the “meta language”),
constructors are the rules of the logic (the “object language”)

2. implementation of arbitrary proof tools in ML,
with explicit thm construction at run-time

Notes:

• need to distinguish proof search from actual thm inferences

• thm values are abstract: proofs are not stored in memory,
but: optional proof trace or proof term

• goal-directed LCF-approach fits well to shared-memory multipro-
cessing (multicore hardware)

5 Proof Production 21



6 Proof Consumption



Proof consumption in Isabelle/HOL

HOL-Light importer:
replay of primitive inferences from other LCF-kernel (huge trace)

SMT proof method:
connection to Z3, with proof reconstruction by standard proof tools
of Isabelle/HOL: simp, blast , auto etc.

Sledgehammer:

• heavy external ATPs / SMTs for proof search

• light internal ATP (Metis) for proof reconstruction

6 Proof Consumption 23



7 Proof Applications



Big formalization projects

Flyspeck https://code.google.com/p/flyspeck (T. Hales,
HOL-Light): formal proof of Kepler’s Conjecture

L4.verified http://ertos.nicta.com.au/research/l4.verified

(G. Klein, Isabelle/HOL): formally correct operating system kernel

Feit-Thompson Odd Order Theorem http://www.msr-inria.

fr/news/feit-thomson-proved-in-coq (G. Gonthier, Coq/SSReflect)

CompCert verified compiler http://compcert.inria.fr/doc

(X. Leroy, Coq): optimizing C-compiler for various assembly lan-
guages, written and proven in the functional language of Coq

7 Proof Applications 25

https://code.google.com/p/flyspeck
http://ertos.nicta.com.au/research/l4.verified
http://www.msr-inria.fr/news/feit-thomson-proved-in-coq
http://www.msr-inria.fr/news/feit-thomson-proved-in-coq
http://compcert.inria.fr/doc


Libraries of formalized mathematics

Archive of Formal Proofs (AFP)
http://afp.sf.net

Isabelle/HOL

Mathematical Components
http://www.msr-inria.fr/projects/mathematical-components-2

Coq/SSReflect

Mizar Mathematical Library
http://www.mizar.org/library

Mizar

7 Proof Applications 26

http://afp.sf.net
http://www.msr-inria.fr/projects/mathematical-components-2
http://www.mizar.org/library


8 Conclusions



What is ITP? What is Isabelle/Isar?

Hanabusa Itchō: “Blind monks examining an elephant”

8 Conclusions 28



Helpful hints

New users:
• Spend time to develop a sense for more than one accidental

candidate, before making a commitment.

• Spend substantial time to become proficient with the system of
your choice.

Old users:
• Learn how other proof assistants work, and what are their specific

strengths and weaknesses.

Isabelle users:
• Submit your finished applications to AFP http://afp.sf.net

Happy proving!

8 Conclusions 29

http://afp.sf.net

