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Abstract— In the last few decades, the research field related 

to noise and fluctuations became more and more important and 

the usage of the results is increasingly promising. In addition to 

simulations, testing and validation of implemented systems 

should also be performed on real physical systems. These 

measurements require noise generators with specific 

distribution and spectral properties. It is obvious, that the most 

convenient method to generate such noise is by using digital 

signal processing. The randomness of these sources is provided 

by pseudo-random number generators, generators that have 

limited cycle length/time. Of course, signal generators capable 

of noise generation are commercially accessible, however, these 

solutions have limitations. In our previous publication, we 

presented a Digital Signal Processor based solution capable of 

generating 1/fα shaped noises. As a result of advances in 

technology these days there are many user-friendly and high-

performance solutions that provide us new possibilities in noise 

generation. To ensure proper period length, first, we 

implemented different pseudo-random number generators on 

the FPGA based hardware. Then, we adapted and extended our 

algorithm to the new hardware, as a result, we could 

significantly increase the sampling frequency, the available 

bandwidth, the D/A resolution and the number of channels. The 

noise generator is developed in the LabVIEW programming 

environment and can run on any FPGA based NI platforms, but 

it can be ported to any other FPGA based hardware. The new 

instrument uses a flexible filter arrangement to combine filters 

of different frequencies to produce more generic spectra up to 

five decades. The implemented solution is open-source, thus, 

anyone can use, customize or make further developments of the 

design for their personal needs. 
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I. INTRODUCTION  

There are several research fields where noise plays a 
prominent role. For example, in the case of Fluctuation 
enhanced sensing (FES), the noise from the sensors carries 
substantial information about the gases or other substances to 
be detected [1], in the case of Kirchhoff-Law-Johnson-Noise 
(KLJN) secure key distribution, noise plays an essential role 
in encrypted communication [2]. In order to test such systems 
and to develop the necessary electronic equipment, there is a 
need for reliable high-performance noise generators that 
produce an analog signal with appropriate parameters. 

Several methods exist for implementing noise generators. 
If white noise production is required, a combination of Zener 
or noise-diodes and amplifiers can comfortably deliver 
superior signal quality up to high frequencies. To produce 1/fα 
noises, there are numerous, even completely analog solutions. 
However, this approach has drawbacks, therefore, in most 
cases, a mixed-signal solution is chosen where an algorithm 

produces the desired noise, which is then converted to the 
desired signal source by digital to analog (D/A) converters. 
Many of noise generators based on these solutions are 
commercially available, but most of them have several 
limitations. 

Our approach was to find a solution, that is based on off-
the-shelf hardware, thus it can be easily reproduced. Our 
experiments required an uninterrupted, continuous noise 
source, with substantially long cycle length. The required 
sampling frequency was over 100 kHz, up to 1 MHz, and the 
spectral distribution of the noise had to be more general than 
a 1/fα noise. 

II. CYCLE LENGTH AND QUALITY OF PSEUDO-RANDOM-

NUMBER GENERATORS 

True random generators are ideal in many ways to provide 
sources for random noise generation. However, realizing true 
random generators is a complicated and expensive task. In 
addition, noises generated using true random sources cannot 
be reproduced and the same experiment cannot be performed 
again. In contrast, algorithm-based pseudorandom number 
generators can be implemented easily using a small amount of 
resources. Moreover, the same random sequence can be 
reproduced by resetting the algorithm with the same beginning 
state (seed). Compared to the true random generators, their 
disadvantage lies in their deterministic nature and the finite 
length of the produced number series. 

In today's world, long-term measurements are necessary in 
numerous cases where a short cycle length can cause 
unpleasant problems. Commercially available arbitrary 
waveform generators (AWG) can generate arbitrary signals, 
but they generate noise with limited and often short cycle 
length due to finite memory or the weakness of the random 
generator contained therein. 

Colored noise with arbitrary spectral shape can be 
produced using FFTs. However, the produced signal is 
definitely finite, and seriously limited by the available 
memory, currently, it is impractical to create continuous noise 
with more than 232 points. 

