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1 Introduction

1.1 Weaker vs. stronger systems

Contemporary proof theory goes into several directions at the same time. One of
them aims at analysing proofs, propositions, connectives, etc., that is at decom-
posing these objects into more atomic ones. This often leads to design systems
that are weaker than Predicate logic, but that have better algebraic or compu-
tational properties, and to try to reconstruct part of Predicate logic on top of
these systems. Propositional logic, linear logic, deep inference, equational logic,
explicit substitution calculi, etc. are examples of such systems. From this view
point, Predicate logic appears more as the ultimate goal of the journey, than as
its starting point.

Another direction considers that very little can be expressed in pure Predi-
cate logic and that stronger systems are needed, for instance to express genuine
mathematical proofs. Axiomatic theories, modal logics, types theories, etc. are
examples of such systems that are more expressive than pure Predicate logic.
There, Predicate logic is the starting point of the journey.

Although both points of view coexist in many research projects, these two
approaches to proof theory often lead to different systems and different problems.

Deduction modulo theory is part of the second group, as it focuses on proofs
in theories. The concern of integrating theories to proof theory is that of several
research groups. See, for instance, [48] and [50] for related approaches.

1.2 Logical vs. theoretical systems

To design a system stronger than pure Predicate logic, several ways are possible.
One is to extend Predicate logic with new logical constants, that is to design a
logic, the second is to introduce function symbols and predicate symbols within
Predicate logic and state axioms expressing the meaning these symbols, that is to
design a theory. The first approach can be illustrated by modal logics, the second
by arithmetic or set theory. Simple type theory belongs to both groups as it can
be defined either as a logic, in which case is is more often called higher-order
logic, or as a theory in Predicate logic.

Deduction modulo theory is part of the second, theoretical rather than logical,
group, as, like the axiomatic approach, it keeps Predicate logic as it is and allows
to define theories within this framework.



1.3 Axioms vs. reduction rules

But, the main difference between Deduction modulo theory an the axiomatic
approach is that a theory in Deduction modulo theory is not defined as a set of
axioms, but as a set of reduction rules.

Indeed, axioms jeopardize most of the properties of proofs of pure Predicate
logic. For instance, in pure Predicate logic, a constructive cut free proof always
ends with an introduction rule, hence a constructive cut free existential proof
always ends with an introduction rule of the existential quantifier. But this result
does not extend to axiomatic theories, as a constructive cut free proof in a theory
may also end, for instance, with the axiom rule.

In the same way, in automated theorem proving in pure Predicate logic,
the search space of the proposition ⊥ is always finite. But this result does not
extend to axiomatic theories, that can generate an infinite search space for the
proposition ⊥.

To overcome these problems, theories, in Deduction modulo theory, are de-
fined as sets of reduction rules. For instance the axioms

∀y (0 + y = y)

∀x∀y (S(x) + y = S(x+ y))

are replaced by the reduction rules

0 + y −→ y

S(x) + y −→ S(x+ y)

These reduction rules define a congruence ≡ on propositions, and deduction is
performed modulo this congruence. For instance, with the reduction rules above
the propositions 2+2 = 4 and 4 = 4 are congruent, hence any proof of the latter
is a proof of the former. If we add rules directly rewriting atomic propositions
to arbitrary propositions to define equality [1]

0 = 0 −→ >

S(x) = 0 −→ ⊥

0 = S(y) −→ ⊥

S(x) = S(y) −→ x = y

then the proposition 2 + 2 = 4 and > are congruent, and any proof of >, for
instance the mere application of the introduction rule of >, is a proof of the
proposition 2 + 2 = 4

>-intro` 2 + 2 = 4



1.4 Deduction vs. computation

In the example above, the proposition 2+2 = 4 is provable because it reduces to
>. More generally, all propositions that reduce to > are provable. But the con-
verse is not true: not all provable propositions reduce to >. Indeed, reducibility
to > is often a decidable property, while provability is not.

On the opposite, the fact that the proposition 2 + 2 = 4 has a trivial proof
because it reduces to >, and not a complex one that would involve the axioms of
equality and the axioms addition, shows that the truth of this proposition rests
on a mere computation and not on a genuine deduction.

Thus, Deduction modulo theory also permits to distinguish, in a proof, the
computation part from the deduction part, while Predicate logic flattens com-
putation and deduction.

