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Abstract. Event logs have become a valuable information source for business
process management, e.g., when analysts discover process models to inspect the
process behavior and to infer actionable insights. To this end, analysts config-
ure discovery pipelines in which logs are filtered, enriched, abstracted, and pro-
cess models are derived. While pipeline operations are necessary to manage log
imperfections and complexity, they might, however, influence the nature of the
discovered process model and its properties. Ultimately, not considering this pos-
sibility can negatively affect downstream decision making. We hence propose
a framework for assessing the consistency of model properties with respect to
the pipeline operations and their parameters, and, if inconsistencies are present,
for revealing which parameters contribute to them. Following recent literature
on software engineering for machine learning, we refer to it as debugging. From
evaluating our framework in a real-world analysis scenario based on complex
event logs and third-party pipeline configurations, we see strong evidence to-
wards it being a valuable addition to the process mining toolbox.

Keywords: Process Mining, Discovery, Uncertainty & Sensitivity Analysis

1 Introduction

Historic process information from event logs enables analysts to derive business process
insights using process mining [1]: process discovery [5,19] infers process models from
the recorded behavior, conformance checking [30,12] relates observed behavior to an
existing process model, process enhancement [2,6] repairs models or extends them e.g.,
with performance and resource information, and predictive process monitoring [22,17]
forecasts how process instances may unfold during execution.

The maturity of those techniques has led to an increasing adoption of process min-
ing in industry projects, where analysts often find answers to business problems through
a divide-and-conquer strategy by breaking down those problems into fine-grain infor-
mation needs [10]. Here, process discovery plays a crucial role, as analysts interpret the
properties of the discovered models to derive insights [32] that then serve as a founda-
tion for understanding related aspects [1,18]. If interpreted carelessly, process discov-
ery insights can hence negatively affect downstream analysis. Thus, evaluating insights
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Fig. 1: An extended perspective for the evaluation of process discovery results

from mining, particularly discovery, should be a key activity in each project [10,25]
to confirm findings and to turn them into reliable and actionable insights [32]. Besides
verifying scripts or tool configurations, consulting domain experts, or investigating the
process environment, analysts can also perform data-driven evaluation [37].

Commonly, discovery results are evaluated by means of model-centric metrics like
fitness, precision, generalization, and simplicity [9,15], which are e.g., computed via
conformance checking [12,30] with the log that served as input to the discovery algo-
rithm. Those metrics are valuable for assessing the reliability of discovery algorithms,
and we want to complement them by expanding the evaluation perspective, as shown in
Figure 1. Analysts typically set up process discovery pipelines to transform logs before
discovering a model. While necessary to manage log imperfections and complexity,
such a pipeline potentially constrains the validity of the behavior covered by the dis-
covered model. Thus, we propose to examine how pipeline parameters affect properties
of the discovered process models at different granularity levels, because analysts often
focus on specific execution paths and patterns to break down the model topology [18].

To this end, we propose a method to investigate the consistency of model properties
by means of uncertainty and sensitivity analysis [36]. Our primary goal is to enable
what-if analyses in which the reliability of insights is assessed by examining relation-
ships between pipeline parameters and model properties. Yet, the method can also be
applied to guide the pipeline definition, or to generate insights from those relation-
ships. In more detail, we present a configurable framework to evaluate, if user-defined
model properties are consistent with results from varied configurations of a user-defined
pipeline and to quantify the contribution of individual pipeline parameters towards in-
consistencies. In doing so, we follow recent work in software engineering [3], which
defines a notion of debugging for machine-learning (ML) pipelines. As such, our pro-
posal can be understood as a method for debugging process discovery pipelines.

Following, we discuss the problem in Section 2, relying on observations from a
competitive process analysis challenge and an illustrative analysis of a moderately com-
plex real-world dataset. We then outline the framework and demonstrate its application
using the same dataset in Section 3. In a separate experiment, we investigate our frame-
work in a realistic analysis setting based on another real-world dataset with high com-
plexity in Section 4. Here, we substantiate the utility of our framework by showing
that its output is founded in observations by external analysts and theory. The results
demonstrate that our debugging framework is a valuable addition to the process min-
ing toolbox: in addition to existing guidelines, patterns, and tools which we discuss in
Section 5, it enables analysts and their audiences to comprehend the degree to which
properties of discovered models are constrained by analytical decisions in a specific
context. Finally, we conclude the paper and discuss future directions in Section 6.
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2 Basic Terminology & Problem Illustration

An event log L is a set of traces and each trace is an ordered sequence of events. Event
logs also contain features that describe properties of events and traces, such as case iden-
tifiers, event timestamps, or activity names. A process model P is a directed graph where
typed and labeled nodes represent activities, gateways, events, etc., whereas edges de-
pict the control flow. Finally, L and P denote the universes of event logs and process
models, respectively. Note that for the purposes of this paper this basic understanding is
sufficient. We hence omit formal definitions which are e.g., presented in [1, Ch. 3 & 5].

