
On proof mining by cut-elimination

Alexander Leitsch

Vienna University of Technology
leitsch@logic.at

Abstract. We present cut-elimination as a method of proof mining, in
the sense that hidden mathematical information can be extracted by
eliminating lemmas from proofs. We present reductive methods for cut-
elimination and the method ceres (cut-elimination by resolution). A
comparison of ceres with reductive methods is given and it is shown
that the asymptotic behavior of ceres is superior to that of reductive
methods (nonelementary speed-up). It is illustrated, how ceres can be
extended and applied in practice for analyzing mathematical proofs. Fi-
nally we we give an application of ceres to a well-known proof of the
infinitude of primes by Fürstenberg; this proof uses topological lemmas
based on arithmetic progressions. These topological lemmas of the proof
are eliminated by ceres and Euclid’s construction of primes is extracted.
We also touch the problem of cut-elimination by resolution on induction
proofs and discuss the limits of the method.

1 Introduction

What is a mathematical proof? Just a verification of a statement or a key to
understand a theorem? One and the same theorem may have several, possibly
very different mathematical proofs, and each of them contains a specific form of
mathematical information.

Mathematics in general is based on the structuring of reasoning by intermedi-
ate statements, the lemmas: this strongly increases the efficiency of mathematical
thinking as the mathematician is not forced to have a proof of a lemma in mind
when he makes use of it. He even might not know any proof of the lemma, but
simply trusts other mathematicians concerning its truth.

The drawback of the use of lemmas is, however, that only their truth but not
their proofs are reflected in the derivations of their end-statements. One of the
most important insights in mathematical logic is Gentzen’s Hauptsatz [16]. It
states that lemmas (cuts) can be algorithmically eliminated from given first-
order derivations. The result is a streamlined lemma-free proof combining all
subproofs of the original derivation: the cut-free derivation. Gentzen’s ground-
breaking result has been motivated by Hilbert’s distinction of ideal and real
objects in mathematics, where the lemmas are supposed to encode properties of
ideal objects.

The removal of cuts corresponds to the elimination of intermediate statements
(lemmas) from proofs resulting in a proof which is analytic in the sense, that

all statements in the proof are subformulas of the result. Therefore, the proof
of a combinatorial statement (possibly using theories outside the theory of the
statement itself) is converted into a purely combinatorial proof.

While Gentzen’s cut-elimination theorem found its immediate applications in ab-
stract proof theory (in particular in proving consistency results), the technique
of cut-elimination turned out to be fruitful in the analysis of ”real” mathemat-
ical proofs. A famous application of cut-elimination to mathematical proofs is
Girard’s analysis of a topological proof of van der Waerden’s theorem (Given a
partition of IN = C1 ∪ · · · · · · ∪ Ck, one of the sets Ci contains arbitrarily long
arithmetic progressions) [17]. In a formal sense Girard’s analysis of van der Waer-
den’s theorem is the application of cut-elimination to the topological proof of
Fürstenberg/Weiss with the “perspective” of obtaining van der Waerden’s (com-
binatorial) proof. Naturally, an application of a complex proof transformation
like cut-elimination by humans requires a goal oriented strategy.

The development of the method ceres [7] (cut-elimination by resolution)
was inspired by the idea to fully automate cut-elimination on real mathematical
proofs, with the aim of obtaining new interesting elementary proofs. While a
fully automated treatment proved successful for mathematical proofs of moder-
ate complexity (e.g. the tape proof [3] and the lattice proof [20], more complex
mathematical proofs required an interactive use of ceres; this way we success-
fully analyzed Füstenberg’s proof of the infinitude of primes (see [4] and [1])
and obtained Euclid’s argument of prime construction. This proof, though much
simpler than the proof of the Fürstenberg/Weiss proof of van der Waerden’s
theorem, is sufficiently ”complex” in the sense that it proves a number theoretic
result by a topological argument. By the use of ceres the topological proof was
transformed into a number theoretic one, namely to that of Euclid. Though the
analysis by ceres could not be fully automated, even its interactive use proved to
be superior to the reductive cut-elimination method (based on Gentzen’s proof)
due to additional structural information given by the characteristic clause set
(to be defined in Section 3).

ceres [7, 9] is a cut-elimination method that is based on resolution. The method
roughly works as follows: The structure of the proof containing cuts is encoded
in an unsatisfiable set of clauses C (the characteristic clause set). A resolution
refutation γ of C, which is obtained using a first-order theorem prover, serves
as a skeleton for an atomic cut normal form ψ, a new proof which contains at
most atomic cuts. γ is transformed to ψ by replacing the leaves of γ by so-called
proof projections, which are essentially cut-free parts of the original proof. This
method of cut-elimination has been implemented in the system ceres1. The
system is capable of dealing with formal proofs in an extended version of LK,
among them also very large ones.

Cut-elimination is not the only tool to mine proofs. An alternative method, the
extraction of functionals, is based on Gödel’s dialectica interpretation [18] and
allows the construction of programs from proofs (see [11] and [12] for applications

1 available at http://www.logic.at/ceres/

to mathematical proofs). Not only the result of the functional extraction method
is different, also its range of applicability. Its advantage is the handling of the in-
duction rule, which poses serious problems to cut-elimination; its disadvantage is
the restriction to proofs of Π2-statements (statements of the form ∀x.∃y.A(x, y)
for A quantifier-free), while cut-elimination can be applied to arbitrary state-
ments. Both methods have in common that they reveal hidden structures in
proofs and provide new mathematical information by proof-transformation.

2 A Proof System for Cut-Elimination

As a basis for our investigations we use the sequent calculus LK (defined by
Gerhard Gentzen[16]). In our version of LK we do not use an exchange rule as
our sequents are based on the multi-set structure. There are several extensions
of LK which are useful for analyzing mathematical proofs; we will mention some
of them in Section 4.

Definition 1. Let A and B be two multi-sets of formulas and ` be a symbol not
belonging to the logical language. Then A ` B is called a sequent.

Definition 2. Let S : A1, . . . , An ` B1, . . . , Bm be a sequent and M be an in-
terpretation over the signature of {A1, . . . , An, B1, . . . Bm}. Then S is valid in
M if the formula (A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm) is valid in M. S is called
valid if S is valid in all interpretations.

Definition 3 (LK). As axioms of the calculus we take the sequents A ` A for
atomic formulas A.

There are two groups of rules, the logical and the structural ones. All rules
with the exception of the cut rule have left and right versions; left versions are
denoted by ξ : l, right versions by ξ : r. A and B denote formulas, Γ,∆,Π,Λ
multi-sets of formulas

The logical rules:

– ∧-introduction:

A,Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l1

B,Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l2

Γ ` A Γ ` B
Γ ` ∆,A ∧B ∧ : r

– ∨-introduction:

A,Γ ` ∆ B,Γ ` ∆
A ∨B,Γ ` ∆ ∨ : l

Γ ` ∆,A
Γ ` ∆,A ∨B ∨ : r1

Γ ` ∆,B
Γ ` ∆,A ∨B ∨ : r2

– →-introduction:

Γ ` ∆,A B,Π ` Λ
A→ B,Γ,Π ` ∆,Λ →: l

A, Γ ` ∆,B
Γ ` ∆,A→ B

→: r

– ¬-introduction:

Γ ` ∆,A
¬A,Γ ` ∆ ¬ : l

A, Γ ` ∆
Γ ` ∆,¬A ¬ : r

– ∀-introduction: 2 3

A(x/t), Γ ` ∆
(∀x)A(x), Γ ` ∆ ∀ : l

Γ ` ∆,A(x/y)

Γ ` ∆, (∀x)A(x)
∀ : r

– The logical rules for ∃-introduction (the variable conditions for ∃ : l are these
for ∀ : r, and similarly for ∃ : r and ∀ : l):

A(x/y), Γ ` ∆
(∃x)A(x), Γ ` ∆ ∃ : l

Γ ` ∆,A(x/t)

Γ ` ∆, (∃x)A(x)
∃ : r

The structural rules:

– weakening:
Γ ` ∆
Γ ` ∆,A w : r Γ ` ∆

A,Γ ` ∆ w : l

– contraction:

A,A, Γ ` ∆
A,Γ ` ∆ c : l

Γ ` ∆,A,A
Γ ` ∆,A c : r

– The cut rule:
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ cut(A)

LK is particularly suited for proof analysis, as the cut-rule (representing
the use of lemmas) can be constructively eliminated from proofs; the resulting
proof is analytic, i.e. the whole material of the proof consists of subformulas of
the end-sequent. In typical Hilbert-type calculi the only rules are modus ponens
and the generalization rule. There is no way to eliminate modus ponens from
a typical Hilbert type calculus, and thus the elimination of lemmas cannot be
described in such a framework. As we work in classical logic, natural deduction
(which has introduction and elimination rules and is closer to sequent calculus),
being basically a calculus for intuitionistic logic, is also not the optimal choice.

