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Abstract. Medical ultrasound imaging has gained widespread prevalence in 
human muscle and internal organ diagnosis. Nevertheless, various factors such 
as the interference effect of ultrasonic echoes, mutual interference between scat-
tered beams, inhomogeneity and uncertainty in the spatial distribution of human 
body tissue, inappropriate operation, and imaging signal transmission processes, 
can lead to noise and distortion in ultrasound images. These factors make it dif-
ficult to obtain clean and accurate ultrasound images, which may adversely af-
fect medical diagnosis and treatment processes. While traditional denoising 
methods are time-consuming, they are also not effective in removing speckle 
noise while retaining image details, leading to potential misdiagnosis. There-
fore, there is a significant need to accurately and quickly denoise medical ultra-
sound images to enhance image quality. In this paper, we propose a flexible and 
lightweight deep learning denoising method for ultrasound images. Initially, we 
utilize a considerable number of natural images to train the convolutional neural 
network for acquiring a pre-trained denoising model. Next, we employ the 
plane-wave imaging technique to generate simulated noisy ultrasound images 
for further transfer learning of the pre-trained model. As a result, we obtain a 
non-blind, lightweight, fast, and accurate denoiser. Experimental results 
demonstrate the superiority of our proposed method in terms of denoising 
speed, flexibility, and effectiveness compared to conventional convolutional 
neural network denoisers for ultrasound images. 

Keywords: Plane-wave Imaging, Noise Transfer Learning, Non-blind Ultra-
sound Image Denoising, Lightweight Model. 
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1 Introduction 

Ultrasound imaging has become a widely used medical imaging modality due to its 
relative safety, affordability, and portability [1]. Unfortunately, hardware acquisition 
and ultrasound scattering can introduce severe noise into the signal, leading to corrupt 
textural structure and image details and impeding the clinician's accurate diagnosis 
and assessment. The difficulty of reducing the above-mentioned noise arises due to its 
tissue-dependent and non-uniform modeling. The generation of noise in medical ul-
trasound images is a complex phenomenon, attributable to the interaction of backscat-
tered coherent waves from multiple fundamental scatterers with varying phases, re-
sulting in random and constructive or destructive disturbances. This interference is 
labeled as speckle noise, a granular texture pattern that may potentially provide useful 
diagnostic information [2]. Speckle noise affects all coherent imaging systems, in-
cluding medical ultrasound [3], and exhibits multiplicative behavior that is strongly 
associated with non-Gaussian statistics. Conventional filtering techniques are not 
suitable for addressing speckle noise due to their primary design to suppress additive 
noise. Although several advanced processing methods have been developed by re-
searchers to eliminate or reduce speckle noise, they do not consider preserving im-
portant details such as edges and lines in the image [4][5]. Consequently, eliminating 
speckle noise from medical ultra-sound images while preserving pertinent details 
remains a "classical challenge" for researchers. 

Most current deep learning-based ultrasound denoising methods are constrained by 
the scarcity of training images and clean images. G. Sobhan, et al. [6] proposed a 
novel beamforming method based on deep learning that accurately maps pre-
beamformed channel data to the output image by leveraging a sufficient number of 
ground-truth echogenicity maps obtained from the transformation of real photograph-
ic images. Their method successfully improved resolution and contrast of plane-wave 
imaging while preserving frame rate, addressed the scarceness of training and labeled 
data, and removed background speckle noise in ultrasound images. Nonetheless, their 
model did not employ the Dirac delta function as the point-spread function (PSF) for 
ultrasound image formation, thus only reducing background speckle noise without 
considering other interfering clutter embedded in the actual ultrasound images such as 
side lobes and grating lobes. All the existing learning methods have the challenge of 
obtain the ground truth of clean ultrasound image. 