To analyze the process behavior captured in an event log, analysts often define pro-
cess discovery pipelines, either implicitly or explicitly. In this paper, we primarily focus
on pipelines that transform a single log into a single model. In the general case, how-
ever, a process discovery pipeline can be viewed as a function δ : Lnl × Xnx → Pnp

that takes nl event logs and a set of nx parameters from the universe of parameters X
and returns np process models. Pipelines are assembled by combining transformation
and discovery operators. Each operator can be configured via its own set of parameters,
all of which are included in the set of parameters that serves as input to the discovery
pipeline. Pipelines can be implemented as Python or R-scripts based on packages like
dplyr5, bupaR6, pandas7, and pm4py8, or by incrementally executing tools or compo-
nents, like ProM plugins9, but they often involve multiple tools and adhoc scripts [18].

The reasons for analysts to apply discovery pipelines are twofold. On the one hand,
logs might contain imperfections, such as missing values or outlier behavior. To elim-
inate those imperfections, analysts filter traces or events, and manipulate features to
improve their quality or to enrich logs with data from other information sources. On the
other hand, log complexity typically poses a challenge in interpreting the data, when logs
contain drifts or describe a diverse range of activities or variants. In addition to filter-
ing cases and events, analysts commonly lift the level of abstraction by defining higher
level activities or sub-processes and by aggregating the events in the log accordingly.
Note that some operations are directly supported by discovery algorithms, e.g., the in-
ductive miner [19] can filter infrequent behavior, while directly-follows graph mining
techniques often allow analysts to filter paths and activities based on their frequencies.

In this work, we postulate that the analytical decisions behind the pipeline config-
uration ultimately constrain the degree to which the behavior depicted in a discovered
process model can be generalized. Consider e.g., the following observations from the
business process intelligence challenge (BPIC), a competition that invites researchers,
students, and experts to submit analysis reports for real-world event logs. Table 1 con-
trasts the complexity of the five event logs from BPIC 201510 with the distribution of
complexity of the discovered process models presented in the nine submissions. While
the event logs are highly complex with 350+ activities and 800+ variants, the majority
of the models contains between 6 and 40 activities. We could not reliably quantify the
5https://dplyr.tidyverse.org, accessed 2021-05-12
6https://www.bupar.net, accessed 2021-05-12
7https://pandas.pydata.org, accessed 2021-05-12
8https://pm4py.fit.fraunhofer.de, accessed 2021-05-12
9http://www.promtools.org/, accessed 2021-05-12
10https://www.win.tue.nl/bpi/doku.php?id=2015:challenge, accessed 2021-05-12

https://dplyr.tidyverse.org
https://www.bupar.net
https://pandas.pydata.org
https://pm4py.fit.fraunhofer.de
http://www.promtools.org/
https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
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Table 1: Complexity of event logs and of discovered models in BPIC 2015
Logs 1 2 3 4 5

# Events 52,217 44,354 59,681 47,293 59,083
Log Complexity # Activities 398 410 383 356 389

# Variants 1,170 828 1,349 1,049 1,153

Model Complexity # Activities

number of model paths, but observed that the models only allowed for a fraction of
the log variants. Moreover, one report in fact included models discovered from the raw
logs, to demonstrate that it is impossible to interpret these models. While necessary to
manage the cognitive load, the transformations in the underlying pipelines can affect
the nature of the discovered model, even if they are less extensive, as illustrated below.

We analyzed the Sepsis event log11 which captures treatments of Sepsis patients in
a Dutch hospital [23]. Its complexity is moderate (1,050 cases, 15,214 events, 16 ac-
tivities), rendering it useful for illustration purposes. We used the default configuration
of the inductive miner [19] (infrequent variant, noise threshold = 0.2) to discover a
process model. But, we first filtered out short cases with an execution duration smaller
than minDuration based on a common assumption that short cases represent incom-
plete or outlier behavior. Next, we abstracted the log by aggregating activities related to
the release of patients. That is, if consolidate is set to true, all release-related events
are re-labeled and in each trace all but the last release-related events are removed. Note
that these transformations are not presented here as the ideal way to handle the log, but
merely for illustration purposes. We chose the transformations, as we observed that they
were commonly applied in submissions to different editions of the BPIC.

By varying the two parameters, we yielded the four models shown in Figure 2. The
differences between the models demonstrate that discovery results can strongly depend
on a specific pipeline configuration and hence might be inconsistent with models dis-
covered using varied configurations. For instance, model 1 indicates that the registration
activities are executed in arbitrary order before all other activities; in model 2 and 3 they
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Fig. 2: Sepsis results for different pipeline configurations (fitness calculated with the
multi-perspective process explorer in ProM with the transformed event logs).

11https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/12707639, accessed 2021-03-12

https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639


Debugging Process Discovery Pipelines 5

Table 2: Effects of the analyst’s awareness of result uncertainties (adapted from [31])
Discovery Result

No Uncertainties Uncertainties
A

na
ly

st

Aware trust in insight: high trust in insight: medium-low
decision making: unaffected decision making: largely unaffected

Mistaken trust in insight: medium-low trust in insight: high
decision making: affected decision making: severely affected

Unaware trust in insight: medium trust in insight: medium
decision making: unaffected decision making: severely affected

are optional and parallel to the treatment activities; and in model 4 the registration ac-
tivity B requires the completion of the two remaining registration activities A and C.
Differences consequently also exist at the level of the model topology. Yet, the models
achieve similar fitness values. This shows that model-centric quality metrics may not
reflect how pipeline configurations impact properties of the discovered process models.

