
EasyChair Preprint
№ 6706

Methods for Solving Abstract Equations with
Secret Parameters Using External Computer

Yerzhan Seitkulov, Seilkhan Boranbayev, Dina Satybaldina and
Askar Boranbayev

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 27, 2021

Methods for solving abstract equations with secret

parameters using external computer

Yerzhan Seitkulov1, Seilkhan Boranbayev1, Dina Satybaldina1

and Askar Boranbayev2

1 Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
2 Nazarbayev University, Nur-Sultan, Kazakhstan

yerzhan.seitkulov@gmail.com

Abstract. In this paper we investigate methods for solving abstract equations

with secret parameters using external computer. As a rule, standard crypto-

graphic protocols are used to ensure the security of client-server communica-

tions. These cryptographic methods are effective for big data storage tasks, but

are not always acceptable for secure information processing tasks. For example,

the well-known mathematical methods of homomorphic encryption still have no

practical application due to the huge computational costs on the client side.

Therefore, along with classical cryptographic methods, it is necessary to use al-

ternative methods and technologies for protecting information. Our problem can

be described as follows. We will assume that a "client" is an entity who wishes

to secure use an insecure server to solve some computationally-complex prob-

lem, that is, the client wishes to secure process big data on the server. As a

server a supercomputer can be used, which is feasible for the implementation of

this computationally-complex task. Formally, the server is simultaneously an

adversary, and the data sent to it represents a computationally-complex problem

that it must solve in encrypted form.

Keywords: Information security, Cloud computing, Big Data, Secure outsourc-

ing, Internet of Things.

1 Introduction

Our problem can be described as follows. We will assume that a "client" is

an entity who wishes to secure use an insecure server to solve some computationally-

complex problem, that is, the client wishes to secure process big data on the server [1-

8]. As a server a supercomputer can be used, which is feasible for the implementation

of this computationally-complex task. It is important to note that in this setting, the

server is not trusted by the client; therefore, sensitive or confidential information must

be protected from the server, and the results of the server's computations, generally

speaking, must be easily verified by the client. Further, own computing devices can

act as a server, but controlled unscrupulous or careless employees. Therefore, an ad-

versary who wants to intercept classified information can also act as a server. So,
formally, the server is simultaneously an adversary, and the data sent to it represents a

computationally-complex problem that it must solve in encrypted form.

2

Further, the concept of "client" will be relative, and it will depend on the

considered class of problems with secret parameters, which must be solved using the

server in encrypted form. Therefore, a "regular" computer, but with limited computing

resources, can serve as a client. In this case, the server acts as an ideal supercomputer

that the client can use on a contractual basis to solve it. This client-server interaction

can be given the following protocol form (see [8]).

Let the client need to solve some computationally-complex problem Z, de-

pending on the secret parameter α: Z(α). Suppose that there is a certain algorithm
(scheme) A for solving problem Z(α), which can be efficiently implemented using the

computing resources of the server, but not on the client side.

Protocol Z

1. The client decomposes Algorithm A into two Algorithms A1 and A2, so

that three conditions are met:

- firstly, solving algorithms A1 and A2 allows solving problem Z;

- secondly, the A1 algorithm can depend on the secret parameter, and the A2

algorithm either does not depend on the secret parameter α at all, or the time required

for the server to reveal the secret from the A2 algorithm is unacceptable for it.

- thirdly, the client can calculate A1 quickly enough.

2. The client solves A1, and sends the A2 to the server.

3. The server solves the computationally-complex problem A2, and returns

the result of the calculation to the client.

4. The client, having received the result of computing the computationally-

complex problem A2 from the server, solves the original problem Z.
 It should be noted that, generally speaking, the obtained solution to Problem Z

may not be a secret. For example, suppose the client needs to compute ,

where d is the client's secret parameter, while integers n and e such that
 (()), are public. The integer n is the product of the secret primes p and q. If the

interceptor knows the numbers y, x and n, then it is almost impossible to determine

the secret parameter d anyway, and this problem is known as the discrete logarithm

problem.

We need the following generally accepted definitions [8].
Definition 1. We say that a computationally-complex problem is solvable by

some protocol if the client receives a solution to the original problem as a result of

executing each step of this protocol. In all cases, by a solution we mean an approxi-

mate solution.

The task that the client sends to the server is first reduced to a certain

scheme, according to which it will be solved on a supercomputer. That is, the client

orders the server to solve the problem according to some scheme (algorithm) with a

given accuracy.

Definition 2. We will say that a protocol is secure if the client's secret param-

eters cannot be declassified during interaction with the server. Moreover, if the server

determines a certain set, the elements of which are probable secret parameters, then

the cardinality of the set must be at least countable (this excludes the probabilistic
approach and the possibility of enumeration).

The following concepts are also important.

3

Definition 3. An active attack is a case when the server can send false deci-

sions to the client. A protocol is called resistant to active attack if the client can verify

the solution received from the server within a reasonable time for the client.