In stead of working on the imaging end, this paper presents a deep learning-based 
denoising model for ultrasound images as a post-processing step. We utilize synthetic 
noisy images to achieve precise control. The proposed approach is capable of effi-
ciently eliminating various noises such as speckle noise, while preserving image de-
tails. Code is available at: https://github.com/daming876/image-denoise. 
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2 Related Work 

2.1 Deep Learning Network  Denoiser 

The denoising methods can be divided into three categories: filter-based, model-
based, and machine learning and deep learning algorithm. Dabov, Kostadin et al. 
proposed BM3D [7], which utilizes sparse representation in the transform domain, 
non-local image similarity, and a 3D filtering method based on block matching to 
achieve strong image denoising performance, and small mean squared error. Gu [8] 
used different weighting characteristics of the WNNM algorithm and image non-local 
self-similarity to obtain better model-based image denoising results. However, these 
traditional methods are difficult to deal with the non-smooth part of the image, and 
the texture information of the image can not be effectively preserved while denoising, 
generally  the image is blurred after denoising. With the development of deep learning 
technology, many researchers put forward the method of using deep learning to de-
noise images. Sil, et al. [9] proposed a method that utilizes convolutional neural net-
work transfer learning for image classification and denoising. This method can accu-
rately predict the noise model and is particularly effective for blind image denoising.  
Zhang et al. [10] introduced a method which is Residual Learning of Deep CNN for 
Image Denoising (DnCNN), which employs the residual algorithm for gradual im-
provement of CNN models. However, these methods tend to be limited in their effec-
tiveness for specific noise levels, thus restricting their versatility. As a solution, Zhang 
Kai et al. developed an fast and flexible denoising network (FFDNet) [11] for de-
noising, based on DnCNN. The FFDNet method downsamples the input image and 
divides it into four sub-images, each sub-image acquiring an eigenvalue, followed by 
the addition of noise generated through the Additive White Gaussian Noise (AWGN) 
method. After CNN processing, upsampling is performed to regain the overall output 
image. The resulting image is denoised through the successful FFDNet method, which 
manifests improved denoising effects on images with varying noise levels. 

2.2 Transfer Learning 

The insufficiency of data sets is a prevalent issue faced by deep learning networks. 
Due to the sensitive nature of medical ultrasound images with respect to patient priva-
cy, a similar lack of data sets is prevalent in this domain. Furthermore, even if abun-
dant data sets were available, training a neural network from scratch would incur 
prohibitive costs. Consequently, most models aim to simplify the network to reduce 
data requirements. As a viable alternative, transfer learning can overcome these chal-
lenges effectively. In this paper, we adopt the definition of transfer learning by most 
researchers [12], which involves transferring pre-trained model parameters to enable 
new model training. Since most data or tasks are related in some way, transfer learn-
ing allows us to share the previously acquired model parameters with the new model, 
thereby accelerating and optimizing learning efficiency without the need to start from 
scratch [13]. 
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3 Proposed Method 

3.1 Plane-wave Imaging Technique 

In the clinical setting, acquiring a sizeable corpus of clear ultrasound images along-
side noisy counterparts proves arduous. In addition, it is imperative to preserve the 
unaltered fine structure of the denoised image owing to the unique attributes of medi-
cal images. To tackle this predicament, we leverage the plane-wave imaging tech-
nique to simulate a vast number of noisy ultrasound images that align with clean natu-
ral images, thus constituting the training dataset. Plane-wave imaging improves imag-
ing frame rates significantly by concurrently activating the entire aperture of the ar-
ray, thereby generating images of the complete region in a single emission [14, 15].To 
enhance the quality of plane-wave imaging, coherent plane wave compounding 
(CPWC) was proposed [16]. A uniform linear transducer array comprising N ele-
ments is used for transmission and reception. The received delayed echo signals from 
the aperture are delay-compensated based on their distances from the imaging point 
P(xp, zp). The delay-compensated signals are then coherently summed to create the 
output of a single plane wave imaging (PWI) as expressed by Eqn. (1): 

YPWI(p) = �ωi

N−1

i=0

xi(p)          (1) 

where ω is the weighting factor of length N, and xi(p) is defined as a vector contain-
ing the RF data recorded by the i-th element, corresponding to each pixel P(xp, zp) in 
the imaging field. Assuming that the transmit beam is steered in M different angles 
θm, then the final output of CPWC imaging can be obtained by coherently summing 
the values obtained from each plane wave for the imaging point P(xp, zp), and can be 
defined as Eqn. (2): 