In summary, we demonstrated that, while configuring a discovery pipeline is nec-
essary to manage log imperfections and complexity, it might constrain the discovered
model, when varied pipeline configurations yield inconsistent outputs. This can ulti-
mately affect the certainty with which insights can be inferred from a discovered model.
Following the awareness classification from [31] (see Table 2), we argue that insight un-
certainties can impact the decision making that is based on the insights. In the presence
of uncertainties, the chance of error due to unjustified trust in the insights is high, when
analysts are unaware of or mistakenly assume the absence of uncertainties. But also
in the absence of uncertainties, decision making might be impaired when analysts un-
necessarily question the insight validity due to mistakenly assuming that uncertainties
exist. While in the remaining cases the decision making is usually not affected, analysts
(and their audiences) should ideally always be aware of the level of uncertainty that is
associated with the insights and of its root causes.

3 Debugging of Process Discovery Pipelines

The necessity to address log imperfections and complexity via pipeline operations can
result in uncertain insights and impaired decision making (see Section 2). Such uncer-
tainty can stem from stochastic operators, but most often is introduced by the pipeline
parameters. For example, while there might be a plausible range of threshold values for
a filter that removes outlier traces with short durations, the precise value can be uncer-
tain. Diagnosing such uncertainty by manually varying parameters and inspecting the
respective outputs is infeasible due to the number of configurations needed to obtain
reliable conclusions, especially when model and pipeline complexities, or parameter
interactions are present. Moreover, it is not transparent to the model audience. Hence,
to assist analysts in debugging their discovery pipelines, we pursue two objectives:

O1: Assess the consistency of model properties to unveil potential pipeline constraints.
O2: Quantify the influence of parameters to provide explanations for inconsistencies.

While our approach could be used to evaluate steps in pipelines generally, we designed
it with the purpose of allowing an analyst to achieve objectives O1 and O2 for a concrete
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Fig. 3: Framework for investigating property consistency in process discovery pipelines

case. As such, the standard situation for applying our framework is: an analyst has cre-
ated a concrete pipeline with a concrete parameter configuration to generate a baseline
model. The analyst then investigates how the parameters influence the model properties
(i) to substantiate insights inferred from the baseline model, (ii) to iteratively construct
a reliable pipeline, or (iii) to generate insights from parameter / property relationships.
In all cases, the metrics are calculated relative to the properties of the baseline model.

To this end, one conceivable strategy is to instrument the pipeline and to track the
validity of model properties in all steps [45], i.e., in all intermediate logs and the discov-
ered process models. Yet, as this analysis only considers the current configuration, we
would not be able to measure the consistency of model properties with it, or to reason
about the general influence of parameters. Hence, we adopt uncertainty and sensitiv-
ity analysis which provides means to quantify effects of varied pipeline configurations.
In this regard, a first option are one-at-a-time designs [36, pp. 66–69]. In such a de-
sign we would examine both objectives by focusing on each parameter individually.
Given a parameter, we would repeatedly change its value and for each value execute
the pipeline without modifying any of the other parameters. Then, we would use the
generated outcomes to examine how variations in the parameter change the pipeline
outcome. While this is computationally efficient, the analytical results can be skewed in
the presence of parameter interactions [34]. Global sensitivity analysis overcomes this
limitation by studying the effects of simultaneous parameter changes. Here, variogram
analysis of response surfaces (VARS) [29] aims to reveal the spatial structure and vari-
ability of model outputs. Essentially, VARS models the output space as a variogram
function that describes the degree to which model outcomes for a specific parameter
configuration X depend on outcomes produced by configurations in the vicinity of X.
This variogram function is then used to examine properties of input-output relation-
ships. However, VARS does not provide clear indications for the importance of inputs
and thus, they should be used to complement variance-based sensitivity analysis [28].
We follow this argumentation and build our framework on the scheme for variance-
based sensitivity analysis from [35].

As shown in Figure 3, we first sample the pipeline (Section 3.1). That is, we exe-
cute the user-defined pipeline δ : Lnl × Xnx → Pnp multiple times to generate process
models for different parameter configurations. Here, we consider event logs to be con-
stants. This effectively turns discovery pipelines into functions δX : Xnx → Pnp that only
take parameters as input. To guide the exploration and the parameter sampling, analysts
must specify the relevant parameters and their probability measures {(Xi, Pi(Xi))}i≤nx

.
Next, we measure the property consistency for each execution (Section 3.2), requir-
ing the analysts to manually determine the model properties for which they want to
measure the consistency, i.e., the degree to which a (set of) model(s) produced in a
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single execution satisfies this property. In particular, the analyst must provide a set of
nm property consistency measurements {µ j} j≤nm where each function µ j : Pn′p, j → [0, 1]
represents a specific property and returns the consistency for this property as observed
in a set of n′p, j process models: a value of 0 indicates total inconsistency, a value of 1
perfect consistency, and values in between degrees of consistency. Lastly, we analyze
the property consistency of the pipeline (Section 3.3): an uncertainty analysis assesses
the degree to which a model property changes when pipeline parameters vary (O1),
whereas sensitivity analysis quantifies the contribution of individual parameters to po-
tential inconsistencies (O2). Below, we describe each step using the Sepsis experiment
from Section 2 for illustration purposes.

