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Abstract

Discovering clusters in social networks is of fundamental and practical interest. This
paper presents a novel clustering strategy for large-scale highly-connected social net-
works. We propose a new hybrid clustering technique based on non-negative matrix fac-
torization and independent component analysis for finding complex relationships among
users of a huge social network. We extract the important features of the network and then
perform clustering on independent and important components of the network. Moreover,
we introduce a new k-means centroid initialization method by which we achieve higher
efficiency. We apply our approach on four well-known social networks: Facebook, Twit-
ter, Academia and Youtube. We experimentally show that our approach achieves much
better results in terms of the Silhouette coefficient compared to well-known counterparts
such as Hierarchical Louvain, Multiple Local Community detection, and k-means++-.

Keywords: Network Clustering, Dimensionality Reduction, Non-negative Matrix Fac-

torization, Independent Component Analysis, NMF-k-means, centroid initialization

1. Introduction

Social networks, paper citation networks, gene regulatory networks, and other large-
scale networks have penetrated into all aspects of our real life. These networks usually
have complex structure and various components [1]. Moreover, the high dimensional and
sparse data of these networks have brought unprecedented challenges to existing network
mining technologies. To address these challenges, network embedding is designed to learn
the low dimensional representation of nodes, while preserving the structure and inherent
characteristics of the network [2]. It can be effectively used by vector-based machine learning
models for mining tasks, including node classification, personalized recommendation and link
prediction [3].

Many relationships including those of people in social media can be embedded into a
graph structure. However, blindly connecting all the entities together makes any network
extremely complex. One way to better understand the network is to group its nodes based on
their characteristics, such that nodes with similar specifications are grouped into a cluster.
One way to classify nodes in a network is to categorize it in such a way that one node can
be recognized by its group of neighbors. However, determining the proper group for the
nodes in the network is not an easy task. In this regard, researchers have developed many
clustering algorithms and then applied them to various datasets [4-9]. Nevertheless, there
is no consensus on what the best clustering algorithm means. In general, one can claim that
the best clustering algorithm is the one that gives more information about the nodes [10].
This can be accurately measured by using the Silhouette coefficient metric.

Youtube, Twitter, Facebook, and Academia datasets contain a list of all user-to-user
links [11]. These links provide peer-to-peer relationships among different users. Generally,
the related work in this domain targets a specific dataset with a limited number of nodes,
does not consider the Silhouette coefficient as a performance metric, or is not efficient in
terms of execution time. Our main objective in this work is to design an efficient clustering
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approach, by which one can determine the best number of clusters for a large-scale and
complex network, as well as the membership of users to clusters for a given number of
clusters. In this work, we introduce a novel clustering algorithm for social networks. We
experimentally show in terms of the Silhouette coefficient that our method outperforms
other state-of-the-art approaches in this domain. Specifically, our contributions can be
summarized as follows:

e introduce a new clustering approach by which one can perform community detection
and find complex relationships among users. Our clustering approach uses Non-
negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and
k-means. Our approach is computationally efficient as it uses sparse matrices.

e develop a new centroid initialization technique for k-means.

e analyze the experimental results of the proposed approach using the Silhouette
coefficient by applying it to four well-known social networks: Facebook, Twitter,
Academia, and Youtube, and compare the results with the state-of-the-art tech-
niques.

The rest of this paper is organized as follows: related work is investigated in Section 2.
The required background to understand the paper is detailed in Section 3. The proposed
approach is presented in Section 4. Section 5 reports the experimental results. Section 6
concludes the paper and includes some future research directions.

2. Literature Review

k-means++ et. al. [12] is one of the most popular clustering techniques. This algorithm
divides the network into k clusters, where each cluster is defined by a reference node (cen-
troid). The remaining nodes are then partitioned and assigned appropriately to the clusters
based on the closeness of each node to k reference nodes. Then, cluster adjustments are
made with the calculation of new centroids. These centroids act as new reference points for
the next partitioning of all the nodes.

Yazdanparast et. al. [4] proposed a new clustering technique for overlapping clusters
using a fuzzy system. They developed Fast Fuzzy Modularity Maximization (FFMM) for
finding communities in overlapping networks. They applied the modularity gain along with
fuzzy membership value of network vertices to define proper communities. Their approach
is simple in terms of computations overhead. However, it does not consider the Silhouette
score as an evaluation metric.