Example 1. We give two proofs of the same sequent, one with cut, the other
without it.

Let ϕ =

P (a) ` P (a)

P (a) ` P (a) ∨ Q(a)
∨ : r1

P (a) ` ∃y(P (y) ∨ Q(y))
∃ : r

Q(b) ` Q(b)

Q(b) ` P (b) ∨ Q(b)
∨ : r2

Q(b) ` ∃y(P (y) ∨ Q(y))
∃ : r

P (a) ∨ Q(b) ` ∃y(P (y) ∨ Q(y))
∨ : l

(χ)

∃y(P (y) ∨ Q(y)), ∀x.¬P (x) ` ∃z.Q(z)

P (a) ∨ Q(b), ∀x.¬P (x) ` ∃z.Q(z)
cut

2 t is an arbitrary term containing only free variables.
3 y is a free variable which may not occur in Γ,∆. y is called an eigenvariable.

for χ =

P (α) ` P (α)

P (α),¬P (α) ` ¬ : l

P (α),¬P (α) ` Q(α)
w : r

Q(α) ` Q(α)

Q(α),¬P (α) ` Q(α)
w : l

P (α) ∨Q(α),¬P (α) ` Q(α)
∨ : l

P (α) ∨Q(α),¬P (α) ` ∃z.Q(z)
∃ : r

P (α) ∨Q(α),∀x.¬P (x) ` ∃z.Q(z)
∀ : l

∃y(P (y) ∨Q(y)),∀x.¬P (x) ` ∃z.Q(z)
∃ : l

where α is an eigenvariable. When we search for a witness for the z in ∃z.Q(z)
and trace the proof part χ via the ancestors of ∃z.Q(z) we see that no direct
answer can be obtained. In fact we can trace α until it ”disappears” by the
∃ : l-rule.The following cut-free proof, which can be obtained via Gentzen-type
cut-elimination, provides more information about z:

ψ =

P (a) ` P (a)

P (a),¬P (a) ` ¬ : l

P (a),¬P (a) ` Q(b)
w : r

Q(b) ` Q(b)

Q(b),¬P (a) ` Q(b)
w : l

P (a) ∨Q(b),¬P (a) ` Q(b)
∨ : l

P (a) ∨Q(b),¬P (a) ` ∃z.Q(z)
∃ : r

P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z)
∀ : l

Here we see that z was replaced by b in ∃ : r (reading the proof backwards);
moreover ψ contains a so-called Herbrand sequent

SH : P (a) ∨Q(b),¬P (a) ` Q(b)

which is valid and can be obtained by instantiation of the quantified formulas
from the end-sequent. So we get an explicit information about the ”right” z in
the cut-free proof. Note that, in general, not a single witness is obtained but
rather a set of witnesses (Herbrand ”disjunction”). Gentzen [16] has given a
proof transformation on cut-free proofs to obtain Herbrand sequents (which he
called mid-sequents, because the upper part of the obtained proof consists only of
structural and propositional, the lower only of quantifier- and structural rules).
We describe this theorem in more detail in Section 3.

3 Proof-Theoretical Aspects of Cut-Elimination

The main and basic theorem of proof theory is the so-called Hauptsatz:

Theorem 1 (Gentzen 1934). Let ϕ be an LK-proof of a sequent S. Then there
exists an LK-proof ψ of S (effectively constructible from ϕ) without application
of the cut-rule.

Gentzen’s proof is based on a proof transformation method which will be
described in more detail below. A cut-free proof is a normal form under this
transformations. We will illustrate the benefits of this normal form below.

Proof transformations to normal form (cut-free proofs in LK, normal proofs in
natural deduction) essentially change the nature of the proof in making implicit
information explicit (see the simple Example 1). In case of cut-free LK-proofs of
prenex end-sequents we obtain a Herbrand sequent describing all instantiations
of quantifiers in the proof and reducting the problem to a propositional one. This
abstraction from propositional reasoning allows mathematical interpretations of
complex cut-free proofs obtained via cut-elimination (see [20] and [31]). For sim-
plicity we define Herbrand sequents for prenex sequents only. Instead of working
with a sequent S we can consider the skolemized form sk(S), a form where
the so-called strong quantifiers are eliminated via the introduction of terms in
a new signature. This transformation is standard in automated deduction and
crucial to the transformation into clause form. Skolemization can also be ap-
plied to whole proofs. In fact, every proof of ϕ of S can be transformed in to a
proof ϕ′ of sk(S) by a merely quadratic proof transformation (the skolemization
of proofs, see [10]). On the other hand, every cut-free proof of sk(S) can be
transformed into a cut-free proof of S; this transformation is polynomial if S is
prenex and exponential in general [5]. For simplicity we assume that the sequent
S is in prenex form. Then sk(S) is of the form A1, . . . , An ` B1, . . . , Bm where
the Ai are of the form ∀x1, . . . ,∀xk.E (a Π1-formula), and the Bj of the form
∃y1, . . . ,∃yl.F (a Σ1-formula), where E and F are quantifier-free . The specific
form of these sequents motivates the following definition:

Definition 4. A sequent S : A1, . . . , An ` B1, . . . , Bm, where the Ai are Π1-
and the Bj Σ1-formulas is called a Σ1-sequent.

The essence of Herbrand’s theorem consists in the replacement of quanti-
fied formulas by instances of these formula, resulting in a quantifier-free formula
which is validity-equivalent. We formulate this theorem in form of prenex se-
quents.

Definition 5. Let A be a Σ1- or a Π1-formula of the form Qx1, . . . , Qxn.E and
t1, . . . , tn be terms. Then E{x1/t1, . . . , xn/tn} is called an instantiation of A.

Definition 6 (Herbrand sequent). Let S : A1, . . . , An ` B1, . . . , Bm be a
provable Σ1-sequent. For any Ai (Bj) let Ai (Bj) be a sequences of instantiations
of Ai (Bj). Then S′ : A1, . . . ,An ` B1, . . . ,Bm is called a Herbrand sequent of
S if S′ is propositionally valid.

Herbrand sequents can be constructed from proofs. We first eliminate all cuts
down to atomic ones (full cut-elimination is not required) and then construct a
sequent consisting only of instances of formulas of the end-sequent.

Theorem 2 (mid-sequent theorem). Let ϕ be an LK-proof of a Σ1-sequent
S with at most atomic cuts (if ϕ contains cuts then they are atomic). Then ϕ

can be transformed into a proof ϕ′ with the same number of logical inferences
and atomic cuts and with the following property. ϕ′ contains the derivation of a
sequent S′ (the mid-sequent), s.t. all propositional inferences and atomic cuts in
ϕ are above S′, and below S′ there are only unary structural rules and quantifier-
rules from ϕ.

Proof. In [16] a step-wise proof transformation is given transforming a proof of a
prenex sequent into a proof containing a mid-sequent. If we are only interested in
the mid-sequent itself, which by our definition is a Herbrand sequent, it suffices
to read off the instances from the quantifier-introduction rules and collect them
in a sequent. This procedure can be performed in linear time.

Corollary 1. Let ϕ be a proof of a Σ1-sequent S with at most atomic cuts and
let S′ be a mid-sequent as defined in Theorem 2. Then S′ is a Herbrand sequent
of S.

Proof. Let ϕ′ be the proof obtained from ϕ by the transformation of Theorem 2.
Then the subproof ψ of ϕ′ deriving the midsequent S′ contains only propositional
and structural rules. By the soundness of LK S′ is propositionally valid.

Example 2. Let ψ be the proof from Example 1:

P (a) ` P (a)

P (a),¬P (a) ` ¬ : l

P (a),¬P (a) ` Q(b)
w : r

Q(b) ` Q(b)

Q(b),¬P (a) ` Q(b)
w : l

P (a) ∨Q(b),¬P (a) ` Q(b)
∨ : l

P (a) ∨Q(b),¬P (a) ` ∃z.Q(z)
∃ : r

P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z)
∀ : l

This proof is already in midsequent form and does not need any transformation.
Its midsequent is

S′ : P (a) ∨Q(b),¬P (a) ` Q(b).

S′ is a Herbrand sequent of P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z).