1.5 The origins of Deduction modulo theory

Deduction modulo theory was first introduced in the area of automated theorem
proving.

Indeed, in automated theorem proving, instead of using equational axioms,
for instance the associativity axiom, we often replace standard unification with
equational unification, for instance unification modulo associativity [53]. In the
same way, in Simple type theory, instead of using the β-conversion axiom, we
replace standard unification by equational unification modulo β-equivalence:
higher-order unification [2, 44, 45].

To explain why such a method works, a solution is to introduce first an
inference system where propositions are identified modulo associativity, or mod-
ulo β-equivalence, to prove the equivalence with the axiomatic presentation and
then, as propositions are identified modulo this congruence, everything, in par-
ticular unification, must be performed modulo this congruence.

So Deduction modulo theory comes from automated theorem proving. But it
was soon understood that this idea of identifying propositions modulo a congru-
ence was also the idea behind the notion of definitional equality in Martin-Löf’s
Intuitionistic type theory [49] and that Deduction modulo theory could also be
seen as an extension of this notion of definitional equality to Predicate logic.

Another source of inspiration is the extension of Natural deduction with
folding and unfolding rules, introduced by Prawitz [54, 21, 40, 37, 22, 25]. If it is
not possible to identify an atomic proposition P with a proposition A, in this
system, it is possible to introduce two non logical deduction rules

A
P

P
A

2 Proof Systems

The idea of reasoning modulo a theory can be used in different formalisms:
Natural deduction, Sequent calculus, λ-calculus, etc. Thus, Deduction modulo
theory exists in many flavors.



2.1 Natural Deduction modulo theory

Let us start with constructive Natural deduction. The rules of constructive Nat-
ural deduction modulo theory are obtained by transforming the rules of con-
structive Natural deduction, to allow to use of the congruence. For instance, the
rule

Γ ` A⇒ B Γ ` A
⇒-elim

Γ ` B

is transformed into
Γ ` C Γ ` A ⇒-elim

if C ≡ (A⇒ B)Γ ` B

where the proposition A ⇒ B is replaced by any congruent proposition C. Ap-
plying the same transformation to all Natural deduction rules yields the following
system.

axiom
if A ≡ BΓ,A ` B

>-intro
if A ≡ >Γ ` A

Γ ` B ⊥-elim
if B ≡ ⊥Γ ` A

Γ ` A Γ ` B ∧-intro
if C ≡ (A ∧B)Γ ` C

Γ ` C ∧-elim
if C ≡ (A ∧B)Γ ` A

Γ ` C ∧-elim
if C ≡ (A ∧B)Γ ` B

Γ ` A ∨-intro
if C ≡ (A ∨B)Γ ` C

Γ ` D Γ,A ` C Γ,B ` C ∨-elim
if D ≡ (A ∨B)Γ ` C

Γ ` B ∨-intro
if C ≡ (A ∨B)Γ ` C

Γ,A ` B ⇒-intro
if C ≡ (A⇒ B)Γ ` C

Γ ` C Γ ` A ⇒-elim
if C ≡ (A⇒ B)Γ ` B

Γ ` A 〈x,A〉 ∀-intro
if B ≡ (∀x A) and x 6∈ FV (Γ )Γ ` B

Γ ` B 〈x,A, t〉 ∀-elim
if B ≡ (∀x A) and C ≡ [t/x]AΓ ` C

Γ ` C 〈x,A, t〉 ∃-intro
if B ≡ (∃x A) and C ≡ [t/x]AΓ ` B

Γ ` C Γ,A ` B 〈x,A〉 ∃-elim
if C ≡ (∃x A) and x 6∈ FV (ΓB)Γ ` B

For instance, consider the congruence defined by the rule

x ⊆ y −→ ∀z (z ∈ x⇒ z ∈ y)



The sequent ` s ⊆ s has the proof

axiom
z ∈ s ` z ∈ s

⇒-intro` z ∈ s⇒ z ∈ s 〈z, z ∈ s⇒ z ∈ s〉 ∀-intro` s ⊆ s

Note that if two propositions A and B are provably equivalent, that is when
A⇔ B is provable, then the proposition A has a proof if and only if the proposi-
tion B has a proof, but the propositons A and B need not have the same proofs.
In contrast, if two propositions are congruent, that is when A ≡ B, then every
proof of A is a proof of B and vice-versa, thus the propositions A and B have
the same proofs.