Priyanka et. al. [5] proposed a new clustering technique using the Facebook social net-
work. They proposed a model divided into various phases: a) sub-graph discovery, b)
vertex clustering, and ¢) community quality optimization. For community detection they
used social correlation theory, and finally applied the k-means+-+ clustering over the Face-
book dataset. Their experiments revealed high accuracy in Facebook. Nonetheless, their
approach has not been tested on other networks such as Youtube or Academia.

Blondel et. al. [6] proposed the very first version of the Louvain method. This method
provides a way to value the existence of an edge between two vertices of an undirected
graph by comparing it with the probability of having such an edge in a random model
following the same degree distribution over the original network. The algorithm aims to
increase the value of modularity by moving vertices from their community to any other
neighbor community. Following their effort, Bhowmick et. al. [8] proposed an advanced
version of Louvain by using hierarchical clustering as its embedding scheme. They obtained
representations of individual nodes in the original graph at different levels of the hierarchy.
Then, they aggregated these representations to learn the final embedding vectors. Their
approach is scalable to any network and performs downstream network tasks such as node



classification. However, in their approach, they did not consider very powerful performance
metrics such as the Silhouette score on networks with different sizes.

Pradana et. al. [13] showed that hierarchical clustering performs better among other
clustering approaches as it yields a higher Silhouette coefficient. Their paper compares
the k-means++, hierarchical clustering [9], and hierarchical Louvain [8] to locate the most
appropriate clustering technique in analyzing log activity data in Moodle Learning Man-
agement System. The results of clustering are measured using the Silhouette coefficient,
and then compared the values and distribution between clusters. Their approach yields the
highest Silhouette coeflicient and can also detect outliers as a new cluster. However, it has
not been applied to large-scale networks. Therefore, their results may vary when dealing
with huge networks.

Kamuhanda et. al. [14] developed a new social network community detection algorithm,
named Multiple Local Community (MLC). They apply Breadth-First search to sample the
input graph up to a certain level, then they use Non-negative matrix factorization on the
adjacency of the matrix of the sub-graph. After that they look at all nodes and try to add
nodes to an appropriate sub-graph. In their work, they have neither considered modularity
nor Silhouette score maximization. Instead, they tried to maximize conductance which is
not an efficient metric in large-scale network.

Rozemberczk et. al. [15] introduced graph embedding approach using self-clustering.
They used a machine learning technique to do clustering as well as embedding of social
networks. Their work is susceptible to provide an inefficient clustering scheme as a result of
changing the hyper-parameters of the neural network. In their work, they reached a good
modularity on large-scale social networks, although they missed the evaluation of Silhouette
coefficient for their work.

Sun et. al. [16] developed a probabilistic generative model called vGraph to learn com-
munity membership and node representation collaboratively. They consider that each node
can be a mixture of communities and every community is defined as a multinomial dis-
tribution over nodes. Mixing coefficients and the community distribution evaluated the
low-dimensional representations of the nodes and communities. Their approach works for
overlapping and non-overlapping communities. However, it is computationally expensive,
as it needs more than 1 week to compute communities in a big social network. Above this,
they are not calculating Silhouette coefficient to show their work performance.

Skrlj et. al. [17] designed Silhouette Community Detection (SCD), an approach for de-
tecting communities, based on clustering of network node embeddings. They used the
non-Fuclidean distance k-means and a new optimization technique for their proposal. Their
approach works fine on protein interaction network. However, they have not evaluated their
work on large scale social networks.

In general, the related work found in the literature targets a specific dataset with a
limited number of nodes, whereas in this paper, we propose a method that works well on
different large-scale social networks with different specifications. Additionally, we considered
the Silhouette coefficient as a performance metric, while in most of the related work this
important metric is disregarded and they only consider the modularity metric. We have also
experimentally showed that our approach outperforms social network clustering algorithms
in the literature when we deal with complex social networks.

3. Background

3.1. Network Embedding

By network embedding, one can transform the structure of a graph such as nodes and
edges to feature vectors that are then mapped to dimensions while preserving the structure
of the graph as much as possible. A social network could be represented by a large, and



dynamic graph. Therefore, it is very difficult to find a comprehensive embedding approach.
Each approach in this domain varies in performance on different datasets [10]. If we see
embedding as a transformation to a lower dimension, it is a type of algorithm used in graph
representation learning whose goal is to turn the network into a computationally digestible
format. This is because networks’ data types, by nature, are discrete.