The concept of Herbrand sequent can be generalized to non-prenex sequents
(see [6]); efficient algorithms for the computation of these more general se-
quents are given in [31]. Herbrand sequents can also be represented as expansion
trees [24]. The construction of Herbrand sequents works not only for cut-free
proofs but also with proofs containing only cuts with quantifier-free formulas.
This is one of the reasons why quantifier-free cuts are frequently called ”inessen-
tial” [29]. So the most essential elimination is this of quantified cuts. In the
method ceres defined below, we transform arbitrary LK-proofs into LK-proofs
with only atomic cuts; these cuts are inessential and we may speak about cut-
elimination, even if inessential cuts are still present.

As cut-elimination is of high (in the worst-case nonelementary complex-
ity) the specific choice of algorithms is crucial. The proof reduction method

of Gentzen (defined by reductions in the corresponding proof rewrite system,
see [10]) turns out to be very redundant and expensive. The radically different
method ceres (cut-elimination by resolution) has been developed in [7] and [9].
ceres is a cut-elimination method that is based on resolution. The method
roughly works as follows: The structure of the proof containing cuts is mapped
to a clause term which evaluates to an unsatisfiable set of clauses C (the char-
acteristic clause set). A resolution refutation of C, which is obtained using a
first-order theorem prover, serves as a skeleton for the new proof which contains
only atomic cuts. In a final step also these atomic cuts can be eliminated, pro-
vided the (atomic) axioms are valid sequents (or, at least, are closed under cut);
but this step is of minor mathematical interest only. In the system CERES4

this method of cut-elimination has been implemented. The system is capable of
dealing with formal proofs in LK, among them also very large ones; moreover
it was used in the analysis of Fürstenberg’s proof of the infinitude of primes to
be described in Section 5.

Gentzen’s proof of cut-elimination in LK is based on a reduction relation
which selects an uppermost cut and reduces its complexity. There are two pos-
sibilities:

1. the cut formulas on both sides are introduced by rules immediately over the
cut in the proof. Then the cut is simplified to one or two cuts of lower formula
complexity (or the cut is deleted at all). This is called a grade reduction.

2. One or both of the cut formulas are not introduced immediately above the
cut. Then the cut is shifted upwards and a rule permutation is performed.
This reduction is called a rank reduction. Rank reduction rules serve the
purpose to enforce a situation in which a grade reduction rule can be carried
out.

From the rank and grade reductions in Gentzen’s proof a set of proof rewrite rules
R can be extracted. Further refinements of R, e.g. restricting the rewriting to
uppermost cuts in the proof (Gentzen reduction >G) guarantee that the rewrit-
ing relation is terminating. A terminating sequence of proof reduction yields a
so-called Gentzen normal form (which is not unique as >G is not confluent). For
the complete list of R we refer to [10]; here we list just two of them to illustrate
the nature of the method:

– a rank-reduction rules which shifts the cut rule over an ∨ : l-rule. The proof

(ϕ1)
B,Γ ` ∆,A

(ϕ2)
C, Γ ` ∆,A

B ∨ C, Γ ` ∆,A ∨ : l
(ψ)

A,Π ` Λ
B ∨ C, Γ,Π ` ∆,Λ cut

4 available at http://www.logic.at/ceres/

reduces to

(ϕ1)
B,Γ ` ∆,A

(ψ)
A,Π ` Λ

B,Γ,Π ` ∆,Λ cut

(ϕ2)
C, Γ ` ∆,A

(ψ)
A,Π ` Λ

C, Γ,Π ` ∆,Λ cut

B ∨ C, Γ,Π ` ∆,Λ ∨ : l

– A grade reduction rules which reduces the logical complexity of the cut
formula. The proof

(ϕ1)
Γ ` ∆,A(x/t)

Γ ` ∆,∃x.A(x)
∃ : r

(ϕ2(y))
A(x/y), Π ` Λ
∃x.A(x), Π ` Λ ∃ : l

Γ,Π ` ∆,Λ cut

reduces to
(ϕ1)

Γ ` ∆,A(x/t)
(ϕ2(t))

A(x/t), Π ` Λ
Γ,Π ` ∆,Λ cut

Here, y is an eigenvariable which does not occur inΠ,Λ, but occurs free in the
proof ϕ2(y). ϕ2(t) is defined by replacing y in ϕ2(y) by t. To ensure soundness
of this proof substitution t may not contain variables bound in ϕ2; this
property can be guaranteed by distinguishing free and bound variables [16].

Example 3. We consider the proof ϕ in Example 1 (where some subproofs are
abbreviated by ϕ1, ϕ2, ϕ3):

(ϕ1)

P (a) ` P (a) ∨ Q(a)

P (a) ` ∃y(P (y) ∨ Q(y))
∃ : r

(ϕ2)

Q(b) ` ∃y(P (y) ∨ Q(y))

P (a) ∨ Q(b) ` ∃y(P (y) ∨ Q(y))
∨ : l

(ϕ3(α))

P (α) ∨ Q(α), ∀x.¬P (x) ` ∃z.Q(z)

∃y(P (y) ∨ Q(y)), ∀x.¬P (x) ` ∃z.Q(z)
∃ : l

P (a) ∨ Q(b), ∀x.¬P (x) ` ∃z.Q(z)
cut

We see that the cut formula is immediately introduced in the right side of the
proof, but not in the left one. Therefore we apply the rank reduction rule for
∨ : l defined above and obtain the proof ϕ′ =

(ϕ1)

P (a) ` P (a) ∨ Q(a)

P (a) ` ∃y(P (y) ∨ Q(y))
∃ : r

(ϕ3(α))

P (α) ∨ Q(α), ∀x.¬P (x) ` ∃z.Q(z)

∃y(P (y) ∨ Q(y)), ∀x.¬P (x) ` ∃z.Q(z)
∃ : l

P (a), ∀x.¬P (x) ` ∃z.Q(z)
cut

(η)

Q(b), ∀x.¬P (x) ` ∃z.Q(z)

P (a) ∨ Q(b), ∀x.¬P (x) ` ∃z.Q(z)
∨ : l

where η =

(ϕ2)
Q(b) ` ∃y(P (y) ∨Q(y))

(ϕ3(α))
P (α) ∨Q(α),∀x.¬P (x) ` ∃z.Q(z)

∃y(P (y) ∨Q(y)),∀x.¬P (x) ` ∃z.Q(z)
∃ : l

Q(b),∀x.¬P (x) ` ∃z.Q(z)
cut

Now we locate the leftmost uppermost cut in ϕ′; the corresponding subproof ψ
is

(ϕ1)
P (a) ` P (a) ∨Q(a)

P (a) ` ∃y(P (y) ∨Q(y))
∃ : r

(ϕ3(α))
P (α) ∨Q(α),∀x.¬P (x) ` ∃z.Q(z)

∃y(P (y) ∨Q(y)),∀x.¬P (x) ` ∃z.Q(z)
∃ : l

P (a),∀x.¬P (x) ` ∃z.Q(z)
cut

In the next step we obtain the proof ϕ′′ by replacing ψ by ψ′, which is obtained
via the grade reduction rule for ∃-cuts defined above. ψ′ is

(ϕ1)
P (a) ` P (a) ∨Q(a)

(ϕ3(a))
P (a) ∨Q(a),∀x.¬P (x) ` ∃z.Q(z)

P (a),∀x.¬P (x) ` ∃z.Q(z)
cut

So, in one part of the proof ϕ′ we have broken down a cut with ∃y(P (y) ∨Q(y)
to a cut with P (a) ∨ Q(a), which is of lower logical complexity. We can do a
similar thing for the remaining cut in ϕ′′ with ∃y(P (y) ∨ Q(y) in ϕ′′ (with a
new cut formula P (b) ∨ Q(b)). There are several steps more before all cuts are
eliminated.

The method ceres is based on a totally different approach: We analyze the
proof ϕ first and extract a structure from the binary rules in the proof, the
characteristic clause set CL(ϕ). In the second step we compute the so-called
proof projections to the clauses in CL(ϕ); these are cut-free proofs obtained by
skipping rules inferring ancestors of the cut rule in ϕ. The third step consists in
a resolution refutation of CL(ϕ). he last one in plugging the resolution refutation
together with the projections; this yields a proof with only atomic cuts. Below
we give a rather informal description of ceres (but we will provide a formal
definition of the characteristic clause set, which is the most important structure
within the ceres-method).

Example 4. Let us consider again the proof ϕ from Example 1:

P (a) ` P (a)?

P (a) ` P (a) ∨ Q(a)?
∨ : r1

P (a) ` ∃y(P (y) ∨ Q(y))?
∃ : r

Q(b) ` Q(b)?