3.1 Sampling the Pipeline

To explore the output of different pipeline configurations, we first create a k × nx con-
figuration matrix A which comprises the configurations for k pipeline executions. Each
configuration contains nx values, one per relevant parameter Xi. We use the configura-
tions in A to assess whether the pipeline yields inconsistencies (O1, see Section 3.3).
If there are inconsistencies and it must be analyzed how parameters contribute to them
(O2, see Section 3.3), then for each parameter Xi we create an additional k×nx configu-
ration matrix ABi by copying A and varying the values in the ith column which defines
the values for parameter Xi. Comparing the results obtained from the configurations in
A and ABi allows us to quantify the influence of parameter Xi. Thus, when desired, O2
requires k×nx additional pipeline executions, yielding a total of k× (nx + 1) executions.

For a reliable analysis we need configurations that (i) sufficiently sample the en-
tire parameter space and (ii) systematically vary the parameter values. We achieve this
based on the procedure that yielded the best results in a comparative evaluation by
Saltelli et al. [35]. First, we use a low-discrepancy sequence to generate two temporary
k × nx matrices At and Bt where each row is a point in the nx-dimensional unit cube.
Low-discrepancy sequences ensure that the parameter space is evenly sampled. We here
use the Sobol’ sequence [39] which, in contrast to sequences like the Latin Hypercube
design, has the advantage that we do not necessarily need to fix the sample size, but
could in principle dynamically generate new configurations until the analysis results
converge. We use the Sobol’ sequence to generate a k×2nx matrix that is split in half to
obtain the temporary matrices At and Bt from the left and right half, respectively. While
we derive A directly from At, we use Bt to create the temporary matrices {ABt

i}i≤nx using
the radial sampling strategy [33]. That is, for each parameter Xi we construct ABt

i by
copying At and replacing the i-th column with the respective column from Bt. Lastly,
we obtain the configuration matrices (A and {ABi}i≤nx ) by interpreting the values in the
temporary matrices as probabilities: for each parameter we convert each value p in the
i-th columns of the temporary matrices to a parameter value x for Xi so that the respec-
tive cumulative probability yields the probability p for value x, i.e., Pi(Xi ≤ x) = p. The
final step is to execute the discovery pipeline for each configuration in A to discover the
process models. The configurations from {ABi}i≤nx are only executed, if inconsistencies
exist for which the analyst wishes to inspect the influence of parameters.

In our running example, the Sepsis experiment, we sample the pipeline for the pa-
rameters minDuration, consolidate, and threshold, in this order of parameters.
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We here also consider the threshold parameter, because in Section 2 it was set to 0.2
by default and might have influenced the results. For consolidate and thresholdwe
use uniform distributions over their entire domains ({false,true} and [0, 1]), whereas
for minDuration we use the empirical distribution of case durations in the log for
all values ≤ 2 days. Setting minDuration to 2 days would exclude about 29% of the
cases, and hence we chose this value as an upper bound. Taking a concrete example
for a configuration, say the current configuration from At or ABt

i is (0.7, 0.6, 0.3);
then our approach derives the following parameter values as per the above use of the
cumulative probabilities. The 70th percentile of the actual data for minDuration is
at 4h 10min, and therefore we get minDuration = 4h 10min. 0.6 > 0.5, hence we
get consolidate=true. For threshold, the uniform distribution equals the identity
function, hence threshold=0.3. We set the sample size k to 1,000 resulting in 1,000
executions for O1 and (3 × 1,000) = 3,000 executions for O2.

3.2 Measuring the Property Consistency for a Single Execution

Within our framework, analysts can investigate the consistency of the model topol-
ogy and of fine-grained model properties like execution patterns and paths by defining
property consistency measurements µ : Pn′P → [0, 1]. While analysts can provide any
measurement, we propose two specific measurements for single models (n′P = 1). Both
functions rely on the causal behavioral profile [42] which captures behavioral relations
between a set of activities T as observed in a set of executions E. The causal behavioral
profile is defined as CT,E = { ,+, ‖,�} where activity pairs (t1, t2) ∈ T × T are

1. in strict order (t1  t2), if in all executions with t1 and t2, t1 occurs before t2;
2. in interleaving order (t1 ‖ t2), if they can be executed in arbitrary order;
3. exclusive (t1 + t2), if they are never part of the same execution; and
4. co-occurring (t1 � t2), if the presence of t1 implies the presence of t2.

We chose behavioral profiles as a foundation for the concrete consistency measure-
ments, as they have been applied for various tasks including process monitoring, com-
plex event processing, conformance checking, and most importantly model consistency
assessment [43]. Moreover, they can be computed from heterogeneous inputs. Con-
sidering that each trace represents an execution, they can straightforwardly be derived
from logs. An efficient computation for sound process models [42] derives the profile
from a tree representation of the process model. This computation can easily be adopted
for discovery algorithms that output process trees such as the inductive miner [19]. For
directly-follows graphs with a dedicated start and a dedicated end node, every path
from start to end is an execution. Besides these beneficial properties, behavioral pro-
files might however inaccurately represent behavioral relationships in some cases [27].
Hence, a comparative evaluation of consistency measures is required in future work.