3.2. Network Clustering

Detecting graph elements with “similar” properties is essential in large-scale networks,
where it is crucial to identify specific patterns or structures quickly. The process of grouping
similar elements together is called cluster analysis. Each cluster contains elements that share
common properties and characteristics. In network clustering, datasets can be represented as
a graph where each element to be clustered is represented as a node and the distance between
two elements is modeled by a certain weight on the edge linking the nodes. A cluster in a
network is intuitively defined as a set of densely connected nodes that is sparsely connected
to other clusters in the network. However, there is no universal, precise mathematical
definition of a cluster that is accepted in the literature [18]. There is a variety of different
metrics that attempt to evaluate the quality of a clustering by capturing the notion of intra-
cluster density and inter-cluster sparsity. Let G = (V, E) be an undirected network with
adjacency matrix A, where V is the set of vertices and FE is the set of edges. In the following,
we identify two most common clustering metrics: modularity and Silhouette coefficient.
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Figure 1. The sample network in which the modularity is 0.34 and the Silhouette score
from node 1 is 0.63.

3.3. Modularity

The modularity of a network compares the presence of each intra-cluster edge of the graph
with the probability that the edge would exist in a random graph [19]. Although modularity
has been shown to have a resolution limit [20], the Louvain (LV) algorithm is applied as
an objective function for optimization [6]. The value of the modularity for unweighted and
undirected graphs ranges in [—1,1]. Modularity is calculated by Eq. (3.1) as follows:

D> _(ewr = af) (3.1)

E
where, ey is the probability of edges in cluster Cy, and ay is the probability of edges with
at least one end in C. For example, assuming undirected graph as a bidirectional graph in
Figure. 1, the modularity is equal to (6/24—(7/24)%)+(10/24—(13/24)%)+(2/24—(4/24)%) ~
0.34.



3.4. Silhouette Score

Silhouette refers to a method of interpretation and validation of consistency within clus-
ters of data. The Silhouette varies in the range [—1, +1], where a high value indicates that
a node is well matched to its own cluster and poorly matched to other clusters [21]. If most
nodes have a high value, then the clustering configuration is appropriate. The average of
Silhouette scores for all nodes in the network is called the Silhouette coefficient. If many
points have a low or negative value, then the coefficient becomes low or negative, and the
clustering configuration may have too many or too few clusters.

Let a(i) be the mean distance between ¢ and all other data points in the same cluster,
and b(¢) be the smallest mean distance from i to all data points in any other cluster. The
Silhouette score is calculated by Eq. (3.2) as follows:
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where, a(i) and b(i) are calculated by Eq. (3.3) and (3.4), respectively.

a(i) = |C|_ > d(i,g) (3.3)
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where, |C;| is the number of points in the cluster that point i belongs to, and d(i,j) is
the distance between points ¢ and j in cluster C;. In another word, a(i) is seen as how
well the data point 4 is assigned to its cluster. On the other hand, b(i) can be seen as
the dissimilarity of point ¢ to a cluster Ci, k # i [22]. If s(¢) is close to 1, it means that
the data is appropriately clustered, whereas if s(i) is close to -1, it reveals a very poor
clustering. When s() is close to 0, it means that there are very overlapping nodes among
the clusters, and in this case it is better to deem the data as one cluster. For example, if
we consider every edge as one distance in Figure. 1, starting from vertex 1, the Silhouette
score is approximately 0.63. The Silhouette coefficient [23] for network clustering performs
much more accurate than modularity. Thus, we measure our approach using the Silhouette
coefficient.

Modularity is a common optimization objective used in many approaches in the litera-
ture [5, 8, 15, 16] for community detection. The weakness of modularity is that in some
cases, it may provide incorrect measurements [23], i.e., when it is working on a cluster
with only one vertex. Therefore, the Silhouette coefficient, in spite of its high computation
requirements, provides a much better clustering measurement.

