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Abstract5

This paper shows P = NP via exactly-1 3SAT (X3SAT). Ck = (ri� rj � ru) denotes a clause, an6

exactly-1 disjunction � of literals, such that φ =
∧
Ck, an X3SAT formula. φ(rj) := rj ∧ φ denotes7

that the literal rj is true, rj ∈ {xj , xj}. This truth assignment leads to reductions due to � of any8

Ck = (rj� xi� xu) into ck = rj ∧ xi ∧ xu, and Ck = (rj� ru� rv) into Ck′= (ru� rv). As a result,9

φ(rj) := rj ∧ φ transforms into φ(rj) = ψ(rj) ∧ φ′(rj), unless ψ(rj) involves xi ∧ xi, that is, unless10

6|= ψ(rj). Then, ψ(rj) =
∧

(ck ∧ Ck′) such that Ck′= ri, and φ′(rj) =
∧

(Ck ∧ Ck′). Thus, ψ(rj) and11

φ′(rj) are disjoint. It is trivial to check if 6|= ψ(rj), and redundant to check if 6|= φ′(rj), in order to12

verify 6|= φ(rj). Proof of this redundancy is sketched as follows. ψ(ri) is true, ψ(ri) |= ψ(ri|rj) holds,13

hence ψ(ri|rj) is true for every ri, because each rj such that 6|= ψ(rj) is removed from φ. Then, any14

rj consists in ψ so that φ transforms into ψ ∧ φ′. If ψ involves xj ∧ xj, then 6|= φ. Otherwise, φ is15

satisfied, since any ψ(.) is disjoint and true, and ψ(ri0 ), ψ(ri1|ri0 ), . . . , ψ(rin |rim) compose φ. Thus,16

φ′(rj) is satisfied, since (rj∧ φ) ≡
(
ψ(rj)∧ φ′(rj)

)
. The time complexity is O(mn3), hence P = NP.17
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1 Introduction: Effectiveness of X3SAT in proving P = NP28

P vs NP is the most notorious problem in theoretical computer science. It is well known that29

P = NP, if there exists a polynomial time algorithm for any one of NP-complete problems,30

since algorithmic efficiency of these problems is equivalent. Nevertheless, some NP-complete31

problem features algorithmic effectiveness, if it incorporates an effective tool to develop an32

efficient algorithm. That is, a particular problem can be more effective to prove P = NP.33

This paper shows that one-in-three SAT, which is NP-complete [2], features algorithmic34

effectiveness to prove P = NP. This problem is also known as exactly-1 3SAT (X3SAT).35

X3SAT incorporates “exactly-1 disjunction �”, the tool used to develop a polynomial time36

algorithm. It facilitates checking incompatibility of a literal rj for satisfying some formula φ.37

When every rj incompatible is removed, φ becomes un/satisfiable. Thus, each ri becomes38

compatible to participate in some satisfiable assignment. Then, an assignment is constructed.39

The truth assignment rj = T (or rj) is incompatible if φ(rj) is unsatisfiable, denoted by40

6|= φ(rj), where φ(rj) := rj ∧ φ, and rj ∈ {xj , xj}. Then, the φ scan algorithm, introduced41

below, “scans” φ by checking incompatibility of every ri, and removing each rj incompatible.42

Let φ = C1∧ · · · ∧ Cm be any X3SAT formula such that a clause Ck = (ri� rj� ru) is43

an exactly-1 disjunction � of literals ri, hence satisfied iff exactly one of {ri, rj , ru} is true.44

Note that a clause (ri∨rj ∨ru) in a 3SAT formula is satisfied iff at least one of them is true.45
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23:2 On the Tractability of Un/Satisfiability

Incompatibility of rj is checked by a deterministic chain of reductions of any Ck in φ(rj),46

which is constructed via �. This chain is initiated by rj = T, and followed by ¬rj, because47

rj⇒ ¬rj. That is, each (rj� xi� xu) collapses to (rj∧ xi∧ xu) due to rj⇒ rj∧ ¬xi∧ ¬xu,48

since there exists exactly one true literal in any clause Ck by the definition of X3SAT. Also,49

each (rj� xu� xv) shrinks to (xu� xv) due to ¬rj. Thus, rj transforms φ(rj) := rj ∧ φ into50

φ(rj) = rj ∧ xi∧ xu∧ φ∗, and xi∧ xu proceeds the reductions in φ∗, which involves (xu� xv).51

The reductions over φs(rj) terminate iff rj ∧ φs transforms into ψs(rj) ∧ φ′s(rj) such that52

ψs(rj) and φ′s(rj) are disjoint, where s denotes the current scan, and ψs(rj) is a conjunction53

of literals that are true. They are interrupted iff ψs(rj) involves xi ∧ xi, thus 6|= φs(rj), that54

is, rj is incompatible. By assumption, 6|= φs(rj) is verified solely via 6|= ψs(rj) (see Figure 1).55

The reductions over φ terminate iff φ transforms into ψ∧φ′ such that ψ and φ′ are disjoint,56

where ψ = xi∧ xu∧ · · · ∧ xv (see Figure 1). Then, φ is updated, that is, φ← φ′. The φs scan57

is interrupted iff ψs involves xi∧ xi for some s and i, thus 6|= φ, that is, φ is unsatisfiable.58

φ φ2 := φ(xi)
¬xi⇒ xi for φ, if 6|= ψ(xi)

φ2 φ3 := φ2(xu)
¬xu⇒ xu for φ2, if 6|= ψ2(xu)

...
...

φs−1 φs := φs−1(xv)
¬xv⇒ xv, if 6|= ψs−1(xv)

Figure 1 The φs scan: 6|= φs(rj) is verified solely by 6|= ψs(rj), and whether 6|= φ′s(rj) is ignored

B Claim 1. It is redundant to check if 6|= φ′s(rj), thus 6|= φ(rj) iff 6|= φs(rj) iff 6|= ψs(rj) for59

some s. As a result, φ(ri) reduces to ψ(ri) from φ(ri) = ψ(ri) ∧ φ′(ri), thus ψ(ri) ≡ φ(ri).60

Therefore, φ is satisfiable iff any truth assignment ψ(ri) holds (the scan terminates).61

Sketch of proof. ψ(ri)/ψ(ri|rj) is constructed over φ/φ′(rj), thus ψ(ri) covers ψ(ri|rj), hence62

ψ(ri) |= ψ(ri|rj) holds. Because ψ(rj) and φ′(rj) are disjoint, ψ(rj) and ψ(ri|rj) are disjoint63

(see Figure 2). Therefore, ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2) form disjoint64

minterms ψ(.) =
∧
ri over φ such that ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2)65

are true, because ψ(ri) is true for every ri (the φ scan terminates), and ψ(ri) |= ψ(ri|.) holds.66

Thus, φ is composed of ψ(.) that are disjoint and true (see Figure 3), hence φ is satisfied. C67

φ
ψ(ri)

φ(rj)
ψ(rj) φ′(rj)

φ′(rj) 3 ri
ψ(ri|rj) φ′(ri|rj)

Figure 2 Since ψ(ri) =
∧
ri is true and ψ(ri) ⊇ ψ(ri|rj), ψ(ri|rj) is true, hence ψ(ri) |= ψ(ri|rj)

A satisfiable assignment α is constructed by composing ψ(.) that are disjoint and true.68

For example, α = {ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), ψ(ri3 |ri0 , ri1, ri2)} (see Figure 3).69

φ

ψ(ri1)
ψ(ri0) ψ(ri3)

ψ(ri2)

φ(ri0)
ψ(ri0) φ′(ri0)

