
EasyChair Preprint

№ 998

Implementing software defined noise generators

Robert Mingesz and Dénes Faragó

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 14, 2019

Implementing software defined noise generators

Robert Mingesz*

Department of Technical Informatics, Interdisciplinary
Excellence Centre, University of Szeged

Szeged, H-6720, Hungary
mingesz@inf.u-szeged.hu

Dénes Faragó

Department of Technical Informatics, Interdisciplinary
Excellence Centre, University of Szeged

Szeged, H-6720, Hungary
dfarago@inf.u-szeged.hu

Abstract— In the last few decades, the research field related

to noise and fluctuations became more and more important and

the usage of the results is increasingly promising. In addition to

simulations, testing and validation of implemented systems

should also be performed on real physical systems. These

measurements require noise generators with specific

distribution and spectral properties. It is obvious, that the most

convenient method to generate such noise is by using digital

signal processing. The randomness of these sources is provided

by pseudo-random number generators, generators that have

limited cycle length/time. Of course, signal generators capable

of noise generation are commercially accessible, however, these

solutions have limitations. In our previous publication, we

presented a Digital Signal Processor based solution capable of

generating 1/fα shaped noises. As a result of advances in

technology these days there are many user-friendly and high-

performance solutions that provide us new possibilities in noise

generation. To ensure proper period length, first, we

implemented different pseudo-random number generators on

the FPGA based hardware. Then, we adapted and extended our

algorithm to the new hardware, as a result, we could

significantly increase the sampling frequency, the available

bandwidth, the D/A resolution and the number of channels. The

noise generator is developed in the LabVIEW programming

environment and can run on any FPGA based NI platforms, but

it can be ported to any other FPGA based hardware. The new

instrument uses a flexible filter arrangement to combine filters

of different frequencies to produce more generic spectra up to

five decades. The implemented solution is open-source, thus,

anyone can use, customize or make further developments of the

design for their personal needs.

Keywords—1/f noise, noise generator, FPGA, DSP, digital

filter, software defined instrument

I. INTRODUCTION

There are several research fields where noise plays a
prominent role. For example, in the case of Fluctuation
enhanced sensing (FES), the noise from the sensors carries
substantial information about the gases or other substances to
be detected [1], in the case of Kirchhoff-Law-Johnson-Noise
(KLJN) secure key distribution, noise plays an essential role
in encrypted communication [2]. In order to test such systems
and to develop the necessary electronic equipment, there is a
need for reliable high-performance noise generators that
produce an analog signal with appropriate parameters.

Several methods exist for implementing noise generators.
If white noise production is required, a combination of Zener
or noise-diodes and amplifiers can comfortably deliver
superior signal quality up to high frequencies. To produce 1/fα
noises, there are numerous, even completely analog solutions.
However, this approach has drawbacks, therefore, in most
cases, a mixed-signal solution is chosen where an algorithm

produces the desired noise, which is then converted to the
desired signal source by digital to analog (D/A) converters.
Many of noise generators based on these solutions are
commercially available, but most of them have several
limitations.

Our approach was to find a solution, that is based on off-
the-shelf hardware, thus it can be easily reproduced. Our
experiments required an uninterrupted, continuous noise
source, with substantially long cycle length. The required
sampling frequency was over 100 kHz, up to 1 MHz, and the
spectral distribution of the noise had to be more general than
a 1/fα noise.

II. CYCLE LENGTH AND QUALITY OF PSEUDO-RANDOM-

NUMBER GENERATORS

True random generators are ideal in many ways to provide
sources for random noise generation. However, realizing true
random generators is a complicated and expensive task. In
addition, noises generated using true random sources cannot
be reproduced and the same experiment cannot be performed
again. In contrast, algorithm-based pseudorandom number
generators can be implemented easily using a small amount of
resources. Moreover, the same random sequence can be
reproduced by resetting the algorithm with the same beginning
state (seed). Compared to the true random generators, their
disadvantage lies in their deterministic nature and the finite
length of the produced number series.