4. NMF and ICA for clustering Social Networks (NICASN)

In this section, we explore the details of our proposed approach to address the problem of
community detection of a large-scale network. For clarity, we summarize our approach into
three main steps. The proposed approach is described in Algorithm 1, where the inputs are
I) an array of the number of components (for finding the features of the network), IT) an array
of the number of clusters (for finding communities by k-means), and III) the Compressed
Sparse Row (CSR) matrix of the network. Using grid search, we aim at capturing the best
values by which we obtain the highest coefficient. After receiving the inputs, Non-negative
Matrix Factorization (NMF), Independent Component Analysis (ICA), and k-means are
applied consecutively to compute the Silhouette coefficient. After these steps, we use the



6

best coefficient and render the corresponding parameters. We delve into the detail of each
step in the rest of this section. In the pre-processing stage, we need to change the adjacency
matrix of the network to CSR format so that we can process the network using less memory
in comparison to using the adjacency matrix.

Algorithm 1 NMF and ICA for Clustering Social Network (NICASN).

1: Input: Array of Clusters (C'L), Array of Components (CO), the CSR matrix of the
network (data)

2: Output: Best Score (B;), Best Number of Clusters (Bg;), Best Number of Components
(Beo), and Best Labels (B;)

3: CO « |[coy, coa, ..., co,] {n is the number of input components}

4: CL < [cly,cla, ..., clyp] {m is the number of clustering}

5. Grid[n,m] <0

6: 1,7 <0

7

8

9

: for all co € CO do

11+ 1

for all cl € C'L do
10 if cl > co then
11: 14 1—1
12: Go to Step 9 {For checking other cls}
13: end if
4 jej+1
15: W, H <— NMF(data, co) {Decompose adjacency matrix}
16: ICA < FastICA(W, co) {Transform feature matrix}
17: LABELS < NMF—k—means(ICA,cl,co, H)
18: SC «+ Silhouette(data, LABELS) {Compute Silhouette coefficient }
19: Grid[i, j] + SC
20: if SC > B, then
21: By + SC
22: By ¢l
23: B, + co
24: B« LABELS
25: end if
26:  end for
27: end for

28: return By, B, B.,, B;

4.1. NMF Transformation

Given non-negative matrix X, NMF basically finds two non-negative matrices (W, H)
whose product approximates X [24]. The reason why NMF has become so popular is
because of its ability to automatically extract sparse and easily interpretable factors in
high-dimensional spaces. NMF inherently follows a spectral clustering and if we find the
factor H by orthogonality constraint (HH? = I), then we obtain the centroids for k-
means clustering initialization [25]. However, we are not using orthogonality constraint
for our proposed centroid initialization. Instead, we use Non-negative Double Singular
Value Decomposition (NNDSVD) [26]. NNDSVD is very well to initialize NMF algorithms
with sparse factors (the factors that we see in social network clustering problem). Many
experiments show that NNDSVD ends up with a very fast reduction of the approximation
error of many NMF algorithms[26]. Therefore, the resulting decomposition (W.H) would
reproduce X with almost no error.



We call matrix W as the feature matrix while the matrix H as the importance matrix.
We apply the importance matrix later in k-means centroid initialization (subsection 4.3) in
order to do the clustering on the feature matrix. As we are dealing with a sparse matrix
in social networks, we use NNDSVD to initialize NMF and follow its algorithm to obtain
an accurate W. In a nutshell, the first transformation that we apply in our algorithm is
to distinguish the feature (W) and importance (H) matrices of the original network by
applying NMF (line 15 in Algorithm 1).

4.2. ICA Transformation

Here, we aim to reduce the dimensions of the feature vector that was already obtained
from the NMF transformation. In order to find independent components of the feature
matrix, we use ICA [27]. ICA is appropriate for non-orthogonal and non-Gaussian data.
Looking at Algorithm. 1, we find co important independent components of the feature
matrix. Then, the problem space is reduced to co dimensions, while we still preserve the
internal structure of the network.

After all, we apply clustering by maintaining the Silhouette coefficient. Due to the fact
that we are using k-means clustering, we need to initialize centroids to obtain better results.
To initialize centroids we introduce NMF-k-means algorithm, which is shown in Algorithm
2.