Currently, there are many high-quality pseudorandom 
number generators that can produce long enough cycle lengths 
that are suitable for most of the applications. If even longer 
sequences are required, then different random generators can 
be combined. This method not only increases the cycle length 
but also increases the independence of the elements in the 
sequence of numbers, thereby improving the uniformity and 
quality [3]. 

While the cycle length of generators is given in samples, 
in real measurements it is important to compare them to 
applicable measurement times. A simple comparison is done 
in TABLE I.  
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TABLE I.  COMPARISON OF CYCLE LENGTHS WITH APPLICABLE 

MEASUREMENT TIMES 

Cycle length 
Sampling frequency 

100 kHz 1 MHz 10 MHz 

65536 points 

(16 bit pseudorandom 

generator) 

0.65 s 0.065 s 6.5 ms 

8 million points  

(typical AWG) 
80 s 8 s 0.8 s 

128 million points 
(AWG with extended 

memory) 

21 min 2 min 12.8 s 

4 billion points (232) 
Approximate maximum size 

of FFT based noise generator 

12 hours 1.2 hours 7.2 min 

264 points 
64 bit LCG or Xorshift 

pseudorandom number 

generators 

5.9E+6 

years 

5.9E+5 

years 

5850 

years 

2128 points 
128 bit Xorshift generators 

1.1E+26 
years 

1.1E+25 
years 

1.1E+24 
years 

 

As shown in TABLE I. short cycle noise generators will 
repeat the generated signal in a very short period of time, 
which is unacceptable for most of the measurements. It will 
be even more problematic if we use more than one signal 
source for our measurement at the same time, the result of the 
measurements can be simply incorrect. Using 64-bit or 128-
bit generators significantly decreases the chance of such 
artifacts. 

The quality of the random generators, the randomness of 
the generated number series, may be critical in most cases, 
especially for cryptographic applications. Quality of 
generators is usually verified by statistical tests. One of the 
most widespread statistical test collection is the Diehard tests 
[4][4], with an open source implementation of Dieharder [5]. 
We tested our implementations using this set of tests, the 
results are shown in TABLE II.  

III. REAL-TIME NOISE GENERATION HARDWARE 

Since the cycle length of FFT based noise generators are 
severely limited for most of the desired applications, the only 
possibility is to create a continuous noise stream in real time. 
For this, we first generate a source of random numbers, then 
we form the spectral shape using a filter bank, then we apply 
a proper D/A conversion. 

While a personal computer has enough processing power 
to perform this task, since it is not designed to be a real-time 
system, it is not suitable for continuous noise generation. 
Additionally, the bandwidth limit between the PC and the D/A 
card can also cause problems. For this reason, we are looking 
for devices, that are designed to be real-time systems. The 
most suitable solutions: 

Microcontrollers: currently available 32-bit ARM Cortex 
M4 and M7 microcontrollers can easily handle 32-bit floating-
point numbers, have clock frequencies over 200 MHz, while 
they also have multiple built-in D/A converters with sampling 
frequencies over 1 MHz. 

Digital signal processors (DSP): these devices are 
especially designed for real-time signal processing; our 
previous noise generator was based on an Analog Devices 
DSP [6]. These days, more and more DSP functionalities are 
built in high-performance microcontrollers or FPGAs. 

Field-programmable gate arrays (FPGA): these devices 
have a large number of logic gates suitable for implementing 
high-speed digital devices. Modern FPGAs also contain a high 
number of DPS slices. For this reason, it is especially suitable 
to generate multiple streams of real-time noise data. 

Our goal was to find an off-the-shelf solution, that can 
provide enough processing power at an affordable cost. We 
implemented our solution based on a National Instrument 
FPGA hardware (NI USB7856R) [7]. The hardware can be 
conveniently programmed in LabVIEW programming 
environment, the performance of the hardware 
implementation can be easily compared to simulation and 
theoretical results. 