In today's world, long-term measurements are necessary in
numerous cases where a short cycle length can cause
unpleasant problems. Commercially available arbitrary
waveform generators (AWG) can generate arbitrary signals,
but they generate noise with limited and often short cycle
length due to finite memory or the weakness of the random
generator contained therein.

Colored noise with arbitrary spectral shape can be
produced using FFTs. However, the produced signal is
definitely finite, and seriously limited by the available
memory, currently, it is impractical to create continuous noise
with more than 232 points.

Currently, there are many high-quality pseudorandom
number generators that can produce long enough cycle lengths
that are suitable for most of the applications. If even longer
sequences are required, then different random generators can
be combined. This method not only increases the cycle length
but also increases the independence of the elements in the
sequence of numbers, thereby improving the uniformity and
quality [3].

While the cycle length of generators is given in samples,
in real measurements it is important to compare them to
applicable measurement times. A simple comparison is done
in TABLE I.

This research was supported by the Hungarian Government and the
European Regional Development Fund under the grant number GINOP-

2.3.2-15-2016-00037 (“Internet of Living Things”)

*Corresponding Author

TABLE I. COMPARISON OF CYCLE LENGTHS WITH APPLICABLE

MEASUREMENT TIMES

Cycle length
Sampling frequency

100 kHz 1 MHz 10 MHz

65536 points

(16 bit pseudorandom

generator)

0.65 s 0.065 s 6.5 ms

8 million points

(typical AWG)
80 s 8 s 0.8 s

128 million points
(AWG with extended

memory)

21 min 2 min 12.8 s

4 billion points (232)
Approximate maximum size

of FFT based noise generator

12 hours 1.2 hours 7.2 min

264 points
64 bit LCG or Xorshift

pseudorandom number

generators

5.9E+6

years

5.9E+5

years

5850

years

2128 points
128 bit Xorshift generators

1.1E+26
years

1.1E+25
years

1.1E+24
years

As shown in TABLE I. short cycle noise generators will
repeat the generated signal in a very short period of time,
which is unacceptable for most of the measurements. It will
be even more problematic if we use more than one signal
source for our measurement at the same time, the result of the
measurements can be simply incorrect. Using 64-bit or 128-
bit generators significantly decreases the chance of such
artifacts.

The quality of the random generators, the randomness of
the generated number series, may be critical in most cases,
especially for cryptographic applications. Quality of
generators is usually verified by statistical tests. One of the
most widespread statistical test collection is the Diehard tests
[4][4], with an open source implementation of Dieharder [5].
We tested our implementations using this set of tests, the
results are shown in TABLE II.

III. REAL-TIME NOISE GENERATION HARDWARE

Since the cycle length of FFT based noise generators are
severely limited for most of the desired applications, the only
possibility is to create a continuous noise stream in real time.
For this, we first generate a source of random numbers, then
we form the spectral shape using a filter bank, then we apply
a proper D/A conversion.

While a personal computer has enough processing power
to perform this task, since it is not designed to be a real-time
system, it is not suitable for continuous noise generation.
Additionally, the bandwidth limit between the PC and the D/A
card can also cause problems. For this reason, we are looking
for devices, that are designed to be real-time systems. The
most suitable solutions:

Microcontrollers: currently available 32-bit ARM Cortex
M4 and M7 microcontrollers can easily handle 32-bit floating-
point numbers, have clock frequencies over 200 MHz, while
they also have multiple built-in D/A converters with sampling
frequencies over 1 MHz.

Digital signal processors (DSP): these devices are
especially designed for real-time signal processing; our
previous noise generator was based on an Analog Devices
DSP [6]. These days, more and more DSP functionalities are
built in high-performance microcontrollers or FPGAs.