Q(b) ` P (b) ∨ Q(b)?
∨ : r2

Q(b) ` ∃y(P (y) ∨ Q(y))?
∃ : r

P (a) ∨ Q(b) ` ∃y(P (y) ∨ Q(y))?
∨ : l

(χ)

∃y(P (y) ∨ Q(y))?, ∀x.¬P (x) ` ∃z.Q(z)

P (a) ∨ Q(b), ∀x.¬P (x) ` ∃z.Q(z)
cut

for χ =

P (α)? ` P (α)

P (α)?,¬P (α) ` ¬ : l

P (α)?,¬P (α) ` Q(α)
w : r

Q(α)? ` Q(α)

Q(α)?,¬P (α) ` Q(α)
w : l

P (α) ∨Q(α)?,¬P (α) ` Q(α)
∨ : l

P (α) ∨Q(α)?,¬P (α) ` ∃z.Q(z)
∃ : r

P (α) ∨Q(α)?,∀x.¬P (x) ` ∃z.Q(z)
∀ : l

∃y(P (y) ∨Q(y))?,∀x.¬P (x) ` ∃z.Q(z)
∃ : l

where all cut-ancestors were marked with ?. We trace the ancestors up to the
axioms where we find C1 : ` P (a), C2 : ` Q(b) on the left-hand-side, and
C3 : P (α) `, C4 : Q(α) ` on the right-hand-side. There is one binary inference
∨ : l on the left side, which goes into the end-sequent, by which we merge C1, C2

to C5 : ` P (a), Q(b). On the right side of the proof the binary inference ∨ : l
operates on ancestors of the cut (and does go into the cut), and we union the
clauses to the set {C3 : P (α) `, C4 : Q(α) `}. Finally the cut itself is binary rule
”going into the cut”, and we take the union of all clauses generated so far; the
result is

C = {` P (a), Q(b), P (α) `, Q(α) `}.

Note that α is a variable. C is called the characteristic clause set of ϕ. C is
unsatisfiable and has the following resolution refutation R:

Q(β) `
` P (a), Q(b) P (α) `

` Q(b)

`

Note that, as common in resolution theorem proving, we may always rename
the variables in a clause. By applying the substitution Θ = {α → a, β → b} we
obtain a propositional refutation R′ of {` P (a), Q(b), P (a) `, Q(b) `} of the
form

Q(b) `
` P (a), Q(b) P (a) `

` Q(b)

`

This proof R′ can be taken as a skeleton of a proof with only atomic cuts of
the end sequent S : P (a)∨Q(b),∀x.¬P (x) ` ∃z.Q(z). In this skeleton will fill in
the so-called proof projections; these are cut-free proofs of the end-sequent +
an instance of a characteristic clause. The idea of a proof projection is to skip
all inferences going into the cut; all inferences going into the end-sequent are
performed. Skipping binary rules going into the cut is achieved by weakening.
We consider the clause C5 : ` P (a), Q(b) and the corresponding projection π1
(built from the left part of the proof):

P (a) ` P (a)

P (a) ` P (a), Q(b)
w : r

Q(b) ` Q(b)

Q(b) ` P (a), Q(b)
w : r

P (a) ∨Q(b) ` P (a), Q(b)
∨ : l

P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z), P (a), Q(b)
w∗

From the right part of the proof and the instances P (a) ` and Q(b) ` of the
clauses C3, C4 we get (by instantiating α in ϕ by a and b) the projections π2 =

P (a) ` P (a)

P (a),¬P (a) ` ¬ : l

P (a),∀x.¬P (x) ` ∀ : l

P (a), P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z)
w∗

and π3 =
Q(b) ` Q(b)

Q(b),¬P (a) ` Q(b)
w : l

Q(b),¬P (a) ` ∃z.Q(z)
∃ : r

Q(b),∀x.¬P (x) ` ∃z.Q(z)
∀ : l

Q(b), P (a) ∨Q(b),∀x.¬P (x) ` ∃z.Q(z)
w : l

Let S ◦C be the sequent S merged with the sequent C. Then the projections
are cut-free proofs π1 of S◦ ` P (a), P (b), π2 of P (a)` ◦ S and π3 of Q(b)` ◦ S.
By replacing the clauses in R′ by the proofs π1, π2, π3 we get the proof:

(π3)
Q(b) ` ◦S

(π1)
` P (a), Q(b) ◦ S

(π2)
P (a) ` ◦S

` Q(b) ◦ S ◦ S cut

S ◦ S ◦ S cut

S
c∗

where c∗ denotes a sequence of contractions.
Note that the propositional resolution and atomic cut are the same rules;

indeed, in our formalism, propositional resolution is just a sub-calculus of LK.

The general definition of a characteristic clause set is the following:

Definition 7. We define clause sets Cν for every node of a prof tree:

– in the axioms S select the subsequents S′ consisting of atoms which are
ancestors of a cut, and construct {S′}.

– Assume that a clause set Cν is already constructed at premise node ν of a
unary inference yielding the conclusion ν′. Then Cν′ = Cν (unary inferences
do not change the clause set).

– Assume that Cν1 and Cν2 for the premises ν1, ν2 are already defined. We
distinguish two cases:

• The inferred formula in the consequent ν is an ancestor of a cut (or does
not exist as the rule itself is a cut). Then Cν = Cν1 ∪ Cν2 .

• The inferred formula in the consequent ν is an ancestor of the end-
sequent. Then Cν = Cν1 × Cν2 , where C × D = {C ◦D | C ∈ C, D ∈ D}.

If ν0 is the root of the proof ϕ then CL(ϕ) = Cν0 . CL(ϕ) is called the character-
istic clause set of ϕ

For a formal definition of the proof projections we refer to [9] and [10]. As
already illustrated in Example 4 a projection of a proof ϕ of S to a characteristic
clause C is a cut-free proof of the sequent S ◦ C with less inferences than ϕ.
After the construction of a resolution refutation R (in form of a proof tree) of
CL(ϕ), the global most general unifier ϑ of the resolutions is applied to R; the
resulting propositional resolution tree R′ is an LK-refutation tree of instances of
the characteristic clause set. R′ is turned into a proof of S with atomic cuts by
replacing the clauses by the proof projections. The final proof with atomic cuts

is called a ceres-normal form of ϕ. ceres, in its original version, requires proof
skolemization as a preprocessing; without skolemization of the proof projections
may violate eigenvariable conditions. However, the extension of ceres to higher-
order logic (see [19]) yields (quasi as a side effect) a version of first-order ceres
without skolemization, which is relatively complex (locally unsound violations
of eigenvariable conditions can be repaired globally by a proof transformation).

A comparison of ceres and the Gentzen method (and, more general, of ev-
ery cut-elimination method using the Gentzen proof-rewriting rules R) shows
that ceres is capable of producing much shorter proofs in the following an ex-
act asymptotic sense, that of nonelementary improvement. Nonelementary im-
provement (to be formally defined below) is a natural measure in comparing
cut-elimination methods as the complexity of cut-elimination itself is nonele-
mentary.

Definition 8. Let e : IN2 → IN be the following function

e(0,m) = m

e(n+ 1,m) = 2e(n,m).

A function f : INk → INm for k,m ≥ 1 is called elementary if there exists an
n ∈ IN and a Turing machine T computing f s.t. the computing time of T on
input (l1, . . . , lk) is less than or equal to e(n, |(l1, . . . , lk)|) where | | denotes the
maximum norm on INk (see also [13]).

The function s : IN→ IN is defined as s(n) = e(n, 1) for n ∈ IN.

A function which is not elementary is called nonelementary.

Remark 1. The notion of elementary function is robust under use of different
models of Turing machines. In fact, it does not matter whether we consider
machines with just one tape or several ones, or machines with unary or k-ary
alphabets for k > 1.

Note that the functions s and e are nonelementary. In general, any function
f which grows ”too fast”, i.e. for which there exists no number k s.t.

f(n) ≤ e(k, n),

is nonelementary.

Every exponential function f(x, y) of the form p(x)q(y) for polynomials p
and q is elementary. It is easy to prove that there exists a Turing machine T
computing f and number k s.t. the computing time of T on (x, y) is less than
e(k, |(x, y)|).

Definition 9. Let ζ : (xn)n∈IN and η : (yn)n∈IN two sequences of natural num-
bers. We say that ζ is elementary in η if there exists a number k s.t. for all
n ∈ IN: xn ≤ e(k, yn); otherwise ζ is called nonelementary in η.

