
Deep Inference

Alessio Guglielmi

University of Bath
A.Guglielmi@Bath.Ac.UK

1 Introduction

Deep inference could succinctly be described as an extreme form of linear logic
[11]. It is a methodology for designing proof formalisms that generalise Gentzen
formalisms, i.e. the sequent calculus and natural deduction [10]. In a sense, deep
inference is obtained by applying some of the main concepts behind linear logic
to the formalisms, i.e., to the rules by which proof systems are designed. By do-
ing so, we obtain a better proof theory than the traditional one due to Gentzen.
In fact, in deep inference we can provide proof systems for more logics, in a
more regular and modular way, with smaller proofs, less syntax, less bureau-
cracy and we have a chance to make substantial progress towards a solution to
the century-old problem of the identity of proofs. The first manuscript on deep
inference appeared in 1999 and the first refereed papers in 2001 [5, 16]. So far,
two formalisms have been designed and developed in deep inference: the calcu-
lus of structures [12] and open deduction [14]. A third one, nested sequents [4],
introduces deep inference features into a more traditional Gentzen formalism.

Essentially, deep inference tries to understand proof composition and proof
normalisation in the most logic-agnostic way. Thanks to it we obtain a deeper
understanding of the nature of normalisation. It seems that normalisation is a
primitive, simple phenomenon that manifests itself in more or less complicated
ways that depend more on the choice of representation for proofs rather than
their true mathematical nature. By dropping syntactic constraints, as we do in
deep inference compared to Gentzen, we get closer to the semantic nature of
proof and proof normalisation.

As I said, the early inspiration for deep inference comes from linear logic.
Linear logic, among other ideas, supports the notion that logic has a geometric
nature, and that a more perspicuous analysis of proofs is possible if we uncover
their geometric shape, hidden behind their syntax. We can give technical mean-
ing to this notion by looking for linearity in proofs. In the computing world,
linearity can be interpreted as a way to deal with quantity or resource. The sig-
nificance of linear logic for computer science has stimulated a remarkable amount
of research, that continues to these days, and that ranges from the most theoret-
ical investigations in categorical semantics to the implementation of languages
and compilers and the verification of software.

Linear logic expresses locality by relying on Gentzen’s formalisms. However,
these had been developed for classical mathematical logic, for which linearity
is not a primitive, natural notion. While attempting to relate process algebras



(which are foundational models of concurrent computation) to linear logic, I
realised that Gentzen’s formalisms were inherently inadequate to express the
most primitive notion of composition in computer science: sequential composi-
tion. This is indeed linear, but of a different kind of linearity from that naturally
supported by linear logic.

I realised then that the linear logic ideas were to be carried all the way
through and that the formalisms themselves had to be ‘linearised’. Technically,
this turned out to be possible by dropping one of the assumptions that Gentzen
implicitly used, namely that the (geometric) shape of proofs is directly related
to the shape of formulae that they prove. In deep inference, we do not make this
assumption, and we get proofs whose shape is much more liberally determined
than in Gentzen’s formalisms. As an immediate consequence, we were able to
capture process-algebras sequential composition [6], but we soon realised that
the new formalism was offering unprecedented opportunities for both a more
satisfying general theory of proofs and for more applications in computer science.

2 Proof System(s)

The difference between Gentzen formalisms and deep inference ones is that in
deep inference we compose proofs by the same connectives of formulae: if

Φ =
A∥∥∥∥
B

and Ψ =
C∥∥∥∥
D

are two proofs with, respectively, premisses A and C and conclusions B and D,
then

Φ ∧ Ψ =
A ∧ C∥∥∥∥
B ∧D

and Φ ∨ Ψ =
A ∨ C∥∥∥∥
B ∨D

are valid proofs with, respectively, premisses A ∧ C and A ∨ C, and conclusions
B ∧D and B ∨D. Significantly, while Φ ∧ Ψ can be represented in Gentzen, Φ ∨ Ψ
cannot. That is basically the definition of deep inference and it holds for every
language, not just propositional classical logic.

As an example, I will show the standard deep inference system for proposi-
tional logic. System SKS is a proof system defined by the following structural
inference rules (where a and ā are dual atoms)

t
i↓ −−−−−
a ∨ ā

f
w↓ −−

a

a ∨ a
c↓ −−−−−

a

identity weakening contraction

a ∧ ā
i↑ −−−−−

f

a
w↑ −−

t

a
c↑ −−−−−
a ∧ a

cut coweakening cocontraction

,



and by the following two logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

switch medial

.