The first type of measurement is the profile-based consistency µC : P → [0, 1]. It
requires the provision of a base profile CTb,Eb . Then, it applies the degree of consistency
metric from [41] to compute a consistency score for CTb,Eb and a profile CTd ,Ed derived
from a discovered process model. This metric relies on an alignment of the activities
from Tb and Td. It hence allows us to compare profiles at the same and at different
levels of granularity. If two profiles are at the same level of granularity, all activities with
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equal labels are aligned. Otherwise, the pipeline includes a log abstraction step in which
fine-grained activities are mapped to higher-level activities e.g., using manually defined
hierarchies or automated label comparison [16]. This mapping defines the alignment.
Based on the alignment, the first step is to determine the sets of aligned activities T a

b and
T a

d which contain all activities from Tb and Td for which the other activity set contains
aligned activities. The metric then determines the count γ of activity pairs in T a

b×T a
b and

T a
d × T a

d whose relations defined by CTb,Eb and CTd ,Ed match the relations of the aligned
activity pairs from the other profile. The relations of two aligned activity pairs (t′b, t

′′
b ) ∈

T a
b × T a

b and (t′d, t
′′
d ) ∈ T a

d × T a
d match, if both pairs are in strict order, interleaving order

or exclusive, and they either co-occur or not. If an activity pair (t′, t′′) is aligned with
multiple pairs, then the relations of all these pairs must match the relations of (t′, t′′).
Finally, γ is divided by the number of aligned activity pairs |T a

b ×T a
b |+ |T

a
d ×T a

d |. In this
work, we primarily use the profile from the baseline model discovered with a specific
pipeline configuration to track the degree to which behavioral relations change when
parameters change. Similar to model-centric quality metrics [9], it is also conceivable
to check, if the discovered model accurately reflects the relations in a log, potentially
produced during pipeline execution.

A break down of the model topology to investigate more fine-grain aspects can be
achieved by removing activities from the base profile to focus on certain activity sets.
Additionally, the rule-based consistency µR : P → {0, 1} enables analysts to specify
arbitrary rules in terms of boolean expressions which define relations that need to hold
between specific activities, e.g., that an activity α must be in strict order with an activity
β. The function then returns a value of 1, if the profile derived from the discovered
model adheres to the rule and a value of 0 otherwise. Note that this is similar to the
use of declarative rules which are defined at the level of events and traces, whereas the
rule-based consistency relies on the more abstract level of the behavioral profile.

In the Sepsis example, we observed some inconsistencies at the model and at the
activity level. Here, we focus on three properties for which we analyze the pipeline con-
sistency below in Section 3.3. First, we use the profile-based consistency to evaluate the
model that we obtained, when setting minDuration to 2 days, consolidate to true,
and threshold to 0.2 (I1), see lower right corner of Figure 2. Additionally, we use
the rule-based consistency to diagnose specific inconsistencies that we observed when
varying the parameters in Figure 2. In particular, we check if the registration activities
A and C occur before all other activities (I2), and if the release activities generally occur
at the end of the process (I3). Note that we evaluate all three consistencies based on the
same set of configurations and discovered process models, respectively.

3.3 Analyzing the Property Consistency for the Pipeline

The last step conducts the analyses postulated by the two objectives. We first address
O1 and examine the uncertainty associated with model properties based on the provided
consistency measurements {µ j} j≤nm . To this end, we compose the discovery pipeline
δX : Xnx → Pnp and each consistency measurement µ j : Pnp, j → [0, 1] to functions
f j = µ j ◦ δX that measure the property consistency for models produced by a given
pipeline configuration. This requires that the consistency functions take as many process
models as input as discovered by the pipeline in a single execution, i.e., np = np, j.
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For a measurement µ j, we first calculate the mean consistency f j = 1
k
∑k

l=1 f j(A)l

over all configurations from the configuration matrix A (see Section 3.1). If the mean
consistency is equal or very close to 1 (or 0 respectively), we know that the respective
property is (not) free of constrains and hence generally (in-)valid. In all other cases,
there is uncertainty regarding the conditions that cause inconsistencies and we next
estimate the consistency variance V̂( f j) = 1

k
∑k

l=1

(
f j(A)2

l − µ j
2
)
. If the variance is close

to 0, we can infer that all pipeline configurations yield similar consistency values and
that there likely is a systematic difference between the property from the baseline model
and the properties of the pipeline output, generally. Such a difference can be explored
by comparing the originally discovered model to a few models generated with different
configurations. Here, the analyst can also resort to restricting the base profile or defining
rule-based consistencies, in order to investigate differences at a more fine-grained level.