For complexity analysis we use two measures:

– the symbolic complexity ‖ ‖ (the number of symbol occurrences), and
– l(ψ), the length of proof ψ (the number of inference nodes in the proof tree)

In [28] R. Statman proved that there exists a sequence of short proofs γn of
sequents Sn : Γ ` An s.t. the Herbrand complexity HC(Sn) of Sn (which is the
minimal symbol complexity of a Herbrand sequent of a cut-free proof of Sn)
is inherently nonelementary in l(γn) (it is also nonelementary in ‖γn‖); in fact
Statman did not explicitly address a specific formal calculus, leaving the for-
malization of the proof sequence to the reader. Independently V. Orevkov [25]
proved the nonelementary complexity of cut-elimination for function-free pred-
icate logic without equality. The proof sequences of Statman and Orevkov are
different, but both encode the principle of iterated exponentiation best described
by P. Pudlak in [26].

Theorem 3 (Statman, Orevkov). There exists a sequence Sn of sequents
with the following properties:

– There is a constant a s.t. for every n there exists an LK-proof ϕn of Sn with
‖ϕn‖ ≤ 2a∗n.

– For every n let c(n) = min{‖ψ‖ | ψ is a cut-free proof of Sn}. Then (cn)n∈IN
is not elementary in ‖ϕn‖.

Proof. In [28] and [25]. Note that the Herbrand complexity HC(Sn) of Sn defines
a lower bound on c(n); on the other hand, c(n) is at most exponential (and thus
elementary) in HC(Sn)). So it does not matter, whether we speak of the symbolic
lengths of shortest cut-free proofs or about Herbrand complexity.

Below we give a definition which gives a basis for comparing reductive cut-
elimination methods and ceres. Thereby, reductive cut-elimination is described
as sequence of proofs θ obtained via a proof reduction relation >x based on R,
starting with a proof ϕ and ending in a proof ϕ′ with at most atomic cuts. Such
a sequence θ is called an >x-cut-elimination sequence on ϕ.

Definition 10. Let >x be a proof reduction relation based on R. We say that
ceres NE-improves >x if there exists a sequence of proofs (ϕn)n∈IN s.t.

– there exists a sequence of resolution refutations (γn)n∈IN of the sequence of
the corresponding characteristic clause sets (CL(ϕn))n∈IN such that (‖γn‖)n∈IN
is elementary in (‖ϕn‖)n∈IN.

– For every n let g(n) = min{‖θ‖ | θ is an >x −cut-elimination sequence on ϕn}.
Then (g(n))n∈IN is nonelementary in ‖ϕn‖.

Similarly we define that >x NE-improves ceres if there exists a sequence of
proofs (ϕn)n∈IN s.t.

– there exists a sequence of >x-cut-elimination sequences (θn)n∈IN on (ϕn)n∈IN
s.t. (‖θn‖)n∈IN is elementary in (‖ϕn‖)n∈IN.

– For all n let h(n) = min{‖γ‖ | γ is a resolution refutation of CL(ϕn)}. Then
(h(n))n∈IN is nonelementary in (‖ϕn‖)n∈IN.

Remark 2. Comparing the size of the resolution refutations in ceres with the
total size of cut-elimination sequences is justified, as the resolution refutations of
characteristic clause sets are the main source of complexity in ceres; in fact, the
computation time of a sequence of ceres normal forms grows nonelementarily
in the size of the input proofs iff this holds for the computation of the resolution
refutations. So, for this asymptotic comparison, the computation of the charac-
teristic clause sets and the projections do not matter. Also mathematically the
core of the ceres-method is the resolution refutation of the characteristic clause
set.

Theorem 4. ceres NE-improves the Gentzen method of cut-elimination

Proof. We give a modified version of the proof in [10]. Let (ψn)n∈IN be a sequence
of proofs for ψn =

A ` A
A,∆n ` A

w : l

(γn)
∆n ` Dn

A,∆n ` Dn
w : l

A,∆n ` A ∧Dn
∧ : r

A ` A A ` A
A,A→ A ` A → : l

A ∧Dn, A→ A ` A ∧ : l

A,∆n, A→ A ` A cut

where γn is Statman’s worst-case sequence admitting only nonelementary cut-
elimination (no matter which method is applied); for details in the definition of
γn see [10]. In the method of Gentzen we always select an uppermost cut. As all
cuts in γn are above the cut with A ∧Dn, Gentzen’s method eliminates all the
cuts in γn before eliminating the cut with formula A ∧Dn; thus it constructs a
cut-free proof of ∆n ` Dn, which is of nonelementary size in ‖γn‖ and also in
‖ψn‖.

Let us turn to ceres on ψn. The characteristic clause sets are

CL(ψn) = {` A; A `} ∪ CL(γn).

Trivially every CL(ψn) has the resolution refutation ρ =

` A A `
`

which is of constant length and, by defining ρn = ρ for all n, we get ‖ρn‖ = 5.
Trivially (‖ρn‖)n∈IN is elementary in (‖ψn‖)n∈IN.

A similar result also holds for the Tait-method, another method of cut-
elimination based on R [10]. A nonelementary speed-up in the other direction is
impossible – for every method based on R.

Theorem 5. No reductive method based on R NE-improves ceres; in particular
the Gentzen method does not NE-improve ceres.

Proof. In [9] and [10].

The proof of this theorem is based on a result showing that reductive cut-
elimination has only redundant effects on the characteristic clause set. Sur-
prisingly, this redundancy is defined by subsumption, a common redundancy-
elimination principle of automated deduction (see e.g. [22]):

Theorem 6. Let ϕ be an LK-derivation and ψ be a normal form of ϕ under a
cut reduction relation >R based on R. Then CL(ϕ) ≤ss CL(ψ).

Proof. In [9] and [10].

The theorems above show that, from a complexity theoretic point of view,
ceres is superior to reductive methods of cut-elimination. It pays out that,
prior to cut-elimination, we analyze the proof and make use of the extracted
structure of characteristic clause set (which then is analyzed via a resolution
refutation). In contrast, the reductive methods are just local (they focus on
the upmost operators of cut-formulas) and cannot take into account the global
structure of proofs. ceres is much less redundant than the reductive methods,
but also ”less” confluent (note than also Gentzen’s method is not confluent). In
fact, ceres can produce much more different normal forms (and corresponding
Herbrand sequents) than reductive methods. Section 4 will illustrate that this
non-confluence can lead to interesting mathematical arguments extractable from
proofs.

ceres is basically a method for cut-elimination in classical logic. The gener-
alization to finitely valued logics is unproblematic [8]; there exists also a ceres-
method for Gödel logic [2] and for subclasses of intuitionistic logic [23]. An
advantage of reductive methods is their flexibility concerning structural restric-
tions; note that the reductive Gentzen method is virtually the same for classical
and for intuitionistic logic.

4 Cut-Elimination in Practice

Using cut-elimination in practice requires first to formalize a mathematical proof
as an LK-proof. In the formalization it is crucial to avoid unnecessary cuts, as
then the characteristic clause sets becomes too complex, which can make it un-
feasible for the theorem prover to refute them. This step is generally delicate as
there is nothing like a unique formal representation of an informal mathematical
proof. We address this problem once more in the application chapter where we
describe the analysis of Fürstenberg’s proof on the infinitude of primes. Reduc-
tive methods fail in practice because of the sheer size of the cut-free proofs and
the high number of reduction steps. The ceres method, which is asymptotically
superior as described in Section 3, is also much better in practice. This can be im-
mediately seen by investigating the characteristic clause set of a real probelm. A
typical characteristic clause set of an LK-proof with cuts contains numerous tau-
tologies and subsumed clauses, which remain undetected by reductive methods.
By ceres, however, which is based on resolution theorem proving, tautologies
and subsumed clauses can be eliminated without loss of completeness. In fact,

the proofs obtained by Gentzen’s method correspond to very redundant reso-
lution derivations using lots of tautologies and subsumed clauses. Though the
proofs found by ceres are generally much smaller and more compact, the size of
the ceres normal forms still remains a barrier: remember that our aim is to ana-
lyze proofs, the main goal being the interpretation of the obtained cut-free proof.
For huge ceres normal forms such an interpretation cannot be found by just
reading down the proof. Further compressions of information are required. The
ideal concept for compression is the Herbrand sequent of a proof constructible
from all proofs with only atomic cuts (see 1). Herbrand sequents abstract from
propositional reasoning and represent the first-order content of a proof in a very
compact way; the Herbrand sequent of a proof essentially describes the instan-
tiations of the formulas needed to prove the theorem. After this post-processing
proofs become much more readable and it is much easier to mine the very math-
ematical content of it. In some cases (see the application chapter) the refutation
of the characteristic clause alone contains the main mathematical information,
and it is not even necessary to produce an atomic cut normal form or even a
cut-free proof.

Gentzen’s LK is the original calculus for which cut-elimination was defined.
In formalizing mathematical proofs it turns out that LK (and also natural de-
duction) are not sufficiently close to real mathematical inference.