Sequent calculus modulo theory can be defined in a similar way. See, for
instance, [35].

Another variant of Natural deduction modulo theory and Sequent calculus
modulo theory is Super-deduction [57, 16]. In Super-deduction, new deduction
rules are computed from the reduction rules. For instance, the reduction rule

x ⊆ y −→ ∀z (z ∈ x⇒ z ∈ y)

yields the deduction rules
Γ, z ∈ x ` z ∈ y

z 6∈ FV (Γ )
Γ ` x ⊆ y

Γ ` x ⊆ y Γ ` z ∈ x
Γ ` z ∈ y

These rules are very natural to use: in informal mathematics, to prove x ⊆ y, we
often consider a generic z in x and prove that it is in y. The fact that these derived
rules use atomic propositions also explains why connectives and quantifiers are
almost never used in informal mathematics.

2.2 Polarized deduction modulo theory

In the design of Natural deduction modulo theory above we have transformed
the rule

Γ ` A⇒ B Γ ` A
⇒-elim

Γ ` B

into
Γ ` C Γ ` A ⇒-elim

if C ≡ (A⇒ B)Γ ` B

where the proposition A ⇒ B is replaced by any proposition C such that C ≡
(A⇒ B).

In a similar way, in the Sequent calculus modulo theory, we would transform
the rule

Γ ` A Γ,B ` ∆
⇒-left

Γ,A⇒ B ` ∆



into
Γ ` A Γ,B ` ∆ ⇒-left

if C ≡ (A⇒ B)Γ,C ` ∆

where the proposition A ⇒ B is replaced by any proposition C such that C ≡
(A⇒ B).

In these deduction rules, the reduction rules are just used to define the con-
gruence ≡. In fact, this congruence does not even need to be defined with re-
duction rules and it could be any congruence, provided it is decidable and it
does not identify non-atomic propositions with different head symbols. But we
may also want to stress that computation is oriented and take, in these rules,
the condition C −→∗ (A ⇒ B) instead of C ≡ (A ⇒ B), meaning that in the
sequent Γ,C ` ∆, can only reduce the proposition C.

In particular, the axiom rule

axiom
if A ≡ BΓ,A ` B

would be restated
axiom
if A −→∗ C and B −→∗ CΓ,A ` B

If t and u are two terms such that t ≡ u, it is still possible to prove the sequent
P (t) ` P (u). But when t and u do not have a common reduct, the proof of
P (t) ` P (u) contains cuts. In other words, the Sequent calculus modulo theory
has the cut elimination property if and only if the reduction system is confluent
[27] and Newman’s algorithm [51] that permits to transform an equational proof
into a valley proof appears to be a cut-elimination algorithm.

This idea can be developed further: the reduction rule

x ⊆ y −→ ∀z (z ∈ x⇒ z ∈ y)

permits to prove the equivalence

x ⊆ y ⇔ ∀z (z ∈ x⇒ z ∈ y)

Thus, when the atomic proposition P reduces to the proposition A, P and A
must be equivalent and, for instance, it is not possible to reduce Isosceles(x) to
Equilateral(x) because a triangle may be isosceles without being equilateral.

More generally, it is easy to transform an axiom of the form P ⇔ A into a
reduction rule P −→ A, but it is not easy to transform an axiom of the form
P ⇒ A into a reduction rule. However, even if, with such an axiom, we should
not be able to reduce a goal P into A, we should be able to reduce a hypothesis
P into A.

This leads to an extension of Deduction modulo theory, called Polarized
deduction modulo theory where reduction rules are classified into positive and
negative, the positive rules may apply to the positive occurrences of atomic
propositions and the negative ones to the negative occurrences.



For instance, in Polarized sequent calculus modulo theory, the left rule of the
implication is stated

Γ ` A Γ,B ` ∆ ⇒-left
if C −→∗

− (A⇒ B)Γ,C ` ∆

and its right rule
Γ,A ` B ⇒-right

if C −→∗
+ (A⇒ B)Γ ` C

Polarized deduction modulo theory is the flavor of Deduction modulo theory
that is more often used in automated theorem proving.