Larger variance values indicate that varied pipeline configurations yield process
models with different levels of consistency. To analyze the influence of parameters
as per O2, we compute the total effect index S i, j for each parameter Xi [13]. It mea-
sures the contribution of parameter Xi to the variance in the consistency measure-
ment µ j and considers all variance that is directly caused by Xi and by interactions
with other parameters. As suggested in [35], we here use the estimator from [14]:
Ŝ i, j = 1

2k·V̂( f j)

∑k
l=1

(
f j(A)l − f j(ABi)l

)2
. This estimator relies on the results of the con-

figuration matrix ABi. The higher the value of the index for a parameter, the more it
contributes to the variance in the consistency measurement. If the sum of the indexes is
larger than 1

(∑nx
i=1(Ŝ i, j) > 1

)
the parameters definitely interact.

We conclude by analyzing the pipeline consistency for the Sepsis experiment con-
sidering the sampling configuration and properties from Section 3.1 and 3.2. The mean
model consistency (I1) is f1 = .57 and for the two rule-based measures (I2, I3) we yield
mean consistencies of f2 = .08 and f3 = .21. These low values are in line with our
observations from Figure 2, because they indicate that the behavioral relations in the
baseline model are associated with uncertainty, especially the relations of the registra-
tion and release activities. The variances (V̂( f1) = .06, V̂( f2) = .07, V̂( f3) = .16) point
to non-systematic differences which are attributed to all parameters. That is because
all consistency / parameter combinations yield high total effect indexes on the interval
[.71, .92]. This implies that the handling of the log is not optimal and should be changed,
not least because the indexes reveal that there is significant parameter interaction.

4 Experiment

The primary objective of our experiment is to study whether the framework provides a
reliable foundation for investigating the effects of discovery pipeline operations on the
discovered model and its properties. In the following, we first outline and justify our
experimental design in Section 4.1. After that, we discuss our results in Section 4.2.

4.1 Experimental Design

Uncertainty and sensitivity analysis are mature techniques that have been studied in-
tensively, e.g., in [13,14,28,29,33,35,36], and hence provide a solid foundation for our
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work. Software engineering for machine learning [3] is an emerging topic, and has not
yet been adopted for process mining (see Section 5). Hence, we validate our frame-
work using a single-case mechanism experiment, a suitable method for investigating
the application of existing technology to a new phenomenon [44, Ch. 18]. To mitigate
the effects of a limited external validity associated with such a design, i.e., the degree
to which the findings can be generalized, we attached great importance to strengthen-
ing the ecological validity, i.e., the realism with which the setup resembles real-world
circumstances, and to minimizing the threat of experimenter bias. Moreover, to ensure
transparency and reproducibility, we followed open science principles by relying on
public data and by publishing our source code12. In more detail, we decided to use the
BPIC 2015 dataset from Section 2. It is a highly complex (see Table 1), publicly avail-
able, real-world dataset for which nine independent analysis reports were published.
The latter allows us to setup a representative discovery pipeline based on operations
commonly applied by external parties on this dataset. We merely use the reports to
guide the pipeline setup. It is not our intention to judge the analysts’ practices, for
which an exact replication of a pipeline would be required (which is neither desired nor
feasible with the level of detail in the reports). The dataset contains five event logs from
applications for building permits in different Dutch municipalities. Hence, we can reuse
the sample pipeline to analyze our framework in (slightly) varied circumstances.

We first categorized the applied transformation operations from the reports and as-
sembled the three most common operations into the pipeline from the last row of Ta-
ble 3. First, the log preparation loads the log and performs computations that ease the
analysis. That is, the log specifies an activity code which is the activity identifier, but
also contains a sub-process identifier and an order index. As the sub-process identifier
is used for log consolidation, we extract it into a separate feature. Because events were
logged in batch with overlapping timestamps, we follow advice from the BPIC orga-
nizers and establish the execution order based on the order index. After that, we apply
a time window filter to remove traces that started or completed outside a window de-
fined by pipeline parameters start and end date. This operation addresses the drifts
in the log which impact the discovery, and we here consider a time window from sum-
mer 2013 to spring 2014 in which no drift occurred. If parameter activated is set to
true, we perform a consolidation in which we define the sub-process identifier as the
activity classifier. Further, in each trace we only keep the first and last sub-process event
and set the event lifecycle state to started for the first event, and retain completed
for the last. Next, a frequency filter can reduce the complexity of the discovered process
model by selecting events and traces based on the activity and variant frequency.
Lastly, we apply the infrequent lifecycle variant of the inductive miner [19] where the
noise threshold also allows for filtering behavior.

To systematically study the effects of combining different operations, we vary the
subset of relevant parameters from the above six parameters, and set the remaining
parameters to default values. The relevance of parameters for the variants and their
probability measures are summarized in Table 3. V1 establishes a baseline in which we
only vary the parameters of the time window filter. Here, we expect that the absence of
drifts in the considered period (summer 2013 to spring 2014) guarantees a consistent

12https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments

https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments
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Table 3: Pipeline specification for the experiment including the parameters’ emp-irical
or uni-form distributions; their rel-evance for the variants V1–V5 where a default value
is provided for irrelevant parameters (0, 1, f – false, t – true); and the parameter values
that were used to generate baseline profiles for different consistency measurements.