φ′(ri0) 3 ri1
ψ(ri1|ri0) φ′(ri1|ri0)

φ′(ri1|ri0) 3 ri2
ψ(ri2 |ri0 , ri1) φ′(ri2 |ri0 , ri1)

φ′(ri2 |ri0 , ri1) 3 ri3
ψ(ri3 |ri0 , ri1, ri2)

Figure 3 ψ(ri1) |= ψ(ri1|ri0 ), ψ(ri2 ) |= ψ(ri2 |ri0 , ri1), and ψ(ri3 ) |= ψ(ri3 |ri0 , ri1, ri2 )
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2 Basic Definitions70

A literal ri is a variable xi or its negation xi, i.e., ri ∈ {xi, xi}. A clause Ck = (ri� rj� ru),71

or Ck = (rik� rjk� ruk), is an exactly-1 disjunction � of literals that are assumed to be true.72

I Definition 2 (Minterm). ck =
∧
ri is a conjunction of literals that are true, hence ck is true.73

I Definition 3 (X3SAT formula). ϕ = ψ ∧ φ such that ψ =
∧
ck and φ =

∧
Ck.74

Any ri in ψ denotes a conjunct, which is necessary (ri = T) for satisfying ϕ, since ck = T75

by definition. If ri is necessary, then ri is incompatible/removed from φ, i.e., ri⇒ ¬ri, while76

ri is incompatible/removed if the assumption ri = T cannot hold. That is, if ri⇒ xj ∧ xj,77

hence ¬xj∨¬xj⇒ ¬ri, then ri is removed from φ and ri is necessary (ri = T), i.e., ¬ri⇒ ri.78

Where appropriate, Ck, as well as ψ, is denoted by a set. Thus, ϕ = ψ ∧ φ the formula,79

that is, ϕ = ψ ∧C1∧C2∧ · · · ∧Cm, is denoted by ϕ = {ψ,C1, C2, . . . , Cm} the family of sets.80

L = {1, 2, . . . , n} denotes the index set of the literals ri in ϕ, and C = {1, 2, . . . ,m} is an81

index set of the clauses Ck in φ, while Cri = {k ∈ C | ri ∈ Ck} denotes Ck that contain ri.82

I Example 4. Let ϕ̂ = (x11� x31) ∧ (x12 � x22 � x32) ∧ (x23 � x33 � x43) ∧ x4. Note that83

C3 = (x2�x3�x4), and that x4 is a conjunct, thus x4 = T is necessary for satisfying ϕ̂. Also,84

C = {1, 2, 3}, Cx1 = {1, 2}, and Cx4 = {3}. Let ϕ = (x1�x3)∧ (x1�x4�x2)∧ (x2�x3)∧x4.85

Then, Cx4 = ∅, and C1 = {x1, x3}, C2 = {x1, x4, x2} and C3 = {x2, x3}, while ψ = {x4} in ϕ.86

I Definition 5 (Collapse). A clause Ck = (ri� xj� xu) is said to collapse to the minterm87

ck = (ri ∧ xj ∧ xu), thus ri /∈ Ck, if ri is necessary, denoted by (ri� xj� xu)↘(ri ∧ xj ∧ xu).88

I Definition 6 (Shrinkage). A clause Ck = (ri� rj� ru) is said to shrink to another clause89

Ck′ = (rj� ru), if ¬ri (ri the incompatible is removed), denoted by (ri� rj� ru)� (rj� ru).90

I Definition 7 (Truth assignment ri = T over φ). φ(ri) = ri ∧ φ for any ri ∈ Ck and Ck ∈ φ.91

I Note 8. ri is necessary for φ(ri), hence ri is removed, i.e., ri⇒¬ri. Then, by the definition92

of X3SAT, ri⇒ ri ∧ ¬xj ∧ ¬xu to satisfy a clause (ri� xj� xu). As a result, ¬xj⇒ xj and93

¬xu⇒ xu, thus xj and xu become necessary. Therefore, the truth assignment φ(ri) results94

in (ri� xj� xu)↘(ri ∧ xj ∧ xu) and (ri� rv� ry)� (rv� ry) due to Definition 5 and 6.95

I Remark (Reduction). The collapse or shrinkage of any clause Ck denotes its reduction,96

which in turn reduces ϕs, denoted by ϕs→ϕs+1. Then, the number of Ck ∈ φs+1 is less than97

the number of Ck ∈ φs, or the number of literals in some Ck ∈ φs+1 is less than that in some98

Ck ∈ φs. Also, a collapse reduces nondeterminism to construct a satisfiable assignment.99

I Definition 9. φ denotes a general formula if {xi, xi} * Ck for any i ∈ L and k ∈ C, hence100

Cxi∩Cxi = ∅. φ denotes a special formula if {xi, xi} ⊆ Ck for some k, hence Cxi∩Cxi = {k}.101

The ϕ scan algorithm accepts a general formula φ. Recall that ϕ = ψ ∧ φ.102

I Lemma 10 (Conversion of a special formula). Each clause Ck = (rj� xi� xi) is replaced103

by the conjunct rj so that Cxi ∩ Cxi = ∅ for any i ∈ L, if φ =
∧
Ck is a special formula.104

Proof. φ is unsatisfiable due to rj⇒ xi∧ xi. Then, xi∨ xi⇒ rj. That is, rj is necessary for105

satisfying Ck = (rj� xi� xi), which is sufficient also, thus rj is equivalent to Ck. Therefore,106

each clause Ck = (rj� xi� xi) is replaced by the conjunct rj so that Cxi ∩ Cxi = ∅. J107

I Example 11. φ = (x1� x2 � x2) ∧ (x1� x3 � x4) ∧ (x2 � x1) denotes a special formula108

due to C1 = {x1, x2, x2}. Note that Cx2 ∩ Cx2 = {1}. As a result, φ is converted by replacing109

the clause C1 with the conjunct x1. Therefore, φ← x1∧ (x1� x3 � x4)∧ (x2� x1). Likewise,110

if φ = (x1� x2� x2)∧ (x1� x1� x4)∧ (x2� x1), then φ← x1∧ x4∧ (x2� x1). On the other111

hand, if φ involves (xu� xi� xi) ∧ (xu� xj� xj), then φ is unsatisfiable due to xu∧ xu.112

CVIT 2016
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3 The ϕ Scan113

This section addresses the ϕ scan. Section 3.2 introduces the core algorithms. Section 3.3114

tackles satisfiability of ϕ, and Section 3.4 tackles construction of a satisfiable assignment.115

ϕs denotes the current formula at the sth scan/step, if ¬rj (an incompatible rj is removed).116

Note that ϕ := ϕ1 and ϕs ≡ ϕ. Then, φris = (rik1� ru1k1� ru2k1) ∧ · · · ∧ (rikr� rv1kr� rv2kr )117

denotes the formula over clauses Ck 3 ri in φs, where ri ∈ {xi, xi}. Hence, Cris = {k1, . . . , kr}.118

|=αϕ denotes that the assignment α = {r1, r2, . . . , rn} satisfies ϕ, and 6|= ϕ denotes ϕ is119

unsatisfiable, while ψ |= ψ′ denotes ψ′ is the logical consequence of ψ—as ψ = T, ψ′ = T.120

ψ̃s(ri) is called the local effect of ri and φ̃s(¬ri) is the effect of ¬ri. ϕ̃s(ri) denotes its121

overall effect such that ϕ̃s(ri) = ψ̃s(ri) ∧ φ̃s(¬ri), specified below. Also, ψ̃s(ri) =
∧

