Interactive Theorem Provers

from the perspective of Isabelle/Isar

Makarius Wenzel
Univ. Paris-Sud, LRI

July 2014

1 Introduction

Notable ITP systems

LISP based:
ACL2 http://www.cs.utexas.edu/users/moore/acl2

PVS http://pvs.csl.sri.com

ML based:
HOL family: HOL4, HOL-Light, ProofPower, . . .

Coq http://coq.inria.fr
Isabelle/Isar http://isabelle.in.tum.de

Other:
Mizar http://www.mizar.org
Agda http://wiki.portal.chalmers.se/agda

See also: The Seventeen Provers of the World, F. Wiedijk (ed.), LNAI 3600, 2006.

1 Introduction 2

http://www.cs.utexas.edu/users/moore/acl2
http://pvs.csl.sri.com
http://coq.inria.fr
http://isabelle.in.tum.de
http://www.mizar.org
http://wiki.portal.chalmers.se/agda

The LCF family

LCF ==
Edinburgh LCF (1979)
Cambridge LCF (1985)

HOL (1984/1988) == &

Coq 11
Coc (1985/1988)

Coq 8.4pl4 (May 2014)
Isabelle =z = (1 &

Isabelle (1986/1989)

Isabelle/Isar (1999)

Isabelle2013-2 (December 2013)

1 Introduction

TTY interaction

-+
File Edit View Terminal Tabs Help

Terminal

> theory A imports Main begin
theory A

> lemma "x = x";

proof (prove): step ©

goal (1 subgoal):
1. x =X
> 1

o-+
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013)

Coq < Lemma test: forall (A: Type) (x: A), X = X .
1 subgoal

forall (A : Type) (x : A), X = X

test < [J

Welcome to Isabelle/HOL (Isabelle2013: February 2013) °

Terminal

Interaction model:

(W

P

ikipedia: K. Thompson and D. Ritchie at PDP-11)

manual copy-paste from editor window into prover process

1 Introduction

Proof General (and clones)

Bl emacs: Group.thy o X Fle Edit MNavigation TryTactics Templates Queries Display Compile Windows Help
File Edit Apps Options Buffers Tools Proof-General Help HX 3 2F 2O .
~JH[C] SN |
E=JrijC eIl T 1) - y 2 subgoats
finally; show 7thesis; .3 - nat
ned; rewrite IHn. forall m : nat, {n = m} + {n <> m}
reflexivity. nat
text Lk Qed n=m
With “name{group-right-inverse} already available, : (1/2)
“hame fgroup-right-unitislabel fthm:group-right-unit} is now
established much essier. Lemma nat_eq_dec : forall (nm Sm=5m
*3 5 induction n.
. - - - - destruct m as [|m].
theorem group_right_unit: "x s one = (x::’3::group)”; left (2/2)
roof —; exivi
i have "x o one = x = (inv x = "3 reflexivity. {Sn=Sm}+ {Sn<>5Sm}
by (simp only: group_left_inverse); right.
also; have ", X e inv x e x"; discriminate.

by (simp
also; have ".

by (simp only
also; have *

group_right_inverse) ;
o= %"
by (simp only: group_left_unit);

destruct m as [|m].

right; discriminate.
destruct (IHn m) as [Hm|Hm].
left.

finally; show ?thesis; .; rewrite Hm
ged; iyvi
reflexivity.
text fx pght. A=
“medskip The calculational proof style above follows typical intros Hnm.
presentations given in any introductory course on algebra. The basic apply Hm.

technigue is to form a transitive chain of eguations, which in turn PR .
are established by simplifying with sppropriate rules. The low-level injection Hnm.
Tneiral details nf emiatinnal reasnnine are Teff imalinit. 4 tauto.

————— REmacs: Group.thy (Isabelle/Isar script %S:isar Font Seripting)----29%| Defined.
Proof(prove) : step 8, depth 1

Eval compute in (nat_eq_dec 2 2).

sl U= s Eval compute in (nat_eq dec 2 1).

X % inv x » X = one ® x
1. x » inv x * X = one * x
Definition pred (n:nat) : option nat :=
match n with
| © => None =l
. ‘ Ll | o
————— XEmacs: *isabelle-goalsk (Isabelle/Isar proofstate)-—-——-All

eady in Predicate_Logic, proving nat_sq_dec

Line: 159 Char: 13 Cogide started

Interaction model: automated copy-paste and undo in the editor,
prover process in background

1 Introduction

Isabelle today: document-oriented interaction

1 Introduction

800

& Seq.thy "3

Ne8rE: & $¢ 0B - 8& C

EE B & 0:|«»

| O Seq.thy (SISABELLE_HOME/src/HOL/ex/)

~ |header {* Finite sequences *}

~ [|theory Seq
imports Main
begin

~ |datatype 'a seq = Empty | Seq 'a "'a seq"