Probabilities Variants Baseline Profile Generation
Parameter Type From To V1 V2 V3 V4 V5 norm abst simp mod comp

start date emp 1/5/13 30/6/13 always relevant always set to 1/6/13
end date emp 1/4/13 31/5/14 always relevant always set to 30/4/14
activated uni f t f rel f f rel f t f f f
activity freq. uni 0 1 1 1 rel rel rel 1 1 .2 .35 .5
variant freq. uni 0 1 1 1 rel 1 rel always 1
threshold uni 0 1 0 0 0 rel rel always 0

Log Preparation

BPIC 2015 Pipeline

Time Window Filter
start date

end date

Consolidation
activated

Frequency Filter
activity freq.

variant freq.

Inductive Miner
threshold

discovery for slightly varied start and end dates. To study the impact of model
consolidation, V2 additionally considers the activated parameters. Here, we expect
that the information loss which is inadvertently linked to abstraction leads to a drop
in the consistency, but that the discovered models are largely consistent, as we rely on
a clearly defined process hierarchy. In V3 and V4, we add different ways of behavior
filtering to V1: while both variants utilize the activity frequency, V3 additionally
combines it with the variant frequency and V4 with the noise threshold. We
hypothesize that these filters interact with the time window filter, which influences the
frequencies in the intermediate log. Finally, in V5 all parameters are relevant.

To investigate the pipeline consistency, we focus on the overall model consistency
using the profile-based consistency. In this regard, different baseline models and thus
base profiles emulate different degrees of complexity of discovered models (see Ta-
ble 3). All profiles are derived from the log for the default time window. The normative
(norm) profile has the highest complexity. It is discovered directly from the default time
window log and used for all variants. For V2, we also use an abstract (abst) profile
obtained by activating the consolidation. Lastly, for V3 and V4 we aimed to replicate
different model complexities in line with the model complexities found in the reports
(Table 1). We generate the simple (simp), moderate (mod), and complex (comp) profiles
by varying the activity frequency to obtain models with ≈10, ≈20 and ≈35 of the
most frequent activities. We did not use the variant frequency or noise threshold,
as their effects on the model complexity differed across the five logs. Yet, the profile-
based consistency still allows us to assess their influence on the discovery results.

4.2 Results

In the analysis, we considered a sample size of k = 1,000 for all combinations of
pipeline variants and consistency measurements. To ensure that this sample size yields
reliable results, we first investigated the convergence of the mean consistencies, vari-
ances, and total effect indexes. That is, we computed the values that we obtain for these
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Municipality 1 Municipality 2 Municipality 3 Municipality 4 Municipality 5 V
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2
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

normative

abstract
normative

complex
moderate

simple
normative

complex
moderate

simple
normative

normative

Fig. 4: Mean consistencies (dot) and variances (error bars) for pipeline variants

measures for sample sizes less than 1,000 and observed that for sample sizes larger than
500, all measures yield values that are very close to the respective values obtained for
k = 1,000 on all five logs for all variant/measurement combinations. While this ensures
the reliability of our experiment, it also demonstrates that measuring the convergence
of the values is a strategy to control the number of pipeline executions in real-world
situations. We did not investigate the run-time performance explicitly, but observed that
the inductive miner accounted for a large part of the execution time and that its perfor-
mance depended (unsurprisingly) on the complexity of the input log. To compute all
metrics per variant and dataset, on a customary laptop (Processor: i5-8350U 1.70 GHz;
RAM: 16GB) and using parallel execution we yielded execution times between one and
two hours for (V1); but below 5min for V3–V5, due to complexity reductions in the in-
termediary logs. Note that this is only a rough indication for the run-time performance,
for which we leave deeper investigation and optimization to future work.

We first investigate the uncertainty for each variant and consistency combination,
see Figure 4. A first observation is that the consistency of the normative model is very
high ( f j > .9) for V1. This is in line with our expectations, as we knew from the reports
that the considered period does not contain drifts. Slight variations in the model can
be attributed to a few outlier cases that might occur around the default start and end
date. For V2 we also confirm our expectations, as the model consistency drops ( f j > .7)
due to some information loss caused by the consolidation, but is still high. Note that
this holds for the abstracted and the normative model, indicating that log abstraction
is a reliable means for complexity management. Lastly, the variants that apply filtering
(V3–V5) yield very low consistency measures ( f j < .5). While we expected some inter-
action with other parameters, we were surprised by the magnitude of the effect of this
interaction. However, this observation is in line with guidelines from [11] that postulate
to carefully apply random subset selection, as it – in contrast to strategic selection, like
the date window filter – can affect the quality of the discovered model. We consider the
filter parameters from V3–V5 to fall in this category, as it is hard for analysts to predict
the effects of certain value combinations. Moreover, the negative effects pertain all base
profiles which shows that the filters affect a large range of the relations and that a broad
range of possible behavior can be generated by modifying the respective parameters.
Overall, the coherence of our expectations and existing guidelines with the experiment
results substantiates the reliability of the consistency measurement.