(ck ∧ Ck)122

such that |Ck| = 1. Moreover, φ̃s(¬ri) =
∧
Ck such that |Ck| > 1, or φ̃s(¬ri) is empty.123

3.1 Introduction: Incompatibility and Reductions124

Example 12 and 13 introduces incompatibility and reductions, which drive the ϕ scan.125

I Example 12. Consider φ(x1) over ϕ= φ= (x1� x3)∧ (x1� x2� x3)∧ (x2� x3). Thus, x1126

is necessary (see Note 8), hence x1 |= ψ̃(x1) such that ψ̃(x1) = (x1∧x3)∧ (x1∧x2∧x3). That127

is, x1⇒ ¬x3 holds for C1 = (x1� x3), hence ¬x3⇒ x3. Likewise, x1⇒ ¬x2 ∧ ¬x3 holds for128

C2 = (x1� x2� x3), hence ¬x2⇒ x2 and ¬x3⇒ x3. Thus, ϕ̃(x1) = ψ̃(x1)∧ φ̃(¬x1) becomes129

the overall effect, where φ̃(¬x1) is empty. Then, the reductions initiated by x1 are to proceed130

due to x2. Nevertheless, they are interrupted by x3 ∧ x3 due to ψ̃(x1), hence 6|= φ(x1), where131

φ(x1) = ϕ̃(x1)∧ (x2� x3). Therefore, x1 is incompatible and removed from φ, thus ¬x1⇒ x1.132

I Example 13. x1 initiates reductions over ϕ (see Note 8). Then, ψ̃(x1) = x1∧ x3, φ̃(¬x1) =133

(x2 � x3), and ϕ̃(x1) = ψ̃(x1)∧ φ̃(¬x1) such that ϕ2 = ϕ̃(x1)∧ (x2� x3). Note that (x2� x3)134

is beyond ϕ̃(x1) the overall effect. Note also that {x3} /∈ φ̃(¬x1), while x3 ∈ ψ̃(x1), because135

C1� c1, since φ̃(¬x1) contains no singleton. Then, ϕ2 is the current formula due to the first136

reduction by x1 over ϕ. Thus, ϕ→ϕ2 due to (x1�x3)� (x3) and (x1�x2�x3)� (x2�x3).137

As a result, ϕ2 = x1∧x3∧ (x2�x3)∧ (x2�x3), in which ψ2 = {x1, x3} denotes the conjuncts,138

and C1 = {x2, x3} and C2 = {x2, x3} denote the clauses. Note that Cx3
2 = {1} and Cx3

2 = {2}.139

Then, x3 leads to the next reduction over ϕ2: ψ̃2(x3) = (x2 ∧ x3), φ̃2(¬x3) is empty, and140

ϕ̃2(x3) = ψ̃2(x3)∧ φ̃2(¬x3). Thus, ϕ2→ϕ3 due to (x2� x3)↘(x2∧ x3) and (x2� x3)� (x2).141

Then, ϕ3 = ϕ̃(x1) ∧ ϕ̃2(x3) = x1∧ x2 ∧ x3, which denotes the cumulative effects of x1 and x3.142

3.2 The Core Algorithms: Scope and Scan143

This section specifies Scope and Scan, which incorporate the overall effect ϕ̃s(rj), defined144

below. Recall that rj is removed, if rj is necessary for satisfying some formula, i.e., rj⇒ ¬rj.145

Note that φrjs = (rjk1� ri1k1� ri2k1)∧ · · · ∧ (rjkr� ru1kr� ru2kr ) for Lemma 14 and 15 below.146

I Lemma 14. rj |= ψ̃s(rj) such that ψ̃s(rj) = rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2, unless 6|= ψ̃s(rj).147

Proof. Follows from Definition 5. That is, rj⇒ (rj∧ ri1∧ ri2)∧ · · · ∧ (rj∧ ru1∧ ru2). Hence,148

rj⇒ rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2. J149

I Lemma 15. If ¬rj, then φ̃s(¬rj) holds such that φ̃s(¬rj) = (ri1� ri2) ∧ · · · ∧ (ru1� ru2).150

Proof. Follows from Definition 6. φ̃s(¬rj) =
{
{}
}
, or |Ck| > 1 for any Ck in φ̃s(¬rj). J151

I Lemma 16 (Overall effect of rj). rj |= ϕ̃s(rj) such that ϕ̃s(rj) = ψ̃s(rj) ∧ φ̃s(¬rj).152

Proof. Follows from rj |= rj ∧ ¬rj, as well as from Lemma 14, and Lemma 15 via φrjs . J153
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The algorithm OvrlEft (rj , φ∗) below constructs the overall effect ϕ̃∗(rj) by means of154

the local effect ψ̃∗(rj) (see Lines 1-6, or L:1-6), as well as of the local effect φ̃∗(¬rj) (L:7-10).155

Algorithm 1 OvrlEft (rj , φ∗) . Construction of the overall effect ϕ̃∗(rj) due to rj over φ∗

1: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect ψ̃∗(rj) due to rj (Lemma 14)

2: for all ri ∈
(
Ck − {rj}

)
do. ψ̃∗(rj) gets rj via re (see Scope L:4), or via rj (Remove L:2)

3: ck← ck∪ {ri}; . (rjk� ri1k� ri2k)↘(ri1k∧ ri2k). That is, Ck↘ ck (see Definition 2/5)
4: end for
5: ψ̃∗(rj)← ψ̃∗(rj) ∪ ck; . ck consists in ψs(rj) (see Scope L:4), or in ψs (see Remove L:2)
6: end for. L:1-6 are independent from L:7-10, since C

rj
∗ ∩ C

rj
∗ = ∅, i.e., Cxj

∗ ∩ C
xj
∗ = ∅ (Lemma 10)

7: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect φ̃∗(¬rj) due to ¬rj (Lemma 15)

8: Ck ← Ck−{rj}; . (rjk� ru1k� ru2k)� (ru1k� ru2k), or (rjk� ruk)� (ruk) (Definition 6)
9: if |Ck| = 1 then ψ̃∗(rj)← ψ̃∗(rj)∪Ck; Ck← ∅; . φ̃∗(¬rj) contains no singleton, Ck� ck

10: end for. 3\2-literal Ck in φrj
∗ shrinks due to ¬rj to 2-literal Ck in φrj

∗ \to conjunct ru in ψ̃∗(rj)
11: return ψ̃∗(rj) & φ̃∗(¬rj)← φ

rj
∗ ; . φ̃∗(¬rj) =

⋃
Ck such that |Ck| > 1, or φ̃∗(¬rj) =

{
{}
}

I Definition 17. 6|= ϕs(rj) iff rj is incompatible, that is, the assumption rj = T cannot hold.156

I Note. If 6|= ϕs(rj), rj is incompatible, it is removed from φs, that is, ¬rj holds over φs.157

I Note 18. ϕs(rj) = ψs∧ rj∧φs by Definition 3/7, hence 6|= ϕs(rj) if 6|= (ψs∧ rj) or 6|= φs(rj).158

I Note 19 (Assumption). 6|= φs(rj) is verified through solely ψs(rj), called the scope of rj.159

I Lemma 20 (Scope construction). rj |= ψs(rj) such that ψs(rj) =
∧
ck, unless 6|= ψs(rj).160

Proof. φs(rj) = rj∧ φs by Definition 7, as rj = T. Then, a deterministic chain of reductions161

is initiated (Note 8). That is, rj⇒ rj∧ xi∧ xu due to any clause (rj� xi� xu) containing rj,162

as well as ¬rj⇒ (xu� xv) due to any clause (rj� xu� xv) containing rj. These reductions163

proceed, as long as new conjuncts re emerge in φs(rj) (see Scope L:2-4). If the reductions164

are interrupted, then rj is incompatible (L:5). If they terminate, then the scope ψs(rj) and165

beyond the scope φ′s(rj) are constructed (L:9), where ψs(rj) =
∧
ck and φ′s(rj) =