The first reason is that, in clause based theorem proving, a reduction rule of
the form

x ∈ y ∪ z −→ x ∈ y ∨ x ∈ z

can be used to reduce a positive literal in a clause but not a negative one. For
instance, the clause L1∨L2∨a ∈ b∪c reduces to the clause L1∨L2∨a ∈ b∨a ∈ c,
but the clause L1 ∨ L2 ∨ ¬a ∈ b ∪ c reduces to the proposition L1 ∨ L2 ∨ ¬(a ∈
b ∨ a ∈ c) that is not a clause. In contrast, if we replace this reduction rule by
the polarized rules

x ∈ y ∪ z −→− x ∈ y ∨ x ∈ z

x ∈ y ∪ z −→+ x ∈ y

x ∈ y ∪ z −→+ x ∈ z

then the clause L1 ∨L2 ∨¬a ∈ b∪ c reduces to the clauses L1 ∨L2 ∨¬a ∈ b and
to L1 ∨ L2 ∨ ¬a ∈ c. More generally, any reduction system can be transformed
this way to a clausal one [39].

The second reason is that any consistent set of axioms can be transformed
into a Polarized reduction system that is classically equivalent [26, 12]. Inter-
estingly, this result has been proved with applications to automated theorem
proving in mind, it uses automated theorem proving methods, but it is a purely
proof-theoretical result.

2.3 Expressing theories in Deduction modulo theory

The early work on expressing theories in Deduction modulo theory was focused
on specific theories: Simple type theory [30], Arithmetic [36, 1], set theory [34],
etc.

Then, as already said, systematic ways of transforming sets of axioms into
sets of reduction rules have been investigated [26, 12].

2.4 The λΠ-calculus modulo theory

The early developments of Deduction modulo theory were independent of the
proofs-as-algorithms paradigm: in Deduction modulo theory, like in Predicate
logic, terms, propositions, and proofs belong to three different languages, and
proofs are not terms. But we have mentioned that one of the origins of Deduction



modulo theory was the definitional equality of Martin-Löf’s Intuitionistic type
theory. This suggests that this idea of identifying congruent propositions can
also be useful in systems based on the proofs-as-algorithms paradigm.

The simplest system to express proofs of Predicate logic as algorithms is
the λ-calculus with dependent types [43], also know as the λΠ-calculus. This
leads to the development of an extension of the λΠ-calculus, called the λΠ-
calculus modulo theory [20]. This system is closely related to Martin-Löf’s logical
framework [52].

Any theory that can be expressed in minimal Deduction modulo theory can
be expressed in the λΠ-calculus modulo theory, in particular Simple type theory.
An interesting point here is that the Calculus of Constructions [18] has been
designed to express proofs of Simple type theory as algorithms. It happens that
λΠ-calculus modulo theory also can express those proofs as algorithms. This
suggests that the Calculus of Constructions itself could be expressed in the λΠ-
calculus modulo theory, and this is indeed the case [20]. The embedding of the
Calculus of Constructions into the λΠ-calculus modulo theory follows closely
the expression of Simple type theory in Deduction modulo theory.

It happens a posteriori that this embedding of the Calculus of Constructions
into the λΠ-calculus modulo theory can be seen as an extension of the λΠ-
calculus with an impredicative universe à la Tarski [3] and thus that there is a
strong link between the expression of Simple type theory in Predicate logic and
the notion of universe à la Tarski.

3 Properties

3.1 Models

The usual models of classical Predicate logic, valued in {0, 1}, can be used for
Deduction modulo theory. A congruence ≡ is said to be valid in a model when
A ≡ B implies JAKφ = JBKφ for all valuation φ, and a soundness and complete-
ness theorem can be proved using standard methods.

Like for Predicate logic, the set of truth values {0, 1} can be extended to
any Boolean algebra, allowing to prove a stronger completeness theorem: given
a theory, there exists a model such that the propositions valid in this model are
exactly the propositions provable in this theory.

Boolean algebras can be extended to Heyting algebras to define a sound and
complete semantics for constructive logic.

However in all these models valued in {0, 1}, Boolean algebras and Heyting
algebras, two provably equivalent propositions always have the same truth value:
if A ⇔ B is valid, then A ⇒ B and B ⇒ A are valid, hence JAKφ ≤ JBKφ and
JBKφ ≤ JAKφ and by antisymmetry JAKφ = JBKφ. Thus, there is no way to
make a difference, in the model, between provable equivalence and congruence:
whether A and B are equiprovable or have the same proofs, they have the same
truth value.