The NI USB7856R is a USB based instrument containing 
a Kintex-7 160T FPGA. It has eight 16-bit D/A converters, 
capable of sampling frequencies up to 1 MHz. The FPGA has 
101,400 LUTs and 600 DSP slices. The maximum clock 
frequency is 200 MHz, in our application we used a 40 MHz 
clock. Our solution is compatible with other types of NI 
multifunction reconfigurable I/O devices (USB, PCIe, and 
PXIe based) and cRIO devices. 

 
Fig. 1. Block diagram of the noise generator hardware 

IV. IMPLEMENTING RANDOM NUMBER GENERATORS 

There are many well-known pseudo-random generators, 
we selected the following ones to be implemented on our 
hardware: Xorshift [8], Linear congruential generators (LCG) 
[9], linear feedback shift registers [10], and Mersenne Twister 
[11]. We implemented these generators as LabVIEW code, 
this solution provides a handful of possibilities of using the 
generators in different, LabVIEW compatible FPGA based 
platforms, as well as in other real-time systems or on 
traditional personal computers. 

Most of the random generators can be implemented in 
different word lengths resulting in different cycle lengths. The 
generators were tested using the previously mentioned 
Dieharder tests, the results, as well as the resource usages are 
summarized in TABLE II.  

The LCGs, while widely popular, are not the best 
performing generators. Their bad quality is mostly caused by 
their hyperstructure as well as the shorter cycle length of their 
least significant bits [9]. However, in our application, since we 
are using only the most significant bits, this may not cause 
significant problems. 

The linear feedback shift register may seem a good 
solution considering its cycle length and resource usage; 
however, it requires multiple cycles in order to generate a 
single random number. 

The Xorshift generator (Fig. 2) is generally a high-quality 
generator with limited resource usage. 

Implementing the Mersenne Twister is not so 
straightforward; at the same time, it passes all the tests and has 
an astonishingly long cycle length. A long initialization 
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sequence is also needed, but since it has to be done only once, 
it can be implemented on the host computer sparing a lot of 
valuable FPGA resources. 

Note: none of the implemented random generators are 
cryptographically secure, for this reason, they should not be 
used in live cryptographic applications. 

TABLE II.  QUALITY, CYCLE LENGTH AND RESOURCE REQUIREMENTS 

OF IMPLEMENTED PSEUDORANDOM NUMBER GENERATORS 

Pseudorandom 

Number 

Generator 

Quality and Cycle Length 

Passed 

Dieharder 

Tests 

Maximum 

Cycle 

Length 

FPGA resource 

utilization 

Linear 

congruential 
generator 

3/17 264 
Slices: 812 

DSP48s: 10 

Linear feedback 

shift register 
12/17 2160-1 

Slices: 716 

DSP48s: 0 

Xorshift 15/17 2128-1 
Slices: 737 
DSP48s: 0 

Mersenne 

Twister 
17/17 219937-1 

Slices: 566 

DSP48s: 0 

 

 

Fig. 2. Labview implementation of the 64bit Xorshift pseudoranom number 

generator. 

All the implemented random generators produce a 
uniformly distributed number. When using noises, we 
generally need a Gaussian-distributed noise. To achieve this 
distribution, we can use different algorithms. One of them is 
the well-known Box-Muller transform. The main drawback of 
this method is that it requires the usage of floating-point 
arithmetic and several functions that are hard to be 
implemented on FPGAs. Another method to approximate 
Gaussian distribution is to sum a number of uniformly 
distributed noises. In our implementation, we summed 12 
random numbers to produce a single normally-distributed 
number. 

V. ACHIEVING THE DESIRED SPECTRAL SHAPE 

In the previous implementation, we used first-order low-
pass filters to generate 1/fα noises. However, to perform a wide 
variety of experiments, it is indispensable to generate more 
generic spectra. Using strictly low-pass filters limits the 
possibilities, therefore we implemented generic components 
that can serve as high-pass, low-pass or band-pass filters. 
These are composed of two traditional IIR filters that are 
connected in series. The desired spectral shape can be 
achieved by applying a bank of these filters on the Gaussian 
random number source, as visualized in Fig. 3. 