∧
Ck. J166

Algorithm 2 Scope (rj , φs) . Construction of ψs(rj) and φ′s(rj) due to rj over φs; ϕs = ψs ∧ φs

1: ψs(rj)← {rj}; φ∗ ← φs; . φs(rj) := rj ∧ φs. ψs and φs are disjoint due to Scan L:1-3
2: for all re ∈

(
ψs(rj)−R

)
do . Reductions of Ck initiated by rj over φs start off

3: OvrlEft (re, φ∗); . It returns ψ̃∗(re) for L:4 & φ̃∗(¬re) for L:6
4: ψs(rj)← ψs(rj)∪{re}∪ ψ̃∗(re); . ψ̃∗(re) (see OvrlEft L:5,9) consists in the scope ψs(rj)
5: if ψs(rj) ⊇ {xi, xi} then return NULL;. rj⇒ xi∧xi, i ∈ Lφ. 6|= ψs(rj), thus 6|= φs(rj)
6: φ̃∗(¬r)← φ̃∗(¬r)∪ φ̃∗(¬re); . φ̃∗(¬r) =

{
{}
}
or φ̃∗(¬r) =

⋃
Ck, |Ck|> 1 (OvrlEft L:8-11)

7: φ∗ ← φ̃∗(¬r) ∧ φ′∗; R← R ∪ {re}; . φ̃∗(¬r) and φ′∗ consist in beyond the scope φ′s(rj)
. φ′∗ =

∧
Ck for k ∈ C′∗, where C′∗= C∗ − (Cxe

∗ ∪ Cxe
∗ ), and Cxe

∗ ∩ Cxe
∗ = ∅ due to Lemma 10

8: end for. The reductions terminate if ψs(rj) = R, which denotes conjuncts already reduced Ck

9: return ψs(rj) & φ′s(rj)← φ∗; .φs(rj) = ψs(rj)∧ φ′s(rj); ψs(rj) =
∧
ck =

∧
rj, φ′s(rj) =

∧
Ck

I Note 21. Ls(rj) being an index set of ψs(rj), Ls(rj)∩L′s(rj) = ∅ and Ls(rj)∪L′s(rj) = Lφ,167

if Scope (rj , φs) terminates. As a result, ψs(rj) and φ′s(rj) are disjoint, and compose φs(rj).168

I Note 22. If Scan (ϕŝ) terminates, then ψŝ and φŝ are disjoint, and compose ϕŝ such that169

ψŝ =
∧
ck (see Definition 2), and that φŝ =

∧
Ck, in which |Ck| > 1, because each Ck = {ri}170

in φs for any s transforms into ri in ψŝ. That is, Ck = (ri� rj) or Ck = (ri� rj� ru) in φŝ.171

CVIT 2016



23:6 On the Tractability of Un/Satisfiability

I Example 23. Consider ψ(x1), Scope (x1, φ), for φ = (x1� x3)∧ (x1� x2 � x3)∧ (x2 � x3).172

ψ(x1)← {x1} and φ∗← φ (L:1). Then, φx1
∗ is empty, and φx1

∗ = (x1�x3)∧ (x1�x2�x3) due173

to OvrlEft (x1, φ∗). Also, Cx1
∗ = {1, 2}, thus c1← {x3} and ψ̃∗(x1)← ψ̃∗(x1) ∪ c1, as well as174

c2 ← {x2, x3} and ψ̃∗(x1) ← ψ̃∗(x1) ∪ c2 (see OvrlEft L:1-6). Then, ψ̃∗(x1) = {x3, x2, x3}175

& φ̃∗(¬x1)← φx1
∗ (OvrlEft L:11). As a result, ψ(x1)← ψ(x1) ∪ {x1} ∪ ψ̃∗(x1) (Scope L:4),176

and ψ(x1) ⊇ {x3, x3} (L:5), that is, x1⇒ x3 ∧ x3, hence x1 is incompatible in the first scan.177

I Definition 24. Lψ = {i ∈ L | ri ∈ ψs} and Lφ = {i ∈ L | ri ∈ Ck in φs} due to ϕs = ψs∧ φs.178

Figure 4 illustrates Scan (ϕs). It decomposes φs =
∧
Ck into ψs(x1), ψs(x1), . . . , ψs(xn),179

ψs(xn), thus checks if 6|= φs(xi) and 6|= φs(xi), where ψs(.) =
∧
ck is true by Definition 2.180

The ψs scan The ψs(x5) scanThe ψs(xn) scan The ψs(x1) scan· · ·
ϕs

ψ ∧ φ transforms into ψ̂ ∧ φ̂ such that φ̂ ≡
∧(

ψ(xi)⊕ ψ(xi)
)
, if Scan (ϕŝ) terminates

Figure 4 Scan decomposes φs into ψs(x1), ψs(x1), . . . , ψs(xn), and transforms ψ ∧ φ into ψ̂ ∧ φ̂

Scan (ϕs) checks incompatibility of ri for every i ∈ Lφ. If ri ∈ ψs, then ri is incompatible181

trivially (L:1-2). If ri⇒ xj ∧ xj, then ri is incompatible nontrivially (L:6). See also Note 18.182

For example, x1 is incompatible trivially due to x1∧ (x1� x2 � x3), since 1∈ Lφ and x1∈ ψs.183

Note that x1⇒ x1∧ x1. If Scan (ϕs) is interrupted (see Remove L:3), then ϕ is unsatisfiable.184

If the scan terminates (L:9), then a satisfiable assignment α is constructed (see Section 3.4).185

Algorithm 3 Scan (ϕs) . Checks if 6|= ϕs(ri) for all i ∈ Lφ. See also Note 18. ϕs = ψs ∧ φs

1: for all i ∈ Lφ and ri ∈ ψs do . ϕs(ri) = ψs ∧ ri ∧ φs, thus 6|= (ψs ∧ ri), that is, ri⇒ xi∧ xi

2: Remove (ri, φs); . ri is necessary, thus ri is incompatible trivially, hence ri⇒ ¬ri

3: end for. If i ∈ Lψ, ri has been already removed, hence ri ∈ ψs and ri /∈ Ck∀k ∈ Cs, i.e., i /∈ Lφ

4: for all i ∈ Lφ do . Lψ∩Lφ = ∅ due to L:1-3. Hence, i ∈ Lψ iff ri = xi is fixed or ri = xi is fixed
5: for all ri ∈ {xi, xi} do . Each and every xi and xi assumed to be true is to be verified
6: if Scope (ri, φs) is NULL then Remove (ri, φs); . Incompatible nontrivially if 6|=φs(ri)
7: end for . If ri⇒ xj∧ xj, hence ¬xj∨ ¬xj⇒ ¬ri, then ¬ri⇒ ri, where i 6= j due to L:1-3
8: end for. ¬ri iff ri, since ¬ri⇒ ri due to nontrivial, and ¬ri⇐ ri due to trivial incompatibility
9: return ϕ̂= ψ̂ ∧ φ̂, and ψ(ri) &φ′(ri) for all i ∈ Lφ̂ ; . ψ̂ ← ψŝ and φ̂← φŝ. See also Note 22

I Note 25. Lψ and Lφ form a partition of L due to Definition 24 and Scan L:1-3.186

Remove (rj , φs) leads to reductions of any Ck 3 rj due to rj, which consists in ψs+1 (see187