A way to overcome this is to extend Boolean algebras and Heyting algebras
by dropping the antisymmetry condition on the relation ≤. This relation is then



a pre-order and the algebras defined this way can be called pre-Boolean algebras
[9] and pre-Heying algebras [28]. The soundness theorem is proved exactly the
same way—antisymmetry is never used in this proof—, and the completeness is
simpler as the class of models larger. This corresponds to the intuition that the
relation ≤, defined by A ≤ B if A ⇒ B is provable, is reflexive and transitive,
but not antisymmetric.

This way, two provably equivalent propositions may be interpreted by distinct
truth values, unlike two congruent propositions that must be interpreted by the
same truth value, and it is possible to define models where a proposition A is
interpreted by the set of its proofs.

When a theory has a model valued in some pre-Heyting algebra it is con-
sistent, when it has a model valued in all pre-Heyting algebras it is said to be
super-consistent.

3.2 Cut-elimination

Proof-reduction is defined in Deduction modulo theory in the same way as in
Predicate logic, but the difference is that it does not always terminate. Indeed,
if we define a theory with the reduction rule P −→ (P ⇒ Q) the sequent ` Q
has the following proof

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q

⇒-intro` P ⇒ Q

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q

⇒-intro` P
⇒-elim` Q

that contains a cut and that reduces to itself.
Moreover, it is possible to prove that all cut free, that is irreducible, proofs

end with an introduction rule, thus not only this proof does not terminate, but
the sequent ` Q has no cut free proof.

And a similar example can be built with a terminating reduction system [35].
Thus, unlike for axiomatic theories, the notion of proof-reduction can be

defined in a generic, theory independent, way, and the properties of cut free
proofs, such as the property that the last rule of a cut free proof is an introduction
rule can be proved in a generic way. But, the proof-termination theorem itself
must be proved for each theory.

Using a method introduced by to prove the termination of proof reduction in
Simple type theory [38], we can prove that proof-reduction terminates in some
theory, if a reducibility candidate JAK can be associated to each proposition A,
in such a way that two congruent propositions are associated with the same
reducibility candidate [35]

A ≡ B implies JAK = JBK

This association of a reducibility candidate to each proposition is thus a
model valued in the algebra of the reducibility candidates and the condition that



two congruent propositions are associated with the same reducibility candidate
is the validity of this congruence in this model.

This way we get that if a theory has a model valued in the algebra of re-
ducibility candidates, then all proofs strongly terminate.

The algebra of reducibility candidates is a pre-Heyting algebra—but not a
Heyting algebra—thus we also get that proof-reduction terminates in super-
consistent theories.

This semantic view on termination of proof reduction theorems also per-
mits to relate these termination proofs to the so called semantic cut-elimination
proofs that proceed by proving a completeness result for cut free provability.
First, without proving the termination of proof-reduction, it is possible to prove
directly that, in a super-consistent theory, each provable proposition has a cut
free proof [32]. This completeness proof does not use the pre-Heyting algebra of
reducibility candidates but a simpler pre-Heyting algebra.

Then, in some non super-consistent theories, proof reduction does not ter-
minate, but each provable proposition has a cut free proof [41]. An example is
obtained by replacing the proposition Q by > in the example above. This proof
still fails to terminate but the sequent ` > has another proof, that is cut free.
Such cut-elimination theorems can only be proved via a completeness theorem
and their constructive content is a proof transformation algorithm, that is not
related to proof-reduction.

Finally, some theories do not have the cut elimination property, but they can
be extended to theories that have this property by adding derivable reduction
rules [15, 13]. This saturation process can be compared to Knuth-Bendix method
[47]—remember that confluence is a cut-elimination property—that does not
prove that all reduction systems are confluent, but that, in some cases, it is
possible to extend a reduction system with derivable rules, to make it confluent.

3.3 Automated theorem proving methods

Deduction modulo theory has been introduced to design and study automated
theorem proving methods. The first method introduced was a variant of Res-
olution [31] that was too complicated because rules were not polarized. Thus,
clauses could rewrite to non clausal proposition that needed to be handled. Po-
larization permitted to simplify the method [29] and also to understand better
its relation to other methods. This method is complete if and only if the theory
has the cut-elimination property [42].