Algorithm 2 NMF-k-means Algorithm

1: Input: Data (D), Number of Clusters (cl), Number of components (co), H values
2: Output: Nodes’ labels

3: for i =1 to ¢l do

4: for j=1to codo

5: Centroid[i][j] + (H[i][j])

6

7

8

9

j—j+1
end for
14 1+1
: end for
10: Labels < k — means(D, cl, Centroid)
11: return Labels

4.3. NMF-k-means Clustering

One of the important parts of our approach is the k-means centroids initialization. Al-
gorithm 2 shows how we generate centroids to initialize k-means. For this purpose, we
apply importance matrix, derived from NMF transformation. We clip the features from
importance matrix according to the number of components, that was already provided in
Algorithm 1. After applying NMF-k-means, we obtain the labels of the clustering. As the
final step, we measure the quality of our clustering technique by finding the Silhouette coef-
ficient. To make a valid comparison, we use the original data from the input (data), and the
obtained labels. By this way, we can compute the Silhouette coefficient of other approaches
and compare them with ours.

5. Experimental Results

We ran our experiments on four different social networks: Academia, Youtube, Twitter,
and Facebook. The datasets were obtained from the Network Repository [11]; their char-
acteristics are listed in Table 1. In the adopted networks, there are vertices with one edge



Table 1. Characteristics of the benchmark datasets.

Dataset Nodes Edges | Max. degree | Min. degree | No. of Triangles
Academia 200.2K 1.4M 11.4K 1 8.4M
YouTube 496K 1.9M 25.4K 1 7.3M
Twitter 404.7K | 713.3K 626 1 88.6K
Facebook-Stanford | 11.6K | 568.3K 1.2K 1 17.56M

as well as vertices with thousands of edges. The number of triangles represents how dense
the network is. The Max. degree is the maximum number of edges that connect to a node
among all nodes whereas the Min. degree is the minimum number of edges that connect to
a node among all nodes. As shown in Table 1, we evaluate networks with different numbers
of vertices and various numbers of edges, which reveals the fact that our approach works
with networks of any size.

5.1. Setup

We conducted our experiments on Sharcnet’s Graham clusters [28]. We used Python 3.8.
Furthermore, we used the Scikit-network library [29] to run the counterparts. The code is
available for interested readers [30]. We used 10GB Memory and 1 GPU per experiment. In
Algorithm 1, we applied sets CO = {50, 60, 70, 80, 90,100} and CL = {2,3,4,5,6,7,8,9,10}
for all the experiments.

5.2. Clustering Implementation

The outputs of our method on Academia, Twitter, Facebook, and Youtube are shown
in Table 2. In all datasets, the highest coefficient belongs to the state when we apply two
clusters. Generally, as the number of clusters increases, the Silhouette coefficient decreases.
In our approach, the highest Silhouette coefficient reveals the correctness of the clusters. For
example, for these datasets, two is the best number of clusters. However, if we are looking
for more clusters, the coefficient falls steadily.

Table 2. Silhouette coefficient of the proposed approach.

Number of Clusters

Dataset 2 [ 83 ] 4 [ 5 [ 6 [ 7 | 8 [ 9 [ 10

Academia || 0.94248 | 0.84705 | 0.63133 | 0.68494 | 0.57963 | 0.62570 | 0.55390 | 0.55003 | 0.53003
Facebook || 0.58587 | 0.27558 | 0.48610 | 0.23614 | 0.22253 | 0.22370 | 0.21902 | 0.20319 | 0.19823
Twitter 0.92436 | 0.91962 | 0.91011 | 0.90865 | 0.76528 | 0.68709 | 0.65056 | 0.62376 | 0.60235
YouTube 0.98045 | 0.95593 | 0.95724 | 0.95683 | 0.951696 | 0.94964 | 0.93724 | 0.85008 | 0.84975

We have compared our approach with Hierarchical Louvain (HLV) [8], k-means++ [31],
and NMF-based Multiple Local Community (MLC) [14] algorithms in terms of the Silhouette
coeflicient. To use similar setup to validate the comparison, we initialize HLV with resolution
equal to one. This means that clusters with equal or greater than one member would be
deemed as one cluster. In contrast to k-means++, HLV does not accept a specific number
of clusters and finds the best number of clusters according to its hierarchical architecture.
HLV follows a function which performs the act of transformation and returns a label vector
for all node. In k-means++, however, the number of clusters should be given as input. For
valid comparison with k-means++, we apply the set {2,3,4,5,6,7,8,9,10} as the number
of clusters. This is for comparing the outperformance of our approach versus k-means-++
following the same setting.
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Figure. 2 depicts the value of Silhouette coefficient with varying number of clusters. In
Twitter, Youtube, and Academia, we see a significant improvement of NICASN, whereas,
there is no significant improvement in Facebook when the number of clusters exceeds a
threshold. The variations of the Silhouette coefficient of our approach when targeting differ-
ent datasets is because of the varying number of connections (edges) in each social network.
We averaged the Silhouette coefficient for each dataset by dividing them by 9 (as there are
9 number of clusters) and the results are shown in Figure. 3-a. As this figure shows, our
method reaches much higher Silhouette coeflicient in big networks in terms of the number
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Table 3. HLV and NICASN Silhouette Coefficients.