First of all, the calculus LK lacks a specific handling of equality to implement
equality reasoning equality axioms have to be added to the end-sequent. Due to
the importance of equality this defect was already apparent to proof theorists;
e.g. Takeuti [29] defined an extension of LK to a calculus LK=, adding atomic
equality axioms to the standard axioms of the form A ` A. The advantage of
LK= over LK is that no new axioms have to be added to the end-sequent; on
the other hand, in presence of the equality axioms, full cut-elimination is no
longer possible, but merely reduction to atomic cut. As we are not interested
to eliminate atomic cuts this causes no problems. But still LK= uses the same
rules as LK; in fact, in LK=, equality is axiomatized, i.e. additional atomic (non-
tautological) sequents are admitted as axioms. On the other hand, in formalizing
mathematical proofs, using equality as a rule is much more natural and concise.
For this reason we choose the most natural equality rule, which is strongly related
to paramodulation in automated theorem proving. Our approach differs from this
in [30], where a unary equality rule is used (which does not directly correspond
to paramodulation). In the equality rules below we mark the auxiliary formulas
by + and the principal formula by ∗.

Γ1 ` ∆1, s = t+ A[s]+Λ , Γ2 ` ∆2

A[t]∗Λ, Γ1, Γ2 ` ∆1,∆2
=: l1

Γ1 ` ∆1, t = s+ A[s]+Λ , Γ2 ` ∆2

A[t]∗Λ, Γ1, Γ2 ` ∆1,∆2
=: l2

for inference on the left and

Γ1 ` ∆1, s = t+ Γ2 ` ∆2, A[s]+Λ
Γ1, Γ2 ` ∆1,∆2, A[t]∗Λ

=: r1
Γ1 ` ∆1, t = s+ Γ2 ` ∆2, A[s]+Λ

Γ1, Γ2 ` ∆1,∆2, A[t]∗Λ
=: r2

on the right, where Λ denotes a set of positions of subterms where replacement
of s by t has to be performed. We call s = t the active equation of the rules.

Furthermore, as the only axiomatic extension, we need the set of reflexivity
axioms

REF: ` s = s

for all terms s.

Definition 11. The calculus LKe is LK extended by the axioms REF and by
the rules

=: l1, =: l2, =: r1 =: r2.

The calculus LKe contains additional rules and any cut-elimination method
has to be adapted accordingly. For ceres this adaption consists in the extension
of the clausal calculus from resolution to resolution + paramodulation. Note that
LKe, without use of logical rules, coincides just resolution and paramodulation
on clause logic – provided most general unification has already been carried
out. The definitions of characteristic clause set and proof-projections remain
the same, only we have to handle the equality rules as binary rules going into
the end-sequent; for details see [10]. In contrast, the reduction rules of Gentzen
cannot be adapted in an easy way. If we want to use reductive cut-elimination
methods we must transform the whole proof prior to cut-elimination: all equality
rules have to be shifted upwards in the proof s.t. they apply to atoms only. After
this transformation the Gentzen method can be applied to the part of the proof
below the equality rules to get a proof with only atomic cuts.

Also Herbrand sequent extraction can be generalized to LKe-proofs. We
obtain a more general version of the midsequent theorem:

Theorem 7 (mid-sequent theorem for LKe). Let ϕ be an LKe-proof of a
Σ1-sequent S with at most atomic cuts s.t. all equality rules in ϕ are only applied
to atoms. Then ϕ can be transformed into a proof ϕ′ with the same number of
logical inferences, equality rules and atomic cuts and with the following property:
ϕ′ contains the derivation of a sequent S′ (the mid-sequent), s.t. all propositional
inferences, atomic cuts and equational rules in ϕ are above S′, and below S′ there
are only unary structural rules and quantifier-rules from ϕ.

Proof. The proof transformation is essentially the same as in Theorem 2 as
(still) the formulas in the end-sequent are prenex and there are no equality rules
applied to quantified formulas.

Remark 3. Note that the sequents S′ obtained in Theorem 7 are no longer valid
in general, but just E-valid, i.e. valid in equality-interpretations (the predicate
symbol = is interpreted as equality over a domain). In fact, the equality rules of
LKe are only valid w.r.t. equality-interpretations.

A further generalization is useful in practice. Instead of just axioms of the
form A ` A we may also allow equational axioms of the form ` s = t. Then
the set of axioms is still consistent and its models are equational theories. The
method ceres remains exactly the same as it can be applied to any proof
with only atomic axioms. Moreover, for facilitating the specification of proofs,

definition-rules can be added to the calculus; the LK-version using the equality
rules defined above and the definition rules is called LKDe (for details see [3]).
Characteristic clause sets and their refutations are not affected by the extension
by definitions.

The equational ceres-method based on LKDe has been applied to analyze
several (rather simple) mathematical proofs fully automatic. We mention the
analysis of the tape proof [3] and of the lattice proof [20]; in the latter one
a Herbrand sequent was extracted and analyzed. For the tape proof different
ceres-normal forms could be obtained (based on different refutations of the
characteristic clause sets); their mathematical interpretations lead to different
proofs in the sense, that the mathematical arguments were different (not just the
form of the normal forms). In case of the lattice proof an equational Herbrand
sequent was extracted, which clearly illustrated the mathematical argument be-
hind the ceres-normal form. These applications illustrate that ceres is a suit-
able tool for mining proofs, i.e. to extract ”hidden” mathematical information
from proofs.

5 An Application of Cut-Elimination

We apply ceres to Fürstenberg’s proof of the existence of infinitely many primes.
The arguments of this proof are of topological nature, which form the syn-
thetic notions of this synthetic proof. A natural formalization of this argument
in second-order arithmetic is constructed and then translated to many-sorted
first-order logic. In order to avoid induction axioms, the proof is eventually for-
malized as a scheme representing an infinite sequence of ordinary first-order
proofs, demonstrating the existence of more and more primes. We show that the
analytic proof schema corresponding to Euclid’s proof belongs to the solution
space of the schema of topological proofs.

In 1955 the renowned mathematician H. Fürstenberg published a proof of the
infinity of primes by topological means [15] (see also [1]): He proved the infinity
of primes using a topology induced by arithmetic progressions over the integers.

We give a proof with a topology over the natural numbers in order to have
a simpler formulation of the proof later on. We start with the definition of a
topological space:

Definition 12 (Topological Space). A topological space is a set X together
with a collection T of subsets of X satisfying the following axioms:

1. The empty set and X are in T .

2. The union of any collection of sets in T is also in T .

3. The intersection of any pair of sets in T is also in T .

The collection T is called a topology on X. The sets in T are the open sets,
and their complements in X are the closed sets.

The arithmetic progressions can be used as a basis for a topology over the
natural numbers. We will denote an arithmetic progression by

ν(a, b) = {a+ bn | n ∈ IN}

for a ∈ IN and b ∈ IN \ {0}.

Proposition 1. By defining a set A ⊆ IN as open, when A is either empty or
for each x ∈ A exists an a ∈ IN \ {0} such that ν(x, a) ⊆ A, one obtains a
topology over IN.

Proof. We check definition 12:

1. The empty set and IN are open. Trivial.
2. The union of a collection of open sets is also open. Trivial.
3. The intersection of two open sets is also open.

Let A and B two open sets. If x ∈ A∩B, then there exist a, b > 0 such that
ν(x, a) ⊆ A and ν(x, b) ⊆ B holds. Let c be the least common multiple of a
and b, then ν(x, c) ⊆ ν(x, a) and ν(x, c) ⊆ ν(x, b), and hence ν(x, c) ⊆ A∩B.

A nice property of this topology is that every arithmetic progression starting
at 0 is not only open but closed as well. Indeed this holds for every progression
ν(a, b) where a < b, but this is not needed for the theorem.

Lemma 1. Every arithmetic progression starting at 0 is closed.

Proof. Let be A = ν(0, b) an arithmetic progression. Then the complement of A
is a union of arithmetic progressions:

Ā =

b−1⋃
i=1

ν(i, b).

The sets ν(i, b) are open, and the union of any collection of open sets is open;
therefore Ā is open, hence A is closed.

Theorem 8. There are infinitely many primes.

Proof. Denote with P the set of all primes and assume P is finite. Let X =⋃
{ν(0, p) | p ∈ P}. By Lemma 1 every ν(0, p) for p ∈ P is closed, so X is a finite

union of closed sets and therefore closed as well. As every number different from
1 has a prime divisor we get X̄ = {1}. Being a complement of a closed set, X̄
is open. But {1} is neither empty nor does it contain an arithmetic progression,
and so {1} is not open. Contradiction! We conclude that P must be infinite.