L:1-2), as well as of any Ck 3 rj due to ¬rj, which consists in φs+1 (see L:1,5). Note that ψs188

denotes the current conjuncts (in ϕs), and that ψ denotes the initial conjuncts (in ϕ).189

Algorithm 4 Remove (rj , φs) . rj is incompatible/removed iff rj is necessary, i.e., ¬rj iff rj

1: OvrlEft (rj , φs); . OvrlEft is defined over φs =
∧
Ck, |Ck| > 1, and returns ψ̃s(rj) & φ̃s(¬rj)

2: ψs+1← ψs∪ {rj} ∪ ψ̃s(rj); . ψs+1 =
∧
ck is true by Definition 2, unless ψs+1 involves xi∧ xi

3: if ψs+1 ⊇ {xi, xi} for some i then return ϕ is unsatisfiable; . ϕs = ψs ∧ φs

4: Lφ← Lφ− {j}; Lψ← Lψ ∪ {j};
5: φs+1← φ̃s(¬rj)∧φ′s; Update {Ck} over φs+1; . φ′s denotes clauses beyond the entire ψs effect

. φ′s =
∧
Ck for k ∈ C′s, where C′s = Cs − (Cxj

s ∪ C
xj
s ), and C

xj
s ∩ C

xj
s = ∅ due to Lemma 10

6: Scan (ϕs+1); . ri verified compatible for š 6 s can be incompatible for s̃ > s due to ¬rj in φs
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3.3 Unsatisfiability of φ(rj) vs Unsatisfiability of ψs(rj) for some s190

This section tackles satisfiability of ϕ through unsatisfiability of a truth assignment φ(rj).191

I Proposition 26 (Nontrivial incompatibility). 6|= φ(rj) iff 6|= ψs(rj) or 6|= φ′s(rj) for some s.192

Proof. Proof is obvious due to φs(rj) = ψs(rj) ∧ φ′s(rj), transformed from φs(rj) := rj ∧ φs193

through Scope (rj , φs). Moreover, 6|= φ(rj) iff 6|= φs(rj) for some s due to Theorem 36. J194

I Remark. It is trivial to verify 6|= ψs(rj) (see Scope L:5). It is redundant to check if 6|= φ′s(rj),195

since 6|= φs(rj) is verified solely via 6|= ψs(rj) by assumption (Note 19). Thus, it is easy to196

verify 6|= φs(rj) for Scan L:6. The following introduces the tools to justify this assumption.197

Ls(ri) = L(ψs(ri)) denotes the index set of the scope ψs(ri). Likewise, L′s(ri) = L(φ′s(ri)).198

Also, we define the conditional scope ψs(ri|rj) and beyond the scope φ′s(ri|rj) over φ′s(rj)199

for any j 6= i, which are constructed by Scope
(
ri, φ

′
s(rj)

)
. Thus, Ls(ri|rj) = L(ψs(ri|rj)).200

I Lemma 27 (No conjunct exists in beyond the scope). Ls(rj) ∩ L′s(rj) = ∅ for any j ∈ Lφ.201

Proof. φ′s(rj) =
∧
Ck by Scope (rj , φs). Let ri the conjunct be in Ck, i ∈

(
Ls(rj) ∩ L′s(rj)

)
.202

Then, for any Ck 3 ri, (ri� xj� xu)↘(ri∧ xj∧ xu), thus ri /∈ Ck. Moreover, for any Ck 3 ri,203

(ri� rv� ry)� (rv� ry), thus ri /∈ Ck. See Definition 5/6. Hence, i /∈
(
Ls(rj)∩L′s(rj)

)
. J204

I Note. No conjunct exists in any clause Ck due to Note 25, which states Lψ ∩ Lφ = ∅.205

I Lemma 28. Lφ is partitioned into Ls(rj), Ls(rj1|rj), . . . ,Ls(rjn |rjm) by means of Scope.206

I Lemma 29. φs(rj) is decomposed into disjoint ψs(rj), ψs(rj1|rj), . . . , ψs(rjn |rjm).207

Proof. Scope (rj , φs) partitions Lφ into Ls(rj) and L′s(rj) for any j ∈ Lφ (see Lemma 27).208

Thus, φs(rj) is decomposed into disjoint ψs(rj) and φ′s(rj). Scope
(
rj1, φ

′
s(rj)

)
partitions209

L′s(rj) into Ls(rj1|rj) and L′s(rj1|rj) for any j1 ∈ L′s(rj). Thus, φ′s(rj) is decomposed into210

disjoint ψs(rj1|rj) and φ′s(rj1|rj). Finally, φ′s(rjm |rjl) is decomposed into disjoint ψs(rjn |rjm)211

and φ′s(rjn |rjm) for any jn ∈ L′s(rjm |rjl) such that L′s(rjn |rjm) = ∅ (see also Note 21). J212

Let the scan terminate (see Scan L:9), thus ψ ∧ φ transforms into ψ̂ ∧ φ̂. Let φ← φ̂, thus213

L ← Lφ̂. Also, ψ(ri) = T for every i ∈ L and ri ∈ {xi, xi}. Then, Lemma 29 leads to the214

fact (Theorem 34) that it is redundant to check if 6|= φ′s(rj) to verify 6|= φs(rj) for any s.215

I Lemma 30. φ′(rj) is decomposed into disjoint ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm).216

Proof. Follows from Lemma 29, and from φ(rj) = ψ(rj) ∧ φ′(rj) due to Scope (rj , φ). J217

I Lemma 31. φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm), since it terminates.218

Proof. Some Ck in φ collapse to some ck in ψ(rj) due to Scope (rj , φ) (see Lemma 20). As a219

result, the number of Ck in φ is greater than or equal to that of Ck in φ′(rj), thus |C| > |C′|,220

where C denotes an index set of Ck in φ. Also, some Ck in φ shrink to some Ck′ in φ′(rj),221

thus ∀k′∈ C′∃k ∈ C [Ck⊇ Ck′ ]. Hence, φ ⊇ φ′(rj). Likewise, φ′(rj) ⊇ φ′(rj1|rj), since φ′(rj)222

is decomposed into ψ(rj1|rj) and φ′(rj1|rj) via Scope
(
rj1, φ

′(rj)
)
. Therefore, φ ⊇ φ′(rj) ⊇223

φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm), where φ′(rjn |rjm) = φ′(rjn |rj , rj1 , . . . , rjm). J224

I Lemma 32 (Any scope entails its conditional scope). ψ(ri) |= ψ(ri|rj), since it terminates.225

Proof. φ ⊇ φ′(rj) due to Lemma 31. Scope (ri, φ) constructs the scope ψ(ri) over φ, while226

Scope
(
ri, φ

′(rj)
)
constructs the conditional scope ψ(ri|rj) over φ′(rj), thus ψ(ri) ⊇ ψ(ri|rj),227

where ψ(ri) =
∧
ck by Definition 2 and Lemma 20. Since ψ(ri) ⊇ ψ(ri|rj) and ψ(ri) is true228

for all ri in φ, ψ(ri|rj) is true for all ri in φ′(rj). Hence, ψ(ri) |= ψ(ri|rj) (see Figure 2). J229
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I Lemma 33. ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) is true for every j ∈ L, and for230

every i ∈ L′(rj), i ∈ L′(rj1|rj), . . . , i ∈ L′(rjm |rj , rj1, . . . , rjl), because the scan terminates.231

Proof. Recall that the scan terminates. Thus, ϕ̂ = ψ̂ ∧ φ̂, and φ := φ̂ and L := Lφ̂ (see also232