Field-programmable gate arrays (FPGA): these devices
have a large number of logic gates suitable for implementing
high-speed digital devices. Modern FPGAs also contain a high
number of DPS slices. For this reason, it is especially suitable
to generate multiple streams of real-time noise data.

Our goal was to find an off-the-shelf solution, that can
provide enough processing power at an affordable cost. We
implemented our solution based on a National Instrument
FPGA hardware (NI USB7856R) [7]. The hardware can be
conveniently programmed in LabVIEW programming
environment, the performance of the hardware
implementation can be easily compared to simulation and
theoretical results.

The NI USB7856R is a USB based instrument containing
a Kintex-7 160T FPGA. It has eight 16-bit D/A converters,
capable of sampling frequencies up to 1 MHz. The FPGA has
101,400 LUTs and 600 DSP slices. The maximum clock
frequency is 200 MHz, in our application we used a 40 MHz
clock. Our solution is compatible with other types of NI
multifunction reconfigurable I/O devices (USB, PCIe, and
PXIe based) and cRIO devices.

Fig. 1. Block diagram of the noise generator hardware

IV. IMPLEMENTING RANDOM NUMBER GENERATORS

There are many well-known pseudo-random generators,
we selected the following ones to be implemented on our
hardware: Xorshift [8], Linear congruential generators (LCG)
[9], linear feedback shift registers [10], and Mersenne Twister
[11]. We implemented these generators as LabVIEW code,
this solution provides a handful of possibilities of using the
generators in different, LabVIEW compatible FPGA based
platforms, as well as in other real-time systems or on
traditional personal computers.

Most of the random generators can be implemented in
different word lengths resulting in different cycle lengths. The
generators were tested using the previously mentioned
Dieharder tests, the results, as well as the resource usages are
summarized in TABLE II.

The LCGs, while widely popular, are not the best
performing generators. Their bad quality is mostly caused by
their hyperstructure as well as the shorter cycle length of their
least significant bits [9]. However, in our application, since we
are using only the most significant bits, this may not cause
significant problems.

The linear feedback shift register may seem a good
solution considering its cycle length and resource usage;
however, it requires multiple cycles in order to generate a
single random number.

The Xorshift generator (Fig. 2) is generally a high-quality
generator with limited resource usage.

Implementing the Mersenne Twister is not so
straightforward; at the same time, it passes all the tests and has
an astonishingly long cycle length. A long initialization

Kintex-7

FPGA

D/A

D/A

USB

NI USB-7856R

...... ...
User

Interface

sequence is also needed, but since it has to be done only once,
it can be implemented on the host computer sparing a lot of
valuable FPGA resources.

Note: none of the implemented random generators are
cryptographically secure, for this reason, they should not be
used in live cryptographic applications.

TABLE II. QUALITY, CYCLE LENGTH AND RESOURCE REQUIREMENTS

OF IMPLEMENTED PSEUDORANDOM NUMBER GENERATORS

Pseudorandom

Number

Generator

Quality and Cycle Length

Passed

Dieharder

Tests

Maximum

Cycle

Length

FPGA resource

utilization

Linear

congruential
generator

3/17 264
Slices: 812

DSP48s: 10

Linear feedback

shift register
12/17 2160-1

Slices: 716

DSP48s: 0

Xorshift 15/17 2128-1
Slices: 737
DSP48s: 0

Mersenne

Twister
17/17 219937-1

Slices: 566

DSP48s: 0

Fig. 2. Labview implementation of the 64bit Xorshift pseudoranom number

generator.

All the implemented random generators produce a
uniformly distributed number. When using noises, we
generally need a Gaussian-distributed noise. To achieve this
distribution, we can use different algorithms. One of them is
the well-known Box-Muller transform. The main drawback of
this method is that it requires the usage of floating-point
arithmetic and several functions that are hard to be
implemented on FPGAs. Another method to approximate
Gaussian distribution is to sum a number of uniformly
distributed noises. In our implementation, we summed 12
random numbers to produce a single normally-distributed
number.