YCPWCI(p) =
1
M
� Y(p, θm)
M

m=1

         (2) 

The collected backscattered ultrasound signal 𝑥𝑥𝑖𝑖(𝑝𝑝) in Eqn. 1 can be expressed as 
the convolution of the tissue reflectivity function (TRF) and the point spread function 
(PSF) of the imaging system. The TRF represents the pixel information of the pristine 
natural image, it accounts for the position and size of the pixels and replaces the posi-
tion and scattering intensity of the scatterers, respectively. Nevertheless, due to vari-
ous assumptions of the ultrasound imaging system, the observed signal 𝑥𝑥𝑖𝑖(𝑝𝑝) can only 
signify an approximation of the real signal, more specifically, the collected ultrasonic 
signal consists the original signal as well as various noise and interference items, in 
which case the signal model in Eqn. (1) can be modified into: 

xi(p) = oi(p)mi(p) + ai(p)         (3) 

where  mi(p) and ai(p)  represent the components of the multiplicative and additive 
noise respectively, and oi(p) and xi(p), the original and observed signal respectively. 
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Consequently, the evaluated ultrasound noise level can be expressed as the difference 
between the acquired signal and the real signal, it can be expressed by the Eqn.4: 

N(p) = Y(p) − O(p)          (4) 
where N(x,y), Y(x,y), and O(x,y) indicate the noisy image, the transferred ultrasound 
image, and the natural image,  respectively. 

3.2 Denoiser Analysis 

We use FFDNet as our basic network which utilizes a flexible and efficient network 
architecture for image denoising. It can handle varying noise levels and spatially 
transformed noise by taking a controllable noise level map as input. The input clean 
image (𝐼𝐼𝐼𝐼𝑖𝑖) has a size of c × h × w. To improve processing speed, 𝐼𝐼𝐼𝐼𝑖𝑖  is sliced into 
c × h/2 × w/2 patches using a downsampling technique. The patches are grouped 
into different channels based on their colors, resulting in a total of 4 channels, each 
with a size of c × h/2 × w/2. Consequently, the image pixels become 1/4 of their 
original size. In FFDNet, Additive White Gaussian Noise (AWGN) is used to emulate 
camera noise. AWGN follows the Gaussian distribution and is added to 𝐼𝐼𝐼𝐼𝑖𝑖   to pro-
duce a noisy image (𝑁𝑁𝐼𝐼𝑖𝑖)). 

Fig. 1. (a) Architecture of  Pre-trained Model for Noisy Natural Image Denoising,  (b) Archi-
tecture of  Deep Learning with  Noise Transfer Learning for Simulated Noisy Ultrasound Image 

Denoising. 

The different AWGN are generated according to different noise levels (σ) and 
combined with the four downsampled submaps to form a five-channel noisy image. 
The first layer comprises Conv+Relu, The intermediate layer assumes a convolution 
form, employing multiple Conv+BN+Relu operations. BN has the ability to enhance 
the convergence of the neural network model and improve the generalization of the 

 

 

(a) 

(b) 
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model. The ultimate layer is Conv, which executes convolution using a filter of size 
n × f × f. The  loss  is determined as Eqn. (5), 

 L(θ) = 1
2𝑚𝑚
∑ �Ｆ�𝑁𝑁𝐼𝐼𝑖𝑖,σ; θ� − IMi�

2m
𝑖𝑖=1         (5) 

Adam is a first-order optimization algorithm that facilitates iterative updates to the 
weight of a neural network by utilizing training data. Specifically, when Adam is 
utilized to compute the minimum value of the loss,  the loss gradually decreases dur-
ing the training process at different epochs.  

3.3 Noise Transfer Learning Model 

Transfer learning entails transferring the trained parameters of a pre-existing model to 
aid in the training of a new model [17]. The pre-trained and newly trained models are 
affiliated in terms of the majority of the data or tasks. Specifically, the pre-trained 
model  is trained using natural images that include additive noise, whereas the transfer 
learning model is trained using ultrasound images that encompass speckle noise, and 
other forms of clutter noise. The transfer learning technique utilized in this paper 
gradually progresses from simple additive noise denoising to complicated noise de-
noising present in ultrasound images. We have designated natural images in the pre-
trained model as the domain source (DS), and the task of denoising natural images as 
the learn source (LS). Transfer learning involves using simulated noisy ultrasound 
images as domain target (DT), and learning target (LT) involves the denoising of 
ultrasound images. The goal of transfer learning is to enhance object inference in DT, 
drawing on knowledge learned in DS and LS. Specifically, transfer learning capitaliz-
es on similarities between the features of DS and DT, as both focus on image learn-
ing. DS incorporates natural images with additive white Gaussian noise (AWGN), 
while DT involves simulated noisy ultrasound images with speckle noise, among 
other variations. The pre-trained model as shown in Fig. 1(a).The loss of the noise 
transfer learning model differs from the pre-trained model.  

𝐿𝐿(θ) =
１

2m
�‖F(𝑁𝑁𝐼𝐼𝑖𝑖; θ) − IMi‖2
m

i=1

      (6) 

The loss, denoted by L(θ), is computed based on both real and estimated noise as 
shown in  Eqn. (6). Where 𝐼𝐼𝐼𝐼𝑖𝑖  is clean image，𝑁𝑁𝐼𝐼𝑖𝑖 is simulated noisy ultrasound 
image, θ is noise level map. 

3.4 Downsampled Images 

In this study, for improvimg the execution efficiency of the model, we leveage a re-
versible down-sampling layer that shapes the input image into a series of smaller sub-
images. Specifically, we set the down-sampling factor to 2, which substantially en-
hances speed without reducing modeling ability. The down-sampled sub-image is 
presented to the CNN for feature extraction, which consequently extends the receptive 
field. Finally, the image is restored by upsampling. 
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3.5 Noise Level Map and Model without Noise Transfer Learning 

To enable flexible adjustment of image denoising intensity, a noise level map can be 
employed to regulate the denoising level of the denoiser. In [18], the technique of 
adjusting the noise level map is applied to add noise to the image, which bears resem-
blance to the approach presented in this study. Figs.1 demonstrate the integration of 
the noise level map with the input image in a Convolutional Neural Network (CNN). 
The input image is segmented into patches, and the obtained noise level map is joined 
with the input image to create a new channel. In Fig. 1(a), σ represents the noise level, 
which is randomly selected from a uniform distribution. Different from the pre-
trained model, in Fig. 1(b)  actual noise is measured initially. The standard deviation 
(STD) of the noise is estimated using Eqn. (7). 

σ = �∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1
             (7) 

σ represents the noise level of an ultrasound image, where �̅�𝑥 denotes the image's aver-
age noise level and 𝑥𝑥𝑖𝑖 represents the pixel value of the noisy image. As STD is a real 
number and cannot be applied to a batch of images, we formulate a batchsize noise 
level map by combining the noise across the batch of images. The degree of denoising 
and preservation of image details varies with different noise level map. A high σ val-
ue indicates a greater degree of denoising, but a lower retention of image details.  

This paper proposes denoisers for transfer learning and non-transfer learning that 
incorporate controllable noise level maps to accommodate different noise levels in 
denoising images, thereby enhancing the flexibility of our denoising model. In Eqn. 
(6), using noise=𝑁𝑁𝐼𝐼𝑖𝑖-𝐼𝐼𝐼𝐼𝑖𝑖 , we can obtain the noise of each image in the training set, 
and then use Eqn. (7), we obtain the STD of noise, use Eqn. (6) to construct a loss, 
which can make our model flexible and controllable for non-blind denoising.For 
model without noise transfer learning, we use data set C to train CNN, σ value and 
loss in the same way as model with noise transfer learning. 

4 Experimental Results 

• Dataset A: The Waterloo Exploration Dataset (WED) [19] includes rich natural 
image information such as houses, cars, people, fruits, animals, etc. In order to fa-
cilitate the generation of simulated noisy ultrasound images and train model, we 
convert 4744 RGB natural images into gray. 

• Dataset B: The Berkeley Segmentation Dataset (BSD400) [20] as validation da-
taset, it contains 400 grayscale images of size 180╳180.  

• Dataset C: 300 clean images which sourced from the WED and their correspond-
ing simulated noisy ultrasound images as training dataset.  

• Dataset D: The Berkeley Segmentation Dataset (BSD68) [21] as validation da-
taset, it contains 400 grayscale images of size 256╳256. 

• Dataset E: 50 breast ultrasound images for testing, obtained from the cooperative 
hospital . 
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Table 1.   Datasets in this paper. 

Dataset A Dataset B Dataset C Dataset D Dataset E 

WED BSD400 WED BSD68 Breast ultrasound 
images 

4744 images 400 images 300 images 68 images 50 images 
RGB to gray gray RGB to gray gray gray 
Not-fixed 180╳180(size) Not-fixed 256╳256(size) Not-fixed 

4.1 Obtaining Simulated Noisy Ultrasound Image  

The natural images datasets A, B, C, and D are transferred to the ultrasound image 
domain using the Field II simulator [22, 23]. The datasets are simulated using a stand-
ard L11-4v probe (Verasonics Inc., Redmond, WA). The probe settings as shown in 
Table 2, and the dataset used for model training was simulated using a 5.208 MHz 
transmission with a bandwidth of 77% and a sampling frequency of 30.4 MHz. Use 
dataset A, B, C, and D create 2-D distribution of scatterers whose depth is 10 cm 
based on the pixel information of the original image.  

Table 2.    Full parameters used in Field II  simulator. 

Parameter Value Parameter Value 

Center frequency cf  7.6 MHz Sampling frequency sf  4 cf  

Element width 0.27 mm Element kerf 0.03 mm 
Number of elements 128 Pitch 0.3 
Fractional bandwidth 77 % Element height 5 mm 
Speed of sound c  1540 m/s Focal depth 18mm 

4.2 Experiments on  Pre-trained Model and Transfer Learning Model 

The pre-trained model needs to be obtained by training it on Dataset A and validat-
ing it on Dataset B. As per the assumptions made in references [24], the noise in the 
camera can be considered as AWGN. To avoid introducing visual artifacts caused by 
the tradeoff between noise reduction, noise level adjustment, and image detail preser-
vation, we employ the orthogonal initialization method for convolution filters. The 
results in Fig. 2(c) demonstrate that the pre-trained model yields superior denoising 
efficacy in natural image AWGN at different change spaces. Specifically, Fig. 2(f) 
indicates that the pre-trained model's denoising efficacy for ultrasound images is gen-
eral. Therefore, further noise transfer learning is necessary to enhance the pre-trained 
model's capacity for denoising ultrasound images. The subsequent procedure involves 
an experiment in noise transfer learning.  

The simulated noisy ultrasound images corresponding to Dataset c are fed into the 
pre-training model to continue training and then fine-tune the model parameters. To 
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achieve non-blind denoising and enhance the denoising performance for images with 
varying noise levels using the noise transfer learning model, we initially calculated 
the standard deviation of the noise to determine the noise level. Based on this, we 
constructed a noise level map containing the noise levels for a batch of images. The 
model was trained using simulated noisy ultrasound images and their corresponding 
noise level maps. Fig. 2(h) shows that our noise transfer learning model achieved 
state-of-the-art performance in denoising ultrasound images, and exhibited strong 
ability in denoising images with varying noise levels. 

 
Fig. 2.   Result of image denoising using different model . For natural image: (a) clean natural 

image, (b) AWGN noisy image, (c) denoising with Pre-trained Model. For simulated noisy 
ultrasound image: (d) simulated noisy ultrasound image, (e) denoising with CGAN,  (f) de-
noising with Pre-trained Model, (g)denoising without transfer learning model, (h) denoising  

with transfer learning model. Denoising with transfer learning model achieves state-of-the-art. 

Table 3.   The results of PSNR、SSIM obtained from the other model for denoising simulated 
noisy ultrasound images. pix2pixGAN denoising does not need Sigma adjustment. 

Model Sigma=25 Sigma=40 Sigma=55 

 PSNR 
(dB) SSIM PSNR 

(dB) SSIM PSNR 
(dB) SSIM 

pix2pixGAN 23.51 0.7352 \ \ \ \ 
CNN Pre-trained model 21.93 0.7230 21.21 0.7115 19.61. 0.6236 

4.3 Experiments  Without Transfer Learning and Other Model 

We use the CNN model for image denoising is discussed in Section 3.2 which is non-
transfer learning, then we use Dataset D for testing. Results as shown in Table 3., the 
PSNR and SSIM performance are not as impressive as those with noise transfer 
learning method, and as Fig. 2(g)  illustrates, the model without transfer learning is 
less effective than the noise transfer learning model.Then, the experiment is compared 
with other denoising methods. In recent years, there are serveral studies on image 
denoising using pix2pix Generative Adversarial Network (pix2pixGAN) [25, 26]. For 
the pix2pixGAN, we take the simulated ultrasound image as the input image and the 
clean image as the limiting condition, the denoised image was compared with the 
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clean image, leading a PSNR of 23.51 and SSIM of 0.7352, as shown in Table 3. The 
denoised image had distortion and contour distortion, as shown in Figure 2(e) . 

4.4 Ablation Study 

To justify the effectiveness of the model with transfer learning，we conducted the 
following experiments on Dataset D for testing. The detailed process of the experi-
ment is described in section 4.2 and 4.3. See Table 4, when the noise level (our de-
noising parameter) was 40, model with transfer learning can enhance the average 
PSNR by approximately 3.17% and the average SSIM by approximately 10.84%. 
When the noise level was 25, model with transfer learning can enhance the average 
PSNR by approximately 6.99% and the average SSIM by approximately 9.40%. Ob-
viously, the denoising effect of the model with transfer learning has been improved. 
When Sigma is greater than 25, the denoised image is too smooth, causing serious 
problems of blurred edges and loss of detail, so when Sigma is 25, the proposed mod-
el can achieve the best denoising effect. 

Table 4.   The results of PSNR、SSIM obtained from the proposed model with and without 
transfer learning for denoising simulated noisy ultrasound images. 

Model Sigma=25 Sigma=40 Sigma=55 

 PSNR 
(dB) SSIM PSNR 

(dB) SSIM PSNR 
(dB) SSIM 

Proposed model without 
transfer learning 23.15 0.8232 23.01 0.8035 20.15 0.6010 

Proposed model with 
transfer learning 24.77 0.9006 23.74 0.8906 20.88 0.6565 

4.5  Experiments on Real Ultrasound Images 

Fig. 3.   From top to bottom:  real breast ultrasound image, denoised image without transfer 
learning, denoised image with transfer learning. 

Using dataset E, we fed real breast ultrasound images into pix2pixGAN and our noise 
transfer learning models. The denoising time of pix2pixGAN is 0.1572s, the time of 
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our proposed model is 0.1090s, and the denoising time is reduced by 44%, As shown 
in Fig. 3, we found that non-transfer learning will distort the ultrasound image and 
cause the loss of the details of the ultrasound image when the same noise level is em-
ployed. It is evident that the implementation of transfer learning for ultrasound image 
denoising purposes is substantially more effective than non-transfer learning.   

5 Conclusion 

This paper proposes a novel approach to denoise ultrasound images using a deep 
learning model, which incorporates a noise generation synthetic for fast and light-
weight denoising. The model design and training involve the utilization of plane-wave 
imaging technique, CNN, transfer learning. However, using our proposed method to 
denoise the real ultrasound image, a small amount of speckle noise is still retained in 
the lesion area, and there is a slight distortion in the image. In the future, we will use 
the downstream task to verify the benefits from denoising, and invite clinicians to 
score images by observation, to verify the impact of the ultrasound image denoising 
model on clinical diagnosis. 
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