Note 22). Hence, a truth assignment ψ(ri) holds for every i ∈ L and ri ∈ {xi, xi}. Moreover,233

φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm) due to Lemma 31 for any j ∈ L, and234

j1 ∈ L′(rj), . . . , jn ∈ L′(rjm |rjl). Then, ψ(ri) ⊇ ψ(ri|rj), . . . , ψ(ri) ⊇ ψ(ri|rj , rj1, . . . , rjm), in235

which ψ(ri) ⊇ ψ(ri|rj , rj1) via Scope
(
ri, φ

′(rj1 |rj)
)
, thus ψ(ri) |= ψ(ri|rj , rj1). Therefore,236

any ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) is true, which generalizes Lemma 32. J237

I Theorem 34 (Unsatisfiability). 6|= φ(rj), rj is incompatible, iff 6|= ψs(rj) for some s.238

I Corollary 35 (Satisfiability). |=αφ iff a truth assignment ψ(ri) holds ∀i ∈ L, ri ∈ {xi, xi}.239

Proof. ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) form disjoint minterms over φ′(rj) (Lemma 30)240

such that ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) are true (Lemma 33) for any j ∈ L, j1 ∈ L′(rj),241

j2 ∈ L′(rj1 |rj), . . . , jn ∈ L′(rjm |rjl). Then, φ′(rj) is composed of ψ(.) the minterms true and242

disjoint, hence φ′(rj) is satisfied, thus unsatisfiability of φ′s(rj) is ignored to verify 6|= φs(rj).243

Therefore, Theorem 34 holds (cf. Proposition 26). Moreover, ψ(ri) ≡ φ(ri), since φ′(ri) is244

satisfied, and φ(ri) = ψ(ri)∧φ′(ri). Therefore, Corollary 35 holds (see also Appendix A). J245

I Theorem 36 (Incompatibility is monotonic). 6|= ϕs(rj) for all s > s̃ if 6|= ϕs̃(rj), even if ¬ri.246

Proof. 6|= ϕs(rj), if 6|= (ψs∧ rj) or 6|= φs(rj) (Scan L:1,6). ψs ⊇ ψs̃ for all s > s̃ (Remove L:2),247

thus 6|= (ψs∧ rj) for all s > s̃, if 6|= (ψs̃∧ rj). Let 6|= φs̃(rj) due to xi∧ xi, hence xi∨ xi⇒ rj,248

thus rj ∈ ψs, and 6|= (ψs ∧ rj) for all s > s̃. If 6|= ϕš(ri) for š 6 s̃, then ¬ri⇒ ri and ri⇒ rj,249

thus rj ∈ ψs still holds, and 6|= (ψs ∧ rj) for all s > š, hence all s > s̃. If 6|= ϕs(ri) for s > s̃,250

then 6|= (ψs ∧ rj) still holds for all s > s̃, since xj /∈ Ck and xj /∈ Ck, while ri ∈ Ck in φs. J251

I Proposition 37. The time complexity of Scan is O(mn3).252

Proof. OvrlEft, and Remove, takes 4m steps by
(
|Crj∗ |×|Ck|

)
+ |Crj∗ | = 3m+m. Scope takes253

n4m steps by |ψs(rj)| × 4m. Then, Scan takes n24m steps due to L:1-3 by |Lφ | × |ψs| × 4m,254

as well as 8n2m+ 8nm steps due to L:4-8 by 2|Lφ | × (4nm+ 4m). Also, the number of the255

scans is ŝ 6 |Lφ | due to Remove L:6. Therefore, the time complexity of Scan is O(n3m). J256

I Example 38. Let ϕ =
{
{x3, x4, x5}, {x3, x6, x7}, {x4, x6, x7}

}
. Let Scope (x3, φ) execute257

first in the first scan, which leads to the reductions below over φ due to x3. Note that ψ = ∅.258

φ(x3) = (x3 � x4 � x5)∧ (x3 � x6 � x7)∧ (x4 � x6 � x7) ∧ x3

x3 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x4 � x6 � x7) ∧ x3

x4 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ ( x6 � x7) ∧ x3

x6 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ ( x7) ∧ x3

259

Because 6|=
(
ψ(x3) = x3 ∧x4 ∧x5 ∧x6 ∧x7 ∧x7

)
, x3 is incompatible, hence x3 is necessary,260

i.e., ¬x3 ⇒ x3. Thus, ϕ→ϕ2 by (x3 � x4 � x5)� (x4 � x5) and (x3 � x6 � x7)� (x6 � x7).261

As a result, ϕ2 = (x4� x5)∧ (x6� x7)∧ (x4� x6� x7)∧ x3. Let Scope (x5, φ2) execute next.262

φ2(x5) = ( x4 � x5) ∧ ( x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x5 ⇒ ( x4 )∧ ( x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x4 ⇒ ( x4 )∧ ( x6 � x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

x6 ⇒ ( x4 )∧ ( x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

263

Because 6|=
(
ψ2(x5) = x4 ∧ x7 ∧ x6 ∧ x7 ∧ x3 ∧ x5

)
, x5 is removed from φ2, i.e., ¬x5 ⇒ x5.264

Thus, ϕ2→ϕ3 by (x4�x5)↘(x4∧x5), where ϕ3 = (x4∧x5)∧ (x6�x7)∧ (x4�x6�x7)∧x3,265

and x4 leads to the next reduction by (x4�x6�x7)� (x6�x7). Then, Scan (ϕ4) terminates,266

and ϕ4 = x3∧x4∧x5∧(x6�x7), that is, ϕ̂ = ψ̂∧ φ̂, and ψ̂ = {x3, x4, x5} and φ̂ =
{
{x6, x7}

}
.267
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In Example 38, if Scope (x5, φ) executes first, then ψ(x5) = x5 becomes the scope, and268

φ′(x5) = (x3 � x4) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7) becomes beyond the scope of x5 over φ.269

Then, x5 is compatible (in φ) due to Theorem 34, since ψ(x5) is true, while it is incompatible270

due to Proposition 26, since 6|= φ′(x5) holds. On the other hand, the fact that 6|= φ′(x5) holds271

is verified indirectly. That is, incompatibility of x5 is checked by means of ψs(x5) for some s.272

Then, x5 becomes incompatible (in φ2), because 6|= ψ2(x5) holds, after ϕ→ϕ2 by removing273

x3 from φ due to 6|= ψ(x3). As a result, 6|= φ′(x5) holds due to ¬x3. Thus, there exists no274

rj such that 6|= φ′(rj), when the scan terminates, because ψ(ri) is true for all ri in φ, hence275

ψ(ri|rj) is true for all ri in φ′(rj), after each rj is removed if 6|= ψs(rj) (see also Figures 1-4).276

3.4 Construction of a satisfiable assignment by composing minterms277

ϕ̂= ψ̂∧ φ̂, when Scan(ϕŝ) terminates. Let ψ := ψ̂ and φ := φ̂, i.e., L := Lφ̂. Then, |=αφ holds278

by Corollary 35, where α is a satisfiable assignment, and constructed by Algorithm 5 through279

any (i0, i1, i2, . . . , im, in) over L such that α = {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim)}.280

Thus, ϕ is decomposed into disjoint minterms ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim)281

(see Note 25, and Lemmas 28-29). Note that ψ is fixed in each satisfiable assignment for ϕ.282

Recall that Scope (ri, φ) constructs the scope ψ(ri) and beyond the scope φ′(ri) to determine283

any assignment α, unless ϕ itself collapses to a unique assignment, i.e., unless ϕ̂ = α = ψ̂. See284

also Appendix A to determine α without constructing ψ(ri|.) and φ′(ri|.) by Scope
(
ri, φ