To study the sensitivity analysis, we focused on the three variants with filtering (V3–
V5) and the normative base profile which overall yielded the largest variance across all
logs. The total effect indexes for all parameters per variant and log are shown in Figure 5
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Municipality 1 Municipality 2 Municipality 3 Municipality 4 Municipality 5

V3

V4

V5
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variant frequency
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end date
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activity frequency

end date
start date

threshold
variant frequency
activity frequency

consolidate
end date

start date

Fig. 5: Total effect indexes for the normative profile and variants V3–V5

where higher values for a parameter indicate a stronger contribution of this parameter
to the variance. In line with the uncertainty analysis for the variants, the total effect
indexes show the frequency and threshold parameters to contribute the most to the
uncertainty in the model topology. This provides evidence towards the utility of the
sensitivity analysis: an analyst can determine the most influential parameters without
manually inspecting possible parameter or pipeline variations. Another interesting find-
ing is that the time window filter and consolidation parameters, which without filtering
only impacted the consistency a bit, have a stronger influence in variants V3–V5. This
demonstrates that analysts need to carefully assemble discovery pipelines and cannot
assume that a ‘stable’ operation can be straightforwardly reused in other contexts.

5 Related Work

Research has studied issues related to data quality and quantity, in order to ensure that
high quality process models can be obtained from event logs. Classifications of data
quality issues [8] and data quality patterns for event logs [40] allow for systematic
cleaning of event logs to increase process mining result quality. Fitness, precision, gen-
eralization, and simplicity have been adopted as metrics to evaluate the quality of a
process model based on the event log that served as the input for a process discovery al-
gorithm [1]. Conformance checking allows to obtain further details about if and how an
event log deviates from a process model for qualitative evaluation [12,30]. Also, meth-
ods have been proposed to balance the behavioral quality of a discovered process model
with its complexity, in order to facilitate human inspection. For example, in [20] event
attributes are used to generate hierarchical process models that better represent different
levels of process granularity. A statistical pre-processing framework for event logs that
reduces the amount of data needed to produce high quality process models is presented
in [7]. Similarly, the influence of subset selection on the model quality was examined
in [11] where it was shown that, in contrast to random-based selection, strategic sub-
set selection increases the model quality. The taxonomy of log and model uncertainty
from [26] considers issues like incorrectness, coarseness, and ambiguity, and allows for
obtaining upper and lower uncertainty bounds for conformance checking.

Related work also proposed approaches for automatically extracting and evaluating
process discovery insights. An automatic approach that compares different process vari-
ants with the goal to obtain valuable insights is introduced in [6]. In more detail, the best
and worst-performing variants with respect to a set of key performance indicators are
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determined and their differences are presented to the analyst. ProcessExplorer [38] au-
tomatically computes potential subsets of cases and evaluates the interestingness based
on statistical differences between insights from the subsets and from the entire event
log. Leemans et al. [21] introduce an automatic extraction approach to obtain cohorts
from event logs via trace attribute analysis. The authors measure the stochastic distance
between trace attribute cohorts to identify their influence to the process model behavior.

Complementary to these techniques, patterns, and guidelines, our consistency frame-
work enables analysts to, in a concrete context, explicate how their decisions, that un-
derlie the configuration of a discovery pipeline including its log transformations and
discovery algorithms, affect model properties at different granularity levels.

6 Conclusion

In this work we presented a first framework for debugging of process discovery pipelines.
We demonstrated the potential effects of pipeline operations on the discovered models
and discussed the implications for downstream decision making. Next, we proposed a
debugging framework which relies on uncertainty and sensitivity analysis, in order to
assist analysts in assessing the consistency of their insights and to quantify the contribu-
tion of pipeline parameters to potential inconsistencies. In an experiment on real-world
event logs, we assessed the utility of our framework and found that the uncertainties
and explanations delivered by the framework were well-grounded.

As mentioned in Section 3.2, comparative evaluations of consistency measures are
required to improve the framework’s applicability. Beyond that, research opportunities
ensue specifically regarding its usability, computational performance, and broader ap-
plication and evaluation. Usability topics comprise suitable user interfaces for tools,
but also the generalization towards other process mining methods including declarative
process mining; support for determining relevant parameters (e.g., via screening [36])
and their probability distributions; and means to diagnose and break down inconsis-
tencies. Moreover, repeatedly executing a pipeline for different configurations can be
time-consuming. While screening methods can help to reduce the number of relevant
parameters, integrated uncertainty propagation [24] or emulators [36] might speed up
the analysis. Lastly, applying the framework to a larger set of real-world scenarios could
potentially reveal and confirm (anti-)patterns for process mining pipelines [40].

In general, we believe that applying software engineering practices, as proposed in
the context of machine learning [3], is relevant for process mining as well. While tradi-
tionally process mining techniques have been made available via visual idioms which
combine visual representations and user interaction techniques, packages like BupaR
and pm4py have brought process mining to open data processing environments like R,
Python, Apache Spark, etc. This enables a paradigm shift towards script-based analy-
sis, where the ability to seamlessly integrate data processing, data mining, and machine
learning techniques and tools can ease the definition, execution, documentation, and
sharing of process mining pipelines, and reduce their fragmentation. In this regard, chal-
lenges from machine learning include testing, experiment management, transparency,
and troubleshooting [4]. Empirical studies into the practices of process analysts, such
as [18], can help to refine those challenges in the context of process mining.
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