= |fun conc ::
where
"conc Empty ys = ys"
| "conc (Seq x xs) ys = Seq x (conc xs ys)"
a 3 &
constant "Seq.seq.Seq"
'a = 'a seq = 'a seq

"'a seq = 'a seq = 'a seq"

* |fun reversg
where
"reverse Empty = Empty"

* |Lemma conc_empty: "conc xs Empty = xs"
by (induct xs) simp_all

™ Auto update | Update | Search:
constants
'a seq = 'a seq"
"(Ap. size (fst p))

conc :: "'a seq =
Found termination order:

B ¥ Console | Output | Query Sledgehammer

| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

:] | isabelle 3
x]
- [1
Filter: %\
-
Seq.thy
¥ Seq g
2
¥ header {* Finite sequences *} ;
theory Seq g
datatype 'a seq = Empty | Set g
Fun conc 2 =]
fun conc + =
fun reverse :: "'a seq = 'a
w
» lemma conc_empty: "conc ¥s En| g
"
P lemma conc_assoc: “"conc (cum| =
=
» lemma reverse_conc: "reverse | &
» lemma reverse_reverse: "rever _
=
end w
=]
=5
"
&

<*mlex*> {}"

['13,39 (203/791)

53MB 11:05 |

(isabelle,sidekick,UTF-8-Isabelle) fle 152/

Example: functional specifications with proofs

datatype 'a seq = Empty | Seq 'a ('a seq)

fun concat :: 'a seq = 'a seq = 'a seq
where

concat Empty ys = ys
| concat (Seq z xs) ys = Seq x (concat s ys)

theorem concat_empty: concat xs Emply = xs
by (induct zs) simp_all

theorem conc_assoc: concat (concat xs ys) zs = concat xs (concat ys zs)
by (induct zs) simp_all

1 Introduction

Example: unstructured proof “scripts”

theorem concat_empty” concat xs Empty = zs
apply (induct xs)
apply simp
apply simp
done

theorem conc_assoc”: concat (concat xs ys) zs = concat xs (concat ys zs)
apply (induct xs)
apply simp
apply simp
done

1 Introduction

Example: abstract specifications and calculations

class group = times + one + inverse +
assumes group_assoc: (r * y) * z = x * (y * 2)
and group_left_one: 1 x x = x
and group_left_inverse: inverse r x r = 1

theorem (in group) group_right_inverse: x * inverse x = 1

(proof)
theorem (in group) group_right_one: x * 1 = x
proof —
have z x 1 = z x (inverse x * x) by (simp only: group_left_inverse)
also have ... = z * inverse x * x by (simp only: group_assoc)
also have ... = 1 x z by (simp only: group_right_inverse)
also have ... = z by (simp only: group_left_one)
finally show ?thesis .
ged

1 Introduction

2 Proof Systems

Isabelle /Pure: formal context

Logical judgement:

O,I'Fop

e background theory ©
(polymorphic types, constants, axioms; global data)

e proof context I' (fixed variables, assumptions; local data)

Operations on theories:

e merge and extend: O3 =0, UOy+ 7+ cuT+c=t

e symbolic sub-theory relation: ©; C O,

e transfer of results: if ©; C O3 and O, I' = ¢ then O5, I' - ¢

2 Proof Systems 11

Isabelle/Pure: primitive inferences

Syntax (types and terms):
fun :: (type, type)type function space ‘a = 'b
all :: ('a = prop) = prop universal quantification Az. B z
imp :: prop = prop = prop implication A =— B

Derivations (theorems): implicit theory ©

A|_€ A@ (aziom) T A (assume)

I'+-Blz] 27T , ' - Az. Blx] .
TF Az, Bla] (\ire) Tk Bla /\elim)

I'NHFA=—DB IyFH A
rnuls+-2=B

'8
I' - A+ A— B

(=-intro)

(==-elim)

2 Proof Systems

Isabelle/lIsar: block-structured reasoning

Universal context: fix and assume

{ {
fix x assume A
have B z (proof) have B (proof)
} }
have A\z. B z by fact have A — B by fact

Existential context: obtain

{

obtain a where B a (proof)
have C (proof)

}
have C' by fact

2 Proof Systems

13

3 Proof Search

Isabelle/HOL proof methods

e rule: generic Natural Deduction (with HO unification)

e cases: elimination, syntactic representation of datatypes,
inversion of inductive sets and predicates

e induct and coinduct: induction and coinduction of types, sets,
predicates

e simp: equational reasoning by the Simplifier (HO rewriting),
with possibilities for add-on tools

e fast and blast: classical reasoning (tableau)

e auto and force: combined simplification and classical reasoning

e arith, presburger: specific theories

e smt: Z3 with proof reconstruction

3 Proof Search 15

Sledgehammer

Idea:
e heavy external ATPs / SMTs for proof search
e light internal ATP (Metis) for proof reconstruction

®00 Scratch.thy (modified) 2
DEdE & 9¢ XHE Q@ TE3E B & © |e»

| B Scratch.thy (~f)

= [theory Scratch

imports Main

begin

lemma "[x] = [y] = x = y"lby (metis list.inject)

Provers: e spass z3 ¥ | [Isar proofs | Apply | | Cancel | | Locate | |100% -

"e": Try this: by (metis the_elem_set) (6 ms).
"z3": Try this: by (metis list.inject) (7 ms).
"spass": Try this: by (metis list.inject) (11 ms).