The automated processing of Fürstenberg’s proof requires a nontrivial logical
preprocessing by humans. The first important step consists in the right choice of
the logical language. As Fürstenberg’s proof contains a topology defined over nat-
ural numbers and topological lemmas (with quantification over set-variables), an
adequate candidate is second-order arithmetic. The formalization in [4] started

with a formalization of the proof in second-order arithmetic. In a second step this
specification was translated into a scheme of sorted first-order definitions and
proofs. For the details we refer to [4], but we present the main steps and formal
definitions here. We start with the formalization in second-order arithmetic:

(a) m ∈ ν(k, l) ≡ ∃n(m = k + n ∗ l).
(b) DIV(l, k) ≡ ∃m.l ∗m = k.
(c) PRIME(k) ≡ 1 < k ∧ ∀l(DIV(l, k)→ (l = 1 ∨ l = k)).
(d) X ⊆ Y ≡ ∀n(n ∈ X → n ∈ Y), and X = Y ≡ X ⊆ Y ∧ Y ⊆ X.
(e) n ∈ X ≡ n /∈ X.
(f) A function p : IN → IN which enumerates primes is one that fulfills the

property:
∀i∀k(p(i) = k → PRIME(k)).

For the definition of p the comprehension principle is needed; for information
about function definitions in second-order arithmetic see [27].

(g) n ∈ S[l] ≡ ∃m(m ≤ l ∧ n ∈ ν(0, p(m))).
S[l] describes the set of all elements n which occur in some ν(0, k), where k
is one of the first l + 1 primes enumerated by p. In mathematical notation
we get

S[l] =

l⋃
m=0

ν(0, p(m)).

(h) F[l] ≡ ∀k(PRIME(k)↔ ∃m(m ≤ l ∧ k = p(m))).
F[l] is a formula which asserts that there are only l + 1 primes, namely
{p(0), . . . , p(l)}.

(i) O(X) ≡ ∀m(m ∈ X → ∃l ν(m, l + 1) ⊆ X).
(j) C(X) ≡ O(X).
(k) ∞(X) ≡ ∀k∃l k + l + 1 ∈ X.

Let (*) be the assumption that all primes occur in the setM : {p(0), . . . , p(l)}.
The first lemma in Fürstenberg’s proof states that, under the assumption (*),
every natural number different from 1 occurs in some ν(0,m) for m ∈ M . The
corresponding formula is

(I) ∀l(F[l] → S[l] = {1}).

The second lemma states that, under the assumption (*), the set S[l] is closed.
The formula expressing this lemma is

(II) ∀l(F[l]→ C(S[l])).

Proofs of (I) and (II) can easily combined to a proof of

(III) ∀l(F[l]→ C({1})).

The proofs of (II) and (III) in second order arithmetic require induction. By (j)
it is straightforward to prove

(IV) ∀l(F[l]→ O({1})).

Another main lemma of the proof states that nonempty open sets are infinite:

(V) ∀X(O(X) ∧X 6= ∅ → ∞(X)).

While (I), (II), (III) and (IV) can be directly translated to first order logic (via
the definitions), (V) is genuinely second order. Using (V) we show that ∞({1})
holds giving a contradiction to ¬∞({1}), which is easily derivable in second
order arithmetic.

To formulate Fürstenberg’s proof in LKDe it is necessary to schematize it in
order to avoid induction. In particular, induction is needed to prove the lemmas
(II) and (III) above. The tool hlk [21] allows to define an infinite sequence of
LKDe-proofs by specifying a proof scheme. The k-th proof can then be gener-
ated automatically from the scheme for any k.

The k-th proof shows that there cannot be ≤ k + 1 prime numbers.
To compile the second-order formulation to first order we work in a two-

sorted logic containing sorts for 1. the natural numbers (denoted by k, l,m, n, . . .
as before) and 2. sets of natural numbers (denoted by x, y, . . .). Addition (+),
multiplication (∗) and the less-than relation (<) in the natural numbers are ax-
iomatized. The background theory is purely universal and thus can be expressed
as a set of clauses AX; It contains 34 clauses, among them associativity, commu-
tativity and distributivity laws plus some derived laws like e.g. the cancellation
law (k + l = m + l ` k = m). For the full list of axioms see the documenta-
tion on the web5. All of these axiom clauses are valid axiom sequents for the
LKDe-proof.

Some of the definitions (a) to (k) given above can be taken over without
change. This holds for (a), (b) and (c). For the others we get:

(d’) x ⊆ y ≡ ∀n(n ∈ x → n ∈ y), and x = y ≡ x ⊆ y ∧ y ⊆ x. Here we only
replaced the set variables by variables of the sort “set of natural numbers”.

(e’) n ∈ x ≡ n /∈ x.
(f ’) Instead of p we introduce a finite set P[k] defined by

P[k] ≡ {p0} ∪ · · · ∪ {pk}.

where the pi are constant symbols denoting primes. Note that the k appear-
ing in the definition is a metavariable, not an object variable as l in the
definition of F[l] and S[l].

(g’) S[k] ≡ ν(0, p0) ∪ · · · ∪ ν(0, pk). Note that, in place of the object variable l
in the definition (g), we have the metavariable k of the scheme.

(h’) F[k] ≡ ∀m(PRIME(m)↔ m ∈ P[k]).
(i’) O(x) ≡ ∀m(m ∈ x→ ∃l ν(m, l + 1) ⊆ x).
(j’) C(x) ≡ O(x).
(k’) ∞(x) ≡ ∀k∃l k + l + 1 ∈ x.

In order to avoid induction we also introduce three axioms (which can be
proven in Peano arithmetic): (1) Every number greater than 0 has a predecessor,

5 http://www.logic.at/ceres/examples/prime.php

(2) every number is in a remainder class modulo l and (3) every number has a
prime divisor. These axioms will be carried down to the antecedent of the end
sequent of the LKDe-proof.

(1) PRE ≡ ∀k(0 < k → ∃m k = m+ 1)
(2) REM ≡ ∀l(0 < l→ ∀m∃k(k < l ∧m ∈ ν(k, l)))
(3) PRIME-DIV ≡ ∀m(m 6= 1→ ∃l(PRIME(l) ∧DIV(l,m)))

We now formulate a proof ϕ1(k) which proves the translation of (IV) above:

ϕ1(k) :=

ψ1(k)
.
.
.
.

F[k],PRIME-DIV ` S[k] = {1}

ψ2(k)
.
.
.
.

F[k],PRE,REM ` C(S[k])

F[k], Γ ` C({1})
=: r

.

.

.

.

C({1}) ` O({1})
F[k], Γ ` O({1})

cut

The proof ψ1(k) shows that if there are ≤ k + 1 primes, then by the prime
divisor axiom PRIME-DIV, the complement of all multiples of these primes is
{1}, and the proof ψ2(k) demonstrates (under the assumption of ≤ k+ 1 primes
and the remainder axiom REM) that the set of these multiples is closed. With
the help of these lemmas we can show that the set {1} is open — if there are
≤ k + 1 primes.

The proof ϕ2 (which does not depend on k) shows that every (non-empty)
open set is infinite. This lemma yields that, under the assumption of the set of
primes being finite, the set {1} must be either empty or infinite; of course neither
is the case, which is easily shown. Hence we get our end-sequent, stating that
there cannot be ≤ k + 1 primes:

ϕ(k) :=

.

.

.

.
` {1} 6= ∅

ϕ1(k)
.
.
.
.

F[k], Γ ` O({1})

ϕ2.
.
.
.

` ∀x((O(x) ∧ x 6= ∅)→∞(x))

.

.

.

.. . .

O({1}), {1} 6= ∅ ` ∞({1})
cut

{1} 6= ∅,F[k], Γ ` ∞({1})
cut

F[k], Γ ` ∞({1})
cut

.

.

.