These filters can be easily parameterized by their cut-off 
frequencies and amplitudes. In order to achieve the desired 
spectrum, these parameters must be optimized. In our setup, 
the cut-off frequencies are first equally distributed over the 
relevant frequency band. Then we can select which type of 
filters do we want to use: low-pass, high-pass or band-pass. In 
the next step, we provide a set of starting values for filter 
amplitudes. The LabVIEW‘s built-in differential evolution-
based global optimization function [12] can be used to 

optimize only the filter amplitudes or both the amplitudes and 
cut-off frequencies.  

The solution uses only the analytically calculated transfer 
functions. The goodness function of the fit is the absolute 
difference between the desired and the realized power spectra 
in the selected frequency range. In our previous solution, we 
selected a more complex function, of course, there is also the 
possibility to consider other aspects here. 

 

Fig. 3. Obtaining the desired spectral shape using a bank of generic filters 
(low-pass, high-pass or band-pass) 

The optimization is done on the host PC and may take 
several minutes, depending on the number of filters and the 
desired shape. During the optimization, we can consider the 
sin(x)/x effect of the D/A conversion. 

 

Fig. 4. Filter setup for achieving a 1/f 0.8 noise. 

 

Fig. 5. Filter transfer multiplied by f0.8 to emphasize the difference between 

the desired and realized filter. 
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In Fig. 4 we can see the result of such an optimization 
when the desired output was a pink noise with α=0.8 using 
only low-pass filters. In the next figure, we multiplied the 
spectrum with f 0.8 to emphasize the difference between the 
desired and realized filter. We can observe that the filters with 
most significant roles are the first and last one. 

VI. PERFORMANCE ANALYSIS 

In our hardware tests, we used a 128-bit Xorshift pseudo-
random generator with a filter bank containing 10 filters. To 
save DSP resources, a single filter component implemented on 
the FPGA fabric is used to sequentially calculate the result of 
the filter bank. This filter, depending on filter coefficients, can 
serve as a first or second order low-pass, high-pass or band-
pass filter. The used hardware has a maximum sampling 
frequency of 1 MHz, the implementation was fast enough to 
provide the required data rate. Higher filter count or higher 
data rate can be achieved by increasing the parallelism in the 
hardware. The resource usage on the NI USB-7856R is 
summarized in TABLE III. Based on these results, we can 
observe that up to 6 parallel noise generators can be 
implemented without further optimization. 

TABLE III.  DEVICE UTILIZATION OF OUR CURRENT SETUP ON THE NI 
USB-7856R 

Resource 
FPGA Resource Utilization 

Percent Quantity 

Total Slices 16.1% 4084 out of 25350 

Slice Registers 9.2% 18610 out of 202800 

Slice LUTs 7% 7091 out of 101400 

Block RAMs 0.3% 1 out of 325 

DSP48s 5.8% 35 out of 600 

 

We extensively tested the implementation using software 
simulations and real measurements. As a demonstration, in 
Fig. 6 we generated a signal that has a corner in the spectrum 
at 13 kHz. In Fig. 7 we demonstrate the measured spectrum of 
the generated analog signal. 

 
Fig. 6. Demonstration of a specially designed spectral shape containing 

regions with different exponents. The spectrum of hardware-simulated signal 
is compared to the desired reference shape. 

VII. CONCLUSION 

We realized an efficient mixed-signal noise generation 
system based on the widely known method of applying a filter 
bank to modify the shape of a noise. The implementation can 
support up to six independent noise outputs at a 1 MHz sample 

rate. The parameters of filter banks are set precisely by an 
optimization algorithm, resulting in spectral shapes that could 
not be achieved otherwise. 

The implemented software is open source and is created in 
the widespread LabVIEW programming environment. The 
code can be used on a wide range of NI FPGA devices, and 
beside the implemented algorithm it can be easily 
supplemented with further unique functions, which provide 
new possibilities like a mixture of noise and deterministic 
signals, synchronous excitation, and measurement. 

Further information and the source code are available on 
our webpage[13]. 

 
Fig. 7. Measured spectrum of the generated analog signal using an USB 

oscilloscipe (seeFig. 6). 
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