A cut-free derivation is a derivation where i↑ is not used, i.e., a derivation in
SKS \ {i↑}. In addition to these rules, there is a rule

C
= −−
D

,

such that C and D are opposite sides in one of the following equations:

A ∨B = B ∨A A ∨ f = A

A ∧B = B ∧A A ∧ t = A

[A ∨B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we
gather several contiguous instances into one.

For example, this is a valid derivation:

[a ∨ b] ∧ a∥∥∥∥
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

=

a
c↑ −−−−−
a ∧ a

∨
b

c↑ −−−−−
b ∧ b

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ b] ∧ [a ∨ b]

∧
a

c↑ −−−−−
a ∧ a

.

This derivation illustrates a general principle in deep inference: structural rules
on generic formulae (in this case a cocontraction) can be replaced by correspond-
ing structural rules on atoms (in this case c↑).

3 Proof-Theoretical Properties

Locality and linearity are foundational concepts for deep inference, in the same
spirit as they are for linear logic. Going for locality and linearity basically means
going for complexity bounded by a constant. This last idea introduces geometry
into the picture, because bounded complexity leads us to equivalence modulo
continuous deformation. In a few words, the simple and natural definition of
deep inference that we have seen above captures these ideas about linearity,
locality and geometry, and can consequently be exploited in many ways, and
notably:

– to recover a De Morgan premiss-conclusion symmetry that is lost in Gentzen
[3];



– to obtain new notions of normalisation in addition to cut elimination [15,
13];

– to shorten analytic proofs by exponential factors compared to Gentzen [7,
9];

– to obtain quasipolynomial-time normalisation for propositional logic [8];
– to express logics that cannot be expressed in Gentzen [27, 4];
– to make the proof theory of a vast range of logics regular and modular [4];
– to get proof systems whose inference rules are local, which is usually impos-

sible in Gentzen [24];
– to inspire a new generation of proof nets and semantics of proofs [25];
– to investigate the nature of cut elimination [13, 17];
– to type optimised versions of the λ-calculus that are not typeable in Gentzen

[18, 19];
– to model process algebras [6, 20–22];
– to model quantum causal evolution [2] . . .
– . . . and much more.

The above references have been selected among those that provide surveys
when possible. There is no time in this tutorial to cover all those aspects, so
I refer the read to this web page, which contains up-to-date information about
deep inference:

http://alessio.guglielmi.name/res/cos .

A special mention deserves the core topic of every proof-theoretic investiga-
tion, namely normalisation. Traditionally, normalisation is at the core of proof
theory, and this is of course the same for deep inference. Normalisation in deep
inference is not much different, in principle, from normalisation in Gentzen the-
ory. In practice, however, the more liberal proof composition mechanism of deep
inference completely invalidates the techniques (and the intuition) behind cut
elimination procedures in Gentzen systems. Much of the effort of these 15 years
of research on deep inference went into recovering a normalisation theory. One
of the main ideas is in [12] where we show a technique called splitting, which
at present is the most general method we know for eliminating cuts in deep
inference.

On the other hand we now have techniques that are not as widely applicable
but that are of a completely different nature from splitting, which is combinato-
rial. A surprising, relatively recent result consists in exploiting deep inference’s
locality to obtain the first purely geometric normalisation procedure, by a topo-
logical device that we call atomic flows [13, 15]. This means that, at least for
classical logic and logics that extend it, cut elimination can be understood as a
process that is completely independent from logical information: only the shape
of the proof, determined by its structural information (creation, duplication and
erasing of atoms) matters. Logical information, such as the connectives in formu-
lae, does not matter. This hints at a deeper nature of normalisation than what
we thought so far. It seems that normalisation is a primitive, simple phenomenon
that manifests itself in more or less complicated ways that depend more on the
choice of representation for proofs rather than their true mathematical nature.



4 Pragmatic Properties

I will concentrate here on a crucial aspect of proofs, namely their size. This is
interesting in proof complexity, because proof size is intimately connected to
the problem of NP vs coNP. It is also interesting for the automated deduction
community, because the size of proofs affects the size of the proof search space,
and so it has a direct effect on the time it takes to find proofs.