V. ACHIEVING THE DESIRED SPECTRAL SHAPE

In the previous implementation, we used first-order low-
pass filters to generate 1/fα noises. However, to perform a wide
variety of experiments, it is indispensable to generate more
generic spectra. Using strictly low-pass filters limits the
possibilities, therefore we implemented generic components
that can serve as high-pass, low-pass or band-pass filters.
These are composed of two traditional IIR filters that are
connected in series. The desired spectral shape can be
achieved by applying a bank of these filters on the Gaussian
random number source, as visualized in Fig. 3.

These filters can be easily parameterized by their cut-off
frequencies and amplitudes. In order to achieve the desired
spectrum, these parameters must be optimized. In our setup,
the cut-off frequencies are first equally distributed over the
relevant frequency band. Then we can select which type of
filters do we want to use: low-pass, high-pass or band-pass. In
the next step, we provide a set of starting values for filter
amplitudes. The LabVIEW‘s built-in differential evolution-
based global optimization function [12] can be used to

optimize only the filter amplitudes or both the amplitudes and
cut-off frequencies.

The solution uses only the analytically calculated transfer
functions. The goodness function of the fit is the absolute
difference between the desired and the realized power spectra
in the selected frequency range. In our previous solution, we
selected a more complex function, of course, there is also the
possibility to consider other aspects here.

Fig. 3. Obtaining the desired spectral shape using a bank of generic filters
(low-pass, high-pass or band-pass)

The optimization is done on the host PC and may take
several minutes, depending on the number of filters and the
desired shape. During the optimization, we can consider the
sin(x)/x effect of the D/A conversion.

Fig. 4. Filter setup for achieving a 1/f 0.8 noise.

Fig. 5. Filter transfer multiplied by f0.8 to emphasize the difference between

the desired and realized filter.

A2, f2

A1, f1

...

Gaussian

White

Noise
+

...
...

An, fn

In Fig. 4 we can see the result of such an optimization
when the desired output was a pink noise with α=0.8 using
only low-pass filters. In the next figure, we multiplied the
spectrum with f 0.8 to emphasize the difference between the
desired and realized filter. We can observe that the filters with
most significant roles are the first and last one.

VI. PERFORMANCE ANALYSIS

In our hardware tests, we used a 128-bit Xorshift pseudo-
random generator with a filter bank containing 10 filters. To
save DSP resources, a single filter component implemented on
the FPGA fabric is used to sequentially calculate the result of
the filter bank. This filter, depending on filter coefficients, can
serve as a first or second order low-pass, high-pass or band-
pass filter. The used hardware has a maximum sampling
frequency of 1 MHz, the implementation was fast enough to
provide the required data rate. Higher filter count or higher
data rate can be achieved by increasing the parallelism in the
hardware. The resource usage on the NI USB-7856R is
summarized in TABLE III. Based on these results, we can
observe that up to 6 parallel noise generators can be
implemented without further optimization.

TABLE III. DEVICE UTILIZATION OF OUR CURRENT SETUP ON THE NI
USB-7856R

Resource
FPGA Resource Utilization

Percent Quantity

Total Slices 16.1% 4084 out of 25350

Slice Registers 9.2% 18610 out of 202800

Slice LUTs 7% 7091 out of 101400

Block RAMs 0.3% 1 out of 325

DSP48s 5.8% 35 out of 600

We extensively tested the implementation using software
simulations and real measurements. As a demonstration, in
Fig. 6 we generated a signal that has a corner in the spectrum
at 13 kHz. In Fig. 7 we demonstrate the measured spectrum of
the generated analog signal.

Fig. 6. Demonstration of a specially designed spectral shape containing

regions with different exponents. The spectrum of hardware-simulated signal
is compared to the desired reference shape.