.
∞({1}) `

F[k], Γ `
cut

PRIME-DIV,PRE,REM︸ ︷︷ ︸
Γ

` ¬F[k]
¬ : r

The proof-schema ϕk above was then subjected to skolemization and the
characteristic clause sets CL(ϕk) were computed for a large interval [0, k] (for
k > 10). The clause sets were surprisingly simple and could be strongly reduced
in size by subsumption and tautology-deletion. The next (human-based) step

consisted in the generalization of the clause pattern. The resulting sequence of
clause sets (after redundancy-elimination) was

CLr := Cr ∪AX

where

Cr := A ∪
r⋃
i=0

Bi ∪ {Cr}

for
Cr := ` m0 = 1, s1(m0) = p0, . . . , s1(m0) = pr,

Bi :=

0 < pi ` pi = s7(pi) + 1

0 < pi ` t0 = s5(pi, t0) + (s6(pi, t0) ∗ pi)
0 < pi, s5(pi, t0) = 0 ` t0 = 0 + (s6(pi, t0) ∗ pi)
0 < pi ` s5(pi, t0) < pi

t0 = pi,m0 ∗ n0 = t0 ` m0 = 1,m0 = t0

t0 = pi ` 1 < t0

t0 = pi, 1 = n0 ∗ t0 `

and A :=

` m0 = 1, s1(m0) ∗ s4(m0) = m0

` m0 + (((k ∗ (l0 + (1 + 1))) + (l0 ∗ (m0 + 1))) + 1) =

k + ((k + (m0 + 1)) ∗ (l0 + 1))

m0 = k0 + (r0 ∗ ((t0 + 1) ∗ (t1 + 1)))

` m0 = k0 + ((r0 ∗ (t0 + 1)) ∗ (t1 + 1))

m0 = k0 + (r0 ∗ ((t0 + 1) ∗ (t1 + 1)))

` m0 = k0 + ((r0 ∗ (t1 + 1)) ∗ (t0 + 1))

` (((t0 + 1) ∗ t1) + t0) + 1 = (t0 + 1) ∗ (t1 + 1)

For this structurally simple sequence of characteristic clause sets a schema of
resolution refutations was defined. In this refutation schema the crucial (schematic)
clause

Er : 1 < tr `

for tr = p0 ∗ . . . ∗ pr + 1 was derivable.

By several steps of paramodulations Er was transformed into the form E′r : 1 <
(sr + 1) + 1 ` for some term sr. From axiom clauses one could derive the clause
G : ` 1 < (w+1)+1 (w being a variable).G and E′r finally resolve to `, the empty
clause. The term tr obtained in the derivation by resolution and paramodulation

reflects exactly the construction in Euclid’s proof of the infinitude of primes. We
see that the elimination of topological arguments (performed by resolution and
paramodulation in ceres) reveals the ”true” character of Fürstenberg’s proof,
in the sense that it yield a construction method for primes, while the original
proof does not.

6 Open Problems

As most mathematical proofs about numbers or discrete structures use induc-
tive arguments, it is desirable to apply cut-elimination methods also to this
these proofs. However, cut-elimination in presence of an induction rule is impos-
sible in general [29]. On the other hand, a universal sequent S : Γ ` ∀x.A(x),
where x is supposed to range over the natural numbers, can be replaced by a
sequence Sn : A(n̄)n∈IN for numerals n̄. If instead of proving S by a single proof
ϕ (using induction) we consider a proof sequence ϕn of Sn (like in the analysis
of the Fürstenberg proof) we can use cut-elimination methods like ceres on
the sequence. But that makes sense only if we succeed to describe the resolution
refutations on the sequence of ccs’s uniformly and (at least) obtain a uniform de-
scription of the sequence of corresponding Herbrand sequents. A general method
of this type capable of handling Peano arithmetic is intrinsically very complex
(in fact cut-elimination of this type proves the consistency of Peano arithmetic)
and far outside of any means of automation. A partial solution of this problem
for simple kind of inductions can be found in [14]. The elimination of lemmas in
inductive proofs remains one of the major challenges of proof analysis.

7 Conclusion

We have presented a method of analyzing proofs via cut-elimination by resolu-
tion. As the core of the method consists of a theorem proving problem (the reso-
lution refutation of a characteristic clause set) the real efficiency of the method is
closely tied to that of automated theorem provers. Not only the problem of find-
ing a proof of a theorem, but also the problem of cut-elimination of proofs, i.e.
finding proofs of a specific form from existing proofs of a theorem can be a hard
challenging problem. In theorem proving the main focus is on the production of
some proof of a theorem (in a frequently unreadable form), less emphasis is laid
on post-processing of the proof output and its interpretations by humans. Proofs
like that of Fürstenberg cannot be obtained by automated theorem provers (due
to the weak lemma structure of resolution and paramodulation in clause logic).
We claim that the investigation of the relation between complex abstract proofs
(using complex lemmas) and elementary proofs of a mathematical theorem may
lead to deep insights into a mathematical theory, far beyond the knowledge that
the theorem simply holds.

References

1. M. Aigner, G. M. Ziegler. Proofs from THE BOOK. Springer, 1998.

2. M. Baaz, A. Ciabattoni, C.G. Fermüller: Cut Elimination for First Order Gödel
Logic by Hyperclause Resolution. Proc. of LPAR’2008. LNCS 5330, 451–466, 2008.

3. M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Proof Transformation by
CERES. In: J.M. Borwein, W.M. Farmer, (eds.) MKM 2006, LNCS (LNAI), vol.
4108, pp. 82?93. Springer, Heidelberg, 2006.

4. M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: CERES: An Analysis of
Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer Science, 403
(2–3), pp. 160-175, 2008.

5. M. Baaz, S. Hetzl, D. Weller: On the complexity of proof skolemization Journal
of Symbolic Logic, 77(2), pp. 669-686, 2012.

6. M. Baaz, A. Leitsch: On skolemization and proof complexity. Fundamenta Infor-
maticae, 20/4, pp. 353-379, 1994.

7. M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolution.
Journal of Symbolic Computation, 29, pp. 149-176, 2000.

8. M. Baaz, A. Leitsch: CERES in Many-Valued Logics. Proceedings of LPAR’2005,
LNAI 3452, 1–20, 2005.

9. M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination. Journal of
Symbolic Computation, 41, pp. 381–410, 2006.

10. M. Baaz, A. Leitsch: Methods of Cut-Elimination. Trends in Logic 34. Springer,
2011.

11. U. Berger, W. Buchholz, H. Schwichtenberg: Refined Program Extraction from
Classical Proofs. Annals of Pure and Applied Logic, 114(1-3), pp. 3–25, 2002.

12. U. Berger, S. Berghofer, P. Letouzey, H. Schwichtenberg: Program Extraction from
Normalization Proofs. Studia Logica, 82(1), pp. 25–49, 2006.

13. W.S. Brianerd, L.H. Landweber: Theory of Computation. John Wiley & Sons,
1974.

14. C. Dunchev, A. Leitsch, M. Rukhaia, D. Weller: CERES for first-order schemata.
CoRR abs/1303.4257 (2013).

15. H. Fürstenberg: On the infinitude of primes. American Mathematical Monthly 62,
p. 353, 1955.

16. G. Gentzen: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, pp. 405–431, 1934–1935.

17. J.Y. Girard: Proof Theory and Logical Complexity. in Studies in Proof Theory,
Bibliopolis, Napoli, 1987.

18. K. Gödel: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12, pp. 280–287, 1958.

19. S. Hetzl, A. Leitsch, D. Weller CERES in Higher-order Logic Annals of Pure and
Applied Logic 162(12), pp. 1001–1034, 2011

20. S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo: Herbrand Sequent Extrac-
tion. AISC/Calculemus/MKM 2008, LNAI 5144, pp. 462-477, 2008.

21. S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo: Proof Analysis with HLK,
CERES and ProofTool: Current Status and Future Directions. Proceedings of the
CICM Workshop on Empirically Successful Automated Reasoning in Mathematics,
CEUR Workshop Proceedings Vol-378 (2008), ISSN 1613-0073, 2008.

22. A. Leitsch: The Resolution Calculus. EATCS Texts in Theoretical Computer
Science, Springer, Berlin, 1997.

23. A. Leitsch, G. Reis, B. Woltzenlogel Paleo: Towards CERes in intuitionistic logic.
CSL 2012, pp. 485-499, 2012.

24. D. Miller: A Compact Representation of Proofs. Studia Logica 46/4, pp. 347–370,
1987.

25. V. P. Orevkov: Lower Bounds for Increasing Complexity of Derivations after Cut
Elimination. J. Soviet Mathematics, pp. 2337–2350, 1982.

26. P. Pudlak: The lengths of proofs. In: Handbook of Proof Theory, S.R. Buss (ed),
Elsevier 1998.

27. S.G. Simpson: Subsystems of Second Order Arithmetic. Springer, 1999.
28. R. Statman: Lower bounds on Herbrand’s theorem. Proc. of the Amer. Math. Soc.

75, pp. 104–107, 1979.
29. G. Takeuti: Proof Theory. North-Holland, Amsterdam, 2nd edition, 1987.
30. A. Degtyarev and A. Voronkov: Equality Reasoning in Sequent-Based Calculi.

Handbook of Automated Reasoning vol. I, ed. by A. Robinson and A. Voronkov,
chapter 10, pp. 611-706, Elsevier Science, 2001.

31. B. Woltzenlogel Paleo: Herbrand Sequent Extraction. VDM Verlag Dr.Müller e.K.
(February 7, 2008), ISBN-10: 3836461528.