For example, if the server sends the client an approximate solution x of some

matrix equation Ax = f, then the client can verify the server's computation result by

simply multiplying the matrix A by the vector x, which should be approximately

equal to the vector f. That is, the client solves a direct problem.

Definition 4. We say that a protocol is correct if the total time required to
implement the protocol is less than the time the client solves the problem on its own,

without the help of the server.

In this case, () () () Comm (α) - denote the time

required to transmit a message α between the server and the client, the time the client

executes algorithm β and the time it takes to execute the algorithm γ by the server,

respectively. And by T (Z) we denote the time required to implement the protocol Z.

If some algorithm β is not calculated at all on the client's side, then we will write

 () .

2 Methods for solving abstract equations with secret

parameters using external computer

2.1 Methods for solving abstract equations with secret parameters

Let M be a complete metric space and B a continuous operator taking an el-

ement from M to itself, that is

The completeness of the space M is necessary for the possibility of finding

an approximate solution. Generally speaking, if M is assumed to be an arbitrary met-

ric space, then some problems may turn out to be algebraic. For example, if M con-

sists of two numbers 0 and 1, then the problem of finding an approximate solution as

such is not worth it.

Consider the problem

 (1)

where .

Suppose that problem (1) is uniquely solvable.

Let the client needs to approximately solve a computationally-complex equa-

tion (1) with respect to the unknown x. To find an approximate solution on a comput-

er, in many cases it is required to reduce the equation to a discrete analogue. Howev-

er, we will present several protocols for solving equation (1) only at the ideological

level, since the considered equation (1), generally speaking, is abstract.

Task : The client needs to approximately solve equation (1) for an un-

known x ∈ M. Suppose that transformation B is a secret element of the client, and the

right-hand side b ∈ M is not a secret. We also require that the solution to equation (1)

remain a secret.

4

Protocol

1. The client finds a bijective operator at random . Next, it calcu-

lates the composition and sends the server to solve the equation with accura-

cy ε:

 ,

while the client keeps operator D secret.

2. The server solves the equation Gy = b and returns to the client an approx-

imate solution y.

3. The client finds an approximate solution to equation (1) by the formula

Let () be the time required for the client to construct a bi-

jective operator D and calculate the composition BD, () is the time

required to transmit a message G to the server, () is the time it

takes for the server to solve the equation Gy = b, () is the time it takes

for the server to send the message y, and () is the time required by the

client to calculate Dy. By () we denote the time (which can be

equal to ∞) required for the client to solve equation (1) without the help of the server.

Let () ().

Statement 1. Task is solvable by protocol if BD and Dy are calculated

on the client side, and the equation Gy = b is solved on the server. Further, the

protocol is

- resistant to active attack if Gy is calculated on the client side;

- secure.
Indeed, we have

 () (())
therefore, if the server does not deviate from the protocol, then the client finds an

approximate solution to equation (1) by the formula x = Dy, that is, the problem is

solvable by this protocol.

- Resistance to active attack. Since the server sends the solution y to the cli-

ent, the client verifies the server's computation result by simply calculating the direct

problem Gy, which should be approximately equal to b ()
- Security. The server knows the composition of the two operators BD = G,

but separately the operators B and D are not known to the server. Therefore, the secret

parameter B, as well as the solution x of equation (1), remain secret from the server.

Correctness of the protocol Constructing an arbitrary bijective operator

D is often less difficult than finding a solution to an arbitrary equation (1); therefore,

the assumption () () which determines the correctness of the

protocol, is justified.

Task : The client needs to approximately solve equation (1). Suppose that

the client's secret parameter is the right-hand side b of the equation, and operator B is

not a secret. We also require that the solution to equation (1) remain a secret.

Protocol

5

1. The client randomly finds bijective operators D, K: M → M. Next, calcu-

lates KBD ≡ G, Kb ≡ g and sends them to the server so that it solves the following

equation with accuracy ε

Gy = g,

the client keeps the D and K operators as secrets.

2. The server solves the equation Gy = g and returns an approximate solution

y to the client.

3. The client finds an approximate solution to equation (1) by the formula
x = Dy.

Let () be the time required for the client to build re-

versible operators D and K and calculate the composition KBD, () is

the time required to transmit the messages G, g to the server, ()

is the time it takes for the server to solve the equation Gy = g, () is the

time it takes for the client to send the message y to the server, and ()
is the time it takes for the client to compute Dy. By () we denote
the time (which can be equal to ∞) required for the client to solve equation (1) with-

out the help of the server. Let () ().

Statement 2. Task is solvable by protocol if KBD, Kb and Dy are

computable on the client side, and Gy = g is solvable on the server. Further, the proto-

col is

- resistant to active attack if Gy is computable on the client side;

- secure.

Indeed, we have

 () (()) (())= =b.

Hence x = Dy. That is, the task is resolvable by the protocol .
1) Resistance to active attack. Since the server sends the client an approxi-

mate solution y, the client verifies it by calculating it simply by solving the direct

problem Gy, which should be approximately equal to g∶ ρ (Gy, g) <ε.