B ~ | Sledgehammer |

5,26 (60/83) (isabelle,sidekick,UTF-8-Isabelle) UCHEETER9ME 11:43

3 Proof Search 16

Automated disprovers — counter examples

e quickcheck based on random functional evaluation
e nitpick based on relational model finder

Scratch.thy (modified)

D@d@E &:9¢ X OB R 03D B & ©:)€»

| @ Scratch.thy (~/) 2
datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
fun tree_of_list :: "'a list = 'a tree" where

"tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

fun list_of_tree :: "'a tree = 'a list" where
"list_of_tree Tip = []"
| "list_of_tree (Tree x t1 t2) = x # list_of_tree t1 @ list_of_tree t2"

lemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

@|Llemma "tree of list (list of tree t) = t"l
<)

¥ Auto Quickcheck found a counterexample:

t =Tree a; (Tree a; Tip Tip) Tip

Evaluated terms:
tree of list (list of tree t) =

Tree a; Tip (Tree a;, Tip Tip)
18,42 (476 (isabelle,sidekick,UTF-8-Isabelle) UCHEERIE 04MB 11:52

3 Proof Search

4 Proof Formats

Proof formats: open-ended, no standards

De-facto formats:
LCF and HOL: ML source as input and output

Coq: tactic scripts, e.g. Ltac, SSReflect

Isabelle/lsar:

e structured proof documents (lsar language)
e unstructured apply scripts (tactic emulation)

General LCF approach:
use ML to implement your own application-specific proof formats

4 Proof Formats 19

5 Proof Production

The “LCF approach”

Correctness by construction: (R. Milner, 1979)
1. abstract datatype thm in ML (the “meta language”),
constructors are the rules of the logic (the “object language”)

2. implementation of arbitrary proof tools in ML,
with explicit thm construction at run-time

Notes:
e need to distinguish proof search from actual thm inferences

e thm values are abstract: proofs are not stored in memory,
but: optional proof trace or proof term

e goal-directed LCF-approach fits well to shared-memory multipro-
cessing (multicore hardware)

5 Proof Production 21

6 Proof Consumption

Proof consumption in Isabelle/HOL

HOL-Light importer:
replay of primitive inferences from other LCF-kernel (huge trace)

SMT proof method:
connection to Z3, with proof reconstruction by standard proof tools

of Isabelle/HOL: simp, blast, auto etc.

Sledgehammer:
e heavy external ATPs / SMTs for proof search

e light internal ATP (Metis) for proof reconstruction

6 Proof Consumption 23

7 Proof Applications

Big formalization projects

Flyspeck https://code.google.com/p/flyspeck (T. Hales,
HOL-Light): formal proof of Kepler's Conjecture

L4.verified http://ertos.nicta.com.au/research/14.verified
(G. Klein, Isabelle/HOL): formally correct operating system kernel

Feit-Thompson Odd Order Theorem http://www.msr-inria.
fr/news/feit-thomson-proved-in-coq (G. Gonthier, Coq/SSReflect)

CompCert verified compiler http://compcert.inria.fr/doc
(X. Leroy, Coq): optimizing C-compiler for various assembly lan-
guages, written and proven in the functional language of Coq

7 Proof Applications 25

https://code.google.com/p/flyspeck
http://ertos.nicta.com.au/research/l4.verified
http://www.msr-inria.fr/news/feit-thomson-proved-in-coq
http://www.msr-inria.fr/news/feit-thomson-proved-in-coq
http://compcert.inria.fr/doc

Libraries of formalized mathematics

Archive of Formal Proofs (AFP)
http://afp.sf.net
Isabelle/HOL

Mathematical Components
http://www.msr-inria.fr/projects/mathematical-components-2

Coq/SSReflect

Mizar Mathematical Library
http://www.mizar.org/library
Mizar

7 Proof Applications 26

http://afp.sf.net
http://www.msr-inria.fr/projects/mathematical-components-2
http://www.mizar.org/library

8 Conclusions

8 Conclusions

What is ITP? What is Isabelle/lIsar?

Hanabusa ltcho: “Blind monks examining an elephant”

28

Helpful hints

New users:

e Spend time to develop a sense for more than one accidental
candidate, before making a commitment.

e Spend substantial time to become proficient with the system of
your choice.

Old users:
e Learn how other proof assistants work, and what are their specific
strengths and weaknesses.

Isabelle users:
e Submit your finished applications to AFP http://afp.sf.net

Happy proving!

8 Conclusions 29

http://afp.sf.net