′(.)
)
.285

Algorithm 5 . Construction of a satisfiable assignment α over φ, L := Lφ̂ and φ := φ̂

Pick j ∈ L; . The scope ψ(ri) and beyond the scope φ′(ri) for all i ∈ L are available initially
α← ψ(rj); L← L− L(rj); φ← φ′(rj);
repeat

Pick i ∈ L; Scope (ri, φ); . It constructs ψ(ri|rj) and φ′(ri|rj) with respect to φ′(rj)
α← α∪ψ(ri); . ψ(ri) := ψ(ri|rj), because ψ(ri) is unconditional with respect to φ updated
L← L− L(ri); . L← L′(ri|rj) due to the partition

{
L(rj),L(ri|rj),L′(ri|rj)

}
over L

φ← φ′(ri); . φ′(ri) := φ′(ri|rj), because φ′(ri) is unconditional with respect to φ updated
until L = ∅
return α; . ψ(rin |rim) = ψ(rin |rj , ri1, . . . , rim) (see also Appendix A)

I Definition 39. Let
〈
〈ri1,1, ri2,1, ri3,1〉, 〈rj1,2, rj2,2, rj3,2〉, . . . , 〈ru1,m, ru2,m, ru3,m〉

〉
be in as-286

cending order with respect to the index set L. If ı3 < 1 for any 〈rı1,k, rı2,k, rı3,k〉 and any287

〈r1,k+1, r2,k+1, r3,k+1〉, then ıφ ∪ φ = φ and ıφ ∩ φ = ∅ such that Ck ∈ ıφ and Ck+1 ∈ φ.288

I Note. ıφ and φ form a partition of φ, hence their satisfiability check can be independent.289

I Example 40. Let 1φ = (x1� x2 � x6) ∧ (x3 � x4 � x5) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7),290

2φ = (x8 � x9 � x10), and 3φ = (x11� x12 � x13) to form ϕ = 1φ∧ 2φ∧ 3φ (see Definition 39).291

Then, Scan (ϕ4) returns ϕ is satisfiable. Therefore, ϕ̂ = ψ̂ ∧ φ̂, where ψ := ψ̂ = x3 ∧ x4 ∧ x5292

and φ := φ̂ = (x1�x2�x6)∧ (x6�x7)∧ 2φ∧ 3φ (see Example 38). Then, α is constructed by293

composing ψ(.) based on φ′(.) below, where Lψ = {3, 4, 5} and L := Lφ̂ = {1, 2, . . . , 13} − Lψ.294

ψ(x1) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x1) = 2φ ∧ 3φ

ψ(x2) = x2 & φ′(x2) = (x1� x6) ∧ (x6 � x7) ∧ 2φ ∧ 3φ

ψ(x2) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x2) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x6) = φ′(x7) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x6 ∧ x7 & φ′(x6) = φ′(x7) = (x1� x2) ∧ 2φ ∧ 3φ

ψ(x8) = x8 ∧ x9 ∧ x10 & φ′(x8) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 3φ

ψ(x11) = x11∧ x12 ∧ x13 & φ′(x11) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 2φ

295
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I Example 41. A satisfiable assignment α is constructed by an order of indices over L, L =296

{1, . . . , 13} − Lψ (Example 40), such that ri := xi for any ψ(ri) throughout the construction.297

First, pick 6 ∈ L. As a result, α← ψ(x6) and L← L−L(x6), where ψ(x6) = {x1, x2, x6, x7},298

L(x6) = {1, 2, 6, 7}, and L ← {8, 9, 10, 11, 12, 13}. Then, pick 8, hence α ← α ∪ ψ(x8|x6),299

where ψ(x8|x6) = {x8, x9, x10}. Also, L← L− L(x8|x6), where L(x8|x6) = {8, 9, 10}, hence300

L← {11, 12, 13}. Finally, pick 11. Therefore, α← α ∪ ψ(x11|x6, x8) such that L← ∅, which301

indicates its termination. Note that Scope
(
x11, φ

′(x8|x6)
)
constructs ψ(x11|x6, x8), in which302

φ′(x8|x6) = 3φ, and that φ′(x11|x6, x8) = ∅ iff L← ∅. Note also that ψ(x8|x6) = ψ(x8) and303

ψ(x11|x6, x8) = ψ(x11), since 1φ, 2φ and 3φ are disjoint (see Definition 39). Consequently,304

Algorithm 5 constructs α = {ψ(x6), ψ(x8|x6), ψ(x11|x6, x8)}. Note that ϕ is decomposed into305

ψ, ψ(x6), ψ(x8|x6), and ψ(x11|x6, x8), which are disjoint (see also Note 22 and Lemma 29).306

I Example 42. Let (2, 1, 8, 11) be another order of indices in Example 40. This order leads307

to the assignment {ψ,ψ(x2), ψ(x1|x2), ψ(x8|x2, x1), ψ(x11|x2, x1, x8)} for ϕ. This assignment308

corresponds to the partition
{
Lψ, {2}, {1, 6, 7}, {8, 9, 10}, {11, 12, 13}

}
, where Lψ = {3, 4, 5}309

(see also Note 25 and Lemma 28). Note that the scope ψ(x1) is constructed over φ, and the310

conditional scope ψ(x1|x2) is constructed over φ′(x2), where φ ⊇ φ′(x2). Recall that φ := φ̂.311

Hence, ψ(x1) |= ψ(x1|x2), in which ψ(x1) = x1∧ x2 ∧ x6 ∧ x7, while ψ(x1|x2) = x1∧ x6 ∧ x7.312

Moreover, ψ(x8) |= ψ(x8|x2, x1) due to φ ⊇ φ′(x1|x2), and ψ(x11) |= ψ(x11|x2, x1, x8) due to313

φ ⊇ φ′(x8|x2, x1), where φ′(x1|x2) = 2φ ∧ 3φ and φ′(x8|x2, x1) = 3φ (see Lemmas 31-33).314

3.5 An Illustrative Example315

This section illustrates Scan (ϕs). Let ϕ = φ = (x1� x3) ∧ (x1� x2 � x3) ∧ (x2 � x3), which316

is adapted from Esparza [1], and denotes a general formula by Definition 9. Note that C1 =317

{x1, x3}, C2 = {x1, x2, x3}, and C3 = {x2, x3}. Hence, C = {1, 2, 3}, and L = Lφ = {1, 2, 3}.318

Scan (ϕ): There exists no conjunct in (the initial formula) ϕ. That is, ψ is empty (L:1).319

Recall that ϕ := ϕ1, and that ri ∈ {xi, xi}. Recall also that nontrivial incompatibility of ri320

is checked (L:4-8) via Scope (ri, φ). Moreover, the order of incompatibility check is arbitrary321

(incompatibility is monotonic) by Theorem 36. Let Scope (x1, φ) execute due to Scan L:6.322

Scope (x1, φ): Since ψ(x1) ⊇ {x3, x3}, x1 is incompatible nontrivially (see Example 23).323

Thus, x1 becomes necessary (a conjunct). Then, Remove (x1, φ) executes due to Scan L:6.324

Remove (x1, φ): Cx1 = ∅ by OvrlEft L:1. Cx1 = {1, 2}, thus φx1 = (x1�x3)∧ (x1�x2�x3)325

by OvrlEft L:7. As a result, ψ̃(x1) = {x3} & φ̃(¬x1) =
{
{}, {x2, x3}

}
, the effects of x1 and326

¬x1. Note that C1← ∅. Then, ψ2← ψ ∪ {x1} ∪ ψ̃(x1) (Remove L:2), and Lφ← Lφ−{1} and327