2) Security. The server knows the composition of the operators KBD = G,

but separately the operators K and D are not known to the server; the server also
knows the result of calculating the two secret elements K and b: Kb = g, so the opera-

tor K also remains a secret. This means that element b remains secret. It also follows

from this that the solution x of equation (1) remains a secret.

Correctness of the protocol . In the general case, the construction of arbi-

trary bijective operators D and K is often less difficult than finding a solution to an

arbitrary equation (1); therefore, the assumption () (), which

determines the correctness of the protocol, is justified.

In protocols and , it was assumed that in equation (1) the secret parame-

ter is either operator B or the right-hand side of b. Sometimes it may turn out that the
secret parameters of the client are both operator B and the right side of b. In this case,

the task for the client is simplified, since the less the server knows about the task in

question, the more difficult it is for him to recognize it.

Problem
 : Suppose the client needs to approximately solve equation (1),

keeping the operator B, the right-hand side b and the desired solution x secret.

The protocol is used for this task.

Statement 2’: Task
 is solvable by protocol if KBD, Kb and Dy are

computable on the client side, and protocol is

6

- resistant to active attack if Gy is computable on the client side;

- secure, i.e. the secrecy of B and b is maintained.

It is enough to show the security of the protocol. The server knows the composition of

the operators KBD = G, but separately the operators K, B and D are not known to the

server, which means that B remains secret. Also, the server knows the result of calcu-

lating two secret elements K and b*Kb = g, so the element b also remains secret. It

also follows from this that the solution x of Eq. (1) remains a secret.

2.2 Methods for solving linear equations with secret parameters

Consider the system of algebraic linear equations

 (2)

where B is a rectangular m × n matrix with elements B [i] [j], (i = 0, ..., m -

1; j = 0, ..., n - 1), and b is a vector of length m with elements b [k], (k = 0, ..., m - 1).

Suppose that system (2) is consistent, that is, it has at least one solution. Vector b is

the client's secret parameter. Then problem (2) according to the LE protocol from [1]

is solved as follows.

Protocol

1. The client takes an n-dimensional vector at random

 () and calculates by the algorithm

for(i = 0; i < m; i + +)

 {

 c = 0;

for(j = 0; j < n; j + +)

 c = c + B[i][j] * w[j];

 g[i] = b[i] − c;

 }

Now the client is sending to the server the equation and keeps the

vector as secret.

2. The server solves the equation

and returns an approximate solution to the client ().

3. The client finds a solution to equation (2) using the algorithm

for(j = 0; j < n; j + +)

 x[j] = y[j] + w[j];

This shows that the client needs to do only a few arithmetic operations to solve a sys-

tem of linear equations. That is, for large n and m, the computational costs of the cli-

ent are much less than if the client solved the system of linear algebraic equations (2)

without the help of the server.

Acknowledgements

The authors would like to thank to the Ministry of Digital Development, In-

novation and Aerospace, Republic of Kazakhstan, grant No AP06850817.

7

References

1. Seitkulov Ye. New methods of secure outsourcing of scientific computations // The Jour-

nal of Supercomputing, Springer US, Print ISSN 0920-8542. -2013. -Vol. 65, Issue 1. -

P.469-482.

2. Jianhua Yu, Xueli Wang, Wei Gao Improvement and applications of secure outsourcing of

scientific computations // Journal of Ambient Intelligence and Humanized Computing. -

2015. -Vol. 6, Issue 6. -P.763–772.

3. Xing Hu, Chunming Tang Secure outsourced computation of the characteristic polynomial

and eigenvalues of matrix / Journal of Cloud Computing, Springer Berlin Heidelberg, 4:7

DOI 10.1186/s13677-015-0033-9, 2015, ISSN 2192-113X. - URL:

https://eprint.iacr.org/2014/442.pdf.

4. Cong Wang, Kui Ren, Jia Wang Secure Optimization Computation Outsourcing in Cloud

Computing: A Case Study of Linear Programming // IEEE Transactions on Computers. -

2016. –Vol. 65, Issue 1. -P.216-229.

5. Vyas R., Singh A., Singh J., Soni G., Purushothama B.R.: Design of an efficient verifica-

tion scheme for correctness of outsourced computations in cloud computing // Security in

Computing and Communications, Springer, 2015. -Vol. 536. -P.66–77.

6. Atallah M., Frikken K. Securely outsourcing linear algebra computations // In: Proceed-

ings of ASIACCS. New York. -2010. -P.48-59.

7. Benjamin D., Atallah M. Private and cheating-free outsourcing of algebraic computations

// Proceedings of 6th conference on privacy, security, and trust (PST). -2008. -P.240-245.

8. Tsutomu Matsumoto, Koki Kato, Hideki Imai Speeding Up Secret Computations with In-

secure Auxiliary Devices // CRYPTO 1988: Advances in Cryptology — CRYPTO’ 88. -

1998. -P.497-506.