Quantification in deep inference is not different from quantification in the
Gentzen theory, or, at least, nothing significantly different has been discovered so
far. Therefore we can limit the discussion to the propositional case. The situation
can be described in a few words: in [7] we proved that deep inference has an
exponential speed-up over Gentzen on analytic proof systems. In particular, one
can consider Statman tautologies [23], which only have exponential-size proofs
in the cut-free sequent calculus, and show that they have polynomial proofs in
cut-free deep inference.

Obviously, at first sight it might seem that the subformula property does not
hold in deep inference, and so that the notion of cut free-ness is weaker than in
Gentzen. However, the issue is subtle and it turns out that the differences with
Gentzen are surprisingly small. As Anupam Das proved in [9], only a very limited
amount of deep inference is sufficient to completely capture the exponential
speed-up. More precisely, any cut-free deep-inference system that can access at
most depth 2 in formulae can polynomially simulate proof systems of unbounded
depth, such as the system presented in this tutorial. In other words, the same
depth visibility of hypersequents is sufficient to obtain small proofs. This means
that for the same impact that hypersequents have on the branching factor in
the proof search space, we can obtain much smaller proofs than in Gentzen
systems, thanks to the better proof representation in deep inference. I will show
an example here, by reasoning on the first three Statman tautologies (see [7, 23]
for formal definitions):

S1 = (a ∧ b) ∨ ā ∨ b̄ ,

S2 = (c ∧ d) ∨
([
c̄ ∨ d̄

]
∧ a ∧

[
c̄ ∨ d̄

]
∧ b

)
∨ ā ∨ b̄ ,

S3 = (e ∧ f) ∨
([
ē ∨ f̄

]
∧ c ∧

[
ē ∨ f̄

]
∧ d

)
∨([

ē ∨ f̄
]
∧
[
c̄ ∨ d̄

]
∧ a ∧

[
ē ∨ f̄

]
∧
[
c̄ ∨ d̄

]
∧ b

)
∨ ā ∨ b̄ .

It is well known, and the reader will have no difficulty in seeing it, that the
size of cut-free sequent proofs of Sn grows exponentially with n. The structural
reason is that the external connectives in formulae force repeated duplication
of the context. Let us see what happens if we could just access connectives
immediately below the external ones.



For S1 we have a trivial cut-free proof in SKS:

t∥∥∥∥∥∥∥i↓,s
(a ∧ b) ∨ ā ∨ b̄

=

t
i↓ −−−−−
a ∨ ā

∧
t

i↓ −−−−−
b ∨ b̄

s −−−−−−−−−−−−−−−−−−−−−
[a ∨ ā] ∧ b

s −−−−−−−−−−−
(a ∧ b) ∨ ā

∨ b̄

.

For S2 we can obtain:

t∥∥∥∥∥∥∥i↓,s
t∥∥∥∥i↓,s

(c ∧ d) ∨ c̄ ∨ d̄
∧ a ∧

t∥∥∥∥i↓,s
(c ∧ d) ∨ c̄ ∨ d̄

∧ b

∥∥∥∥∥∥∥s
(c ∧ d) ∨ (c ∧ d)∥∥∥∥c↓,m

c ∧ d

∨
([
c̄ ∨ d̄

]
∧ a ∧

[
c̄ ∨ d̄

]
∧ b

)
∨ ā ∨ b̄

Here we see how the external atoms c and d are ‘brought inside’ the tautology
and two proofs similar to those for S1 are performed inside a conjunction inside
the external disjunction.

Finally, in Figure 1 we can see a proof of S3, where the above principle
is repeated and clearly gives rise to a sequence of proofs for Sn that grows
polynomially over n instead of exponentially.

5 Trends and Open Problems

The future of deep inference tends towards proof complexity, combinatorics and
the study of proofs via algebraic topology. One of the most important open
problems that deep inference intends to solve is that of the identity of proofs
(sometimes called Hilbert’s 24th problem [26]); this is related to the equally
open problem of the identity of algorithms [1].
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ē

∨
f̄

∧
d

∨

  
t ∥ ∥ ∥ ∥∥ i↓,

s

(e
∧
f

)
∨
ē
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Fig. 1. Cut-free SKS proof of Statman tautology S3.
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