Lψ← Lψ ∪ {1} (L:4). Also, φ2← φ̃(¬x1) ∧ φ′, where φ̃(¬x1) = (x2� x3) and φ′= (x2� x3)328

(L:5). As a result, ψ2 = x1∧ x3, and φ2 = (x2� x3)∧ (x2� x3). Note that C1 = {x2, x3} and329

C2 = {x2, x3}. Consequently, ϕ2 = ψ2 ∧ φ2, and Scan (ϕ2) executes due to Remove L:6.330

Scan (ϕ2): C2 = {1, 2} and Lφ = {2, 3} hold in φ2. Then, {x2, x2} ∩ ψ2 = ∅ for 2 ∈ Lφ,331

while x3 ∈ ψ2 for 3 ∈ Lφ (L:1). As a result, x3 is necessary for satisfying ϕ2, hence x3⇒ ¬x3,332

that is, x3 is incompatible trivially. Then, Remove (x3, φ2) executes due to Scan L:2.333

Remove (x3, φ2): Cx3
2 = {2}, thus φx3

2 = (x2� x3), and Cx3
2 = {1}, thus φx3

2 = (x2� x3).334

As a result, ψ̃2(x3) = {x2} ∪ {x2} & φ̃2(¬x3) =
{
{}
}
, because C1 = {x2} consists in ψ̃2(x3),335

rather than in φ̃2(¬x3) (see OvrlEft L:9). Hence, ψ3← ψ2 ∪ {x3} ∪ ψ̃2(x3), Lφ← Lφ− {3},336

and Lψ← Lψ∪ {3}, i.e., Lφ = {2}. Therefore, φ3 =
{
{}
}
, thus C3 = ∅, and ψ3 = x1∧ x3 ∧ x2.337

Scan (ϕ3): x2 ∈ ψ3 for 2 ∈ Lφ over φ3. Then, Remove (x2, φ3) executes due to Scan L:2.338

Remove (x2, φ3): ψ̃3(x2) = ∅ & φ̃3(¬x2) =
{
{}
}
due to OvrlEft (x2, φ3), because Cx2

3 = ∅339

and Cx2
3 = ∅, since C3 = ∅. Hence, Lφ← {2} − {2} and φ4 ← φ3. Then, Scan (ϕ4) executes.340

Scan (ϕ4) terminates: ϕ̂= ψ̂ = x1∧ x3∧ x2 (L:9), and ϕ collapses to a unique assignment.341
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Let Scope (x3, φ) execute before Scope (x1, φ) due to Scan L:6 (see Theorem 36).342

Scope (x3, φ): ψ(x3)← {x3} and φ∗ ← φ (L:1). Then, Cx3
∗ = {2} due to OvrlEft (x3, φ∗)343

L:1, hence φx3
∗ = (x1� x2 � x3). As a result, c2 ← {x1, x2} and ψ̃∗(x3)← ψ̃∗(x3)∪ c2 (L:3,5).344

Moreover, Cx3
∗ = {1, 3} (L:7), hence φx3

∗ = (x1� x3)∧ (x2� x3). Then, C1← {x1, x3} − {x3},345

ψ̃∗(x3)← ψ̃∗(x3) ∪ C1, and C1← ∅. Likewise, C3← {x2, x3} − {x3}, ψ̃∗(x3)← ψ̃∗(x3) ∪ C3,346

and C3← ∅ (OvrlEft L:8-9). Consequently, ψ̃∗(x3)← {x1, x2, x1} & φ̃∗(¬x3)← φx3
∗ (L:11).347

Note that φx3
∗ =

{
{}, {}

}
, since C1 = C3 = ∅. Then, ψ(x3)← ψ(x3) ∪ {x3} ∪ ψ̃∗(x3) due to348

Scope L:4, hence ψ(x3) = {x3, x1, x2, x1}. Since ψ(x3) ⊇ {x1, x1} (L:5), x3 is incompatible349

nontrivially, i.e., x3⇒ x1∧ x1 and ¬x3⇒ x3. Then, Remove (x3, φ) executes due to Scan L:6.350

Remove (x3, φ): φx3 = (x1� x3) ∧ (x2� x3) due to Cx3 = {1, 3}, and φx3 = (x1� x2 � x3)351

due to Cx3 = {2}. Then, OvrlEft (x3, φ) returns ψ̃(x3) = {x1, x2} & φ̃(¬x3) =
{
{x1, x2}

}
352

(Remove L:1), ψ2← ψ ∪ {x3} ∪ ψ̃(x3) (L:2), and Lφ← Lφ−{3} and Lψ← Lψ∪ {3} (L:4). As353

a result, ψ2 = x3 ∧ x1∧ x2. Moreover, φ2← φ̃(¬x3) ∧ φ′ (L:5), in which φ̃(¬x3) = (x1� x2)354

and φ′ is empty. Therefore, ϕ2 = ψ2 ∧ φ2. Note that C1 = {x1, x2}, hence C2 = {1}. Recall355

that Lφ = {1, 2}, and that Lψ = {3}. Then, Scan (ϕ2) executes due to Remove (x3, φ) L:6.356

Scan (ϕ2): Lφ = {1, 2} such that x2 ∈ ψ2 and x1 ∈ ψ2. Thus, x2 and x1 are necessary,357

hence x2 and x1 are incompatible trivially. Then, Remove(x1, φ2) and Remove(x2, φ2) execute.358

The fact that the order of incompatibility check is arbitrary (Theorem 36) is illustrated as359

follows. Scope (x3, φ) returns x3 is incompatible nontrivially, since x3⇒ x1∧ x1. Therefore,360

¬x1∨ ¬x1⇒ ¬x3, hence x1∨ x1⇒ x3. Then, x3⇒ x1 due to C1 = (x1� x3), and x1⇒ ¬x1.361

Thus, x1 is still incompatible, but trivially
(
cf. Scope (x1, φ)

)
, even if ¬x3 holds. That is, x1362

the nontrivial incompatible in φ due to x1⇒ x3∧ x3, i.e., ¬x3∨ ¬x3⇒ ¬x1, is incompatible363

trivially in ψ2 due to x1⇒ ¬x1. See Scan (ϕ2) above. Also, since x3 /∈ Ck and x3 /∈ Ck in φs364

for any s > 2, 6|= ϕs(x3) for all s > 2, even if any ri is removed from some Ck in φs, s > 2.365

4 Conclusion366

X3SAT has proved to be effective to show P = NP. A polynomial time algorithm checks367

unsatisfiability of a truth assignment φ(ri) such that 6|= φ(ri) iff ψs(ri) involves xj ∧ xj for368

some s. Thus, φ(ri) reduces to ψ(ri). ψ(ri) denotes a conjunction of literals that are true,369

since each rj such that 6|= ψs(rj) is removed from φ. Therefore, φ is satisfiable iff any truth370

assignment ψ(ri) holds, thus it is easy to verify satisfiability of φ through the truth of ψ(ri).371
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A Proof of Theorem 34/35379

This section gives a rigorous proof of Theorem 34/35. Recall that the ϕs scan is interrupted380

iff ψs involves xi∧ xi for some i and s, that is, ϕ is unsatisfiable, which is trivial to verify.381

Recall also that the ϕŝ scan terminates iff ψŝ(ri) = T for any i ∈ Lφ̂, ri ∈ {xi, xi}. Moreover,382

ϕ̂= ψ̂∧ φ̂ such that ψ̂ = T (see Scan L:9 and Note 22). Therefore, when the scan terminates,383

satisfiability of φ̂ is to