VII. CONCLUSION

We realized an efficient mixed-signal noise generation
system based on the widely known method of applying a filter
bank to modify the shape of a noise. The implementation can
support up to six independent noise outputs at a 1 MHz sample

rate. The parameters of filter banks are set precisely by an
optimization algorithm, resulting in spectral shapes that could
not be achieved otherwise.

The implemented software is open source and is created in
the widespread LabVIEW programming environment. The
code can be used on a wide range of NI FPGA devices, and
beside the implemented algorithm it can be easily
supplemented with further unique functions, which provide
new possibilities like a mixture of noise and deterministic
signals, synchronous excitation, and measurement.

Further information and the source code are available on
our webpage[13].

Fig. 7. Measured spectrum of the generated analog signal using an USB

oscilloscipe (seeFig. 6).

REFERENCES

[1] L. B. Kish, R. Vajtai, C. G. Granqvist, “Extracting information from
the noise spectra of chemical sensors: Electronic nose and tongue by
one sensor,” Sens. Actuators B, Chem., vol. 71, pp. 55–59, 2000.

[2] L. B. Kish, “Totally Secure Classical Communication Utilizing
Johnson (-Like) Noise and Kirchhoff's Law, ” Physics Letters A, vol.
352. pp. 178–82, 2006.

[3] G. Marsaglia. “A Current View of Random Number Generators,”
Keynote Address, Computer Science and Statistics: 16th Symposium on
the Interface, Atlanta, 1984

[4] Marsaglia, G. (n.d.). “The Marsaglia Random Number CDROM
including the Diehard Battery of Tests,” available:
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/
diehard/ [Accessed 26 Apr. 2019].

[5] R. Brown, “Robert G. Brown's General Tools Page,” available:
https://webhome.phy.duke.edu/~rgb/General/dieharder.php [Accessed
25 Apr. 2019].

[6] R. Mingesz, P. Bara, Z. Gingl, P. Makra, “Digital Signal Processor
(DSP) based 1/fα noise generator,” Fluctuation and Noise Letters , vol.
IV, 2004, L605–L616. p.

[7] NI USB-7856, Multifunction Reconfigurable I/O Device, available:
http://www.ni.com/hu-hu/support/model.usb-7856.html [Accessed 26
Apr. 2019].

[8] G. Marsaglia. “Xorshift RNGs,” Journal of Statistical Software
[Online], vol. 8, Issue 14, July 2003.

[9] Knuth, D. (2014). The art of computer programming, 3rd ed. Upper
Saddle River [etc.]: Addison-Wesley, pp.10-26.

[10] M. George, P. Alfke. “Linear Feedback Shift Registers in Virtex
Devices,” Application Note: Virtex Series and Virtex-II Series,
XAPP210 (v1.3) April 2007

[11] M, Matsumoto, T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM
Transactions on Modeling and Computer Simulation (TOMACS) -
Special issue on uniform random number generation TOMACS
Homepage archive, vol. 8, Issue 1, Jan. 1998 , pp. 3-30

[12] National Instruments. “Global Optimization VI”, available:
http://zone.ni.com/reference/en-XX/help/371361P-
01/gmath/global_optimization/ [Accessed 25 Apr. 2019].

[13] Source files, available: http://www.inf.u-
szeged.hu/~mingesz/Research/Conference/2019ICNF/ [Accessed 02
May 2019]

https://web.archive.org/web/20160125103112/http:/stat.fsu.edu/pub/diehard/
https://web.archive.org/web/20160125103112/http:/stat.fsu.edu/pub/diehard/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://www.ni.com/hu-hu/support/model.usb-7856.html
http://zone.ni.com/reference/en-XX/help/371361P-01/gmath/global_optimization/
http://zone.ni.com/reference/en-XX/help/371361P-01/gmath/global_optimization/
http://www.inf.u-szeged.hu/~mingesz/Research/Conference/2019ICNF/
http://www.inf.u-szeged.hu/~mingesz/Research/Conference/2019ICNF/