Imagine we have a clause

L1 ∨ L2 ∨ a ∈ b ∪ c

and a negative reduction rule

x ∈ y ∪ z −→− x ∈ y ∨ x ∈ z

then applying this rule to this clause yields the clause

L1 ∨ L2 ∨ a ∈ b ∨ a ∈ c



But instead of this reduction rule, we could have taken a clause

¬x ∈ y ∪ z ∨ x ∈ y ∨ x ∈ z

and Resolution, applied to the literal a ∈ b ∪ c and the underlined literal in the
new clause, would have yielded the same result. Thus, there is no need to extend
Resolution to handle reduction rules, but reduction rules can just be seen as spe-
cial clauses, called one-way clauses. The Resolution rule cannot be applied to
two one-way clauses and when it is applied to a one-way clause and an ordinary
one, only the literal corresponding to the left-hand side of the reduction rule
can be used. Thus Polarized resolution modulo theory is just another variant of
Equational resolution with selection. It is, in fact, an improvement of Resolution
with the Set of support strategy [58] and of the Semantic resolution [56]. But,
unlike others variants of Resolution with selection, its completeness is equivalent
to a cut-elimination theorem. For instance the completeness of Polarized reso-
lution modulo the rules of Simple type theory cannot be proved in Simple type
theory [14].

These remarks also showed the way to combine this method with other selec-
tion strategies in Resolution. In particular, it has been shown that this restriction
is compatible with Ordered resolution [10], which is surprising as the Set of sup-
port strategy and the Semantic resolution strategy is not.

Beside Resolution, other proof-search methods have been investigated, in
particular direct search in cut free sequent calculus modulo theory, also known
as the tableaux method [8].

4 Implementations

The early work on Deduction modulo theory only led to experimental imple-
mentations. But more mature systems have been developed in the recent years.

4.1 Dedukti

Dedukti [5, 7, 55] is an implementation of the λΠ-calculus modulo theory. It is
thus based on the proofs-as-algorithms paradigm and proof-checking is reduced
to type-checking. But type-checking itself may require an arbitrary amount of
computation to check the congruence of two propositions.

Dedukti is a parametric system: by changing the reduction rules, we change
the theory in which the proofs are checked. Thus Dedukti is a logical framework
[43]. As the proofs of many different systems can be expressed in this framework
Dedukti is mostly used to check proofs developed in other systems—hence its
name: “to deduce” in Esperanto—: HOL [4], Focalize [17], Coq [6, 3], etc. as
well as proofs produced by automated theorem proving systems, such as iProver
modulo and Zenon modulo described below. The current goal of the project is
to be able to interface proofs developed in different systems.



4.2 iProver modulo, Super Zenon and Zenon modulo

iProver modulo [11] is an implementation of Ordered polarized resolution modulo
theory. It is developed as an extension of iProver.

Super Zenon [46] is an implementation of Tableaux modulo theory specifically
designed for a variant of Class theory—Second order logic—called B set theory,
and using Super-deduction instead of the original Deduction modulo theory.

Zenon modulo [23] is a generic implementation of Tableaux modulo theory
method.

5 Trends and Open Problems

In recent years, the effort in Deduction modulo theory has been put on the
development of implementations. In particular, we do not know how far we can
go in interfacing proof systems using a logical framework such as Dedukti. We
also need to investigate how having user defined reduction rule can impact tactic
based proof development.

In automated theorem proving we do not understand yet how to mix Reso-
lution modulo theory with equality specific methods such as superposition.

Some theories, such as alternating push-down systems, can be proved decid-
able through an encoding in Deduction modulo theory [33]. But we do not know
yet how far we can go in using Deduction modulo theory for proving decidability
results and incorporating decision methods in theorem provers.

On the more proof-theoretical side, we know that super-consistency is a suffi-
cient condition for the strong termination of proof reduction but we do not know
if it is a necessary condition. As suggested in [19], the notion of super-consistency
may require some adjustment so that we can prove that it is a necessary and
sufficient condition for proof termination. Finally, some extension of Deduction
modulo theories allow congruences that identify non-atomic propositions with
different head-symbols [24], in particular isomorphic types such as A⇒ (B ∧C)
and (A ⇒ B) ∧ (A ⇒ C), but we do not know yet how far we can go in this
direction.
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