Approach Dataset [ Copt [ Silhouette Coefficient
HLV Academia 136 -0.352720204
HLV YouTube 5375 -0.2710824

HLV Twitter 888 -0.00261597
HLV Facebook-Stanford 14 -0.352696225
NICASN Academia 136 -0.07472
NICASN YouTube 5375 -0.106410711
NICASN Twitter 888 0.020000578
NICASN Facebook-Stanford 14 0.179197

of connections between users. For instance, according to Table 1, Youtube has 1.9M edges,
which is the biggest among the others. Therefore, our proposed approach on this network
yields the best, 47%, improvement. Thus, The more edges in the network, the highest is
the Silhouette coefficient in our work. The second best improvement belongs to Academia
with 1.4M edges which provides 40% improvement, and the third best improvement goes for
Twitter with 20% better results. On the other hand, we notice that in Facebook, because
of the low number of connections (568.3K), there is no significant improvement in terms of
the Silhouette coefficient. It is roughly 10% improvement.

MLC [14] has an internal mechanism to find the best number of clusters according to the
input network using the Breadth-First Search (BFS). The best number of clusters derived
from MLC for Academia, Twitter, Facebook, and Youtube are 2, 2, 4, and 5, respectively.
We passed these numbers to our approach to compare it with MLC. The comparison be-
tween our work and the existing NMF-based approach, MLC, is depicted in Figure. 3-b. As
it is clear, our proposed approach significantly outperforms MLC in all datasets, specifically
on Youtube. The reason behind the devastating output of MLC is that the k-means centroid
initialization in MLC works worse than k-means-++ for large-scale networks. Our experi-
mental results show that, comparing to MLC, our approach yields much better Silhouette
coeflicient for all large-scale social networks. It is true that our approach, k-means++, and
MLC are using k-means algorithm as their basis. However, each of these approaches use
different centroid initialization strategy for their clustering purpose. This makes the big
difference between the outputs of these three approaches.

Likewise MLC, HLV [8] internally looks for finding the best number of clusters. First, we
run HLV on Facebook, Academia, Youtube, and Twitter datasets to obtain the optimum
number of clusters. We call this number C,,:. Then, we run our approach with C,p; as
input. By this way, we can compare the outputs of our approach with those of HLV. The
number of clusters that HLV produced and their Silhouette coefficients are shown in Table 3.
As expected, all the coefficients produced by HLV are negative, meaning that its clustering
scheme is not performing very well on large-scale networks. For comparison, we provide the
same table for NICASN to highlight the outperformance of our proposed scheme. For easier
comprehension of NICASN outperformance, we illustrated the results in Figure. 4. We see
a very good improvement in Facebook, Academia, and Youtube but a slight improvement in
Twitter. As discussed before, because different C,); is used in each network experiment, we
cannot expect to see a large improvement in Youtube. Therefore, our latest justification on
k-means+-+ and MLC is still effective. Meaning that, under the same number of clusters,
when we deal with networks with high number of connections, we expect to see a much
better outperformance in NICASN than HLV.
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6. Conclusion

We introduced a novel clustering method based on Non-negative matrix factorization
(NMF) and Independent Component Analysis (ICA). We applied NMF to extract the main
features of the network and ICA to reduce the dimensions of features. Following by that
k-means is applied to cluster the reduced-dimension network with newly-proposed centroid
initialization mechanism based on NMF. The proposed approach is highly efficient in large-
scale highly-connected social networks comparing to the state-of-the-art approaches includ-
ing k-means+-+, Hierarchical Louvain, and Multiple Local Community. As future work,
instead of using static set of components and clusters, a random approach can be conducted
to find optimum values for those sets of components and clusters. Even, we can use a
forward-propagation and backward propagation mechanism in neural network for finding
the best number of components and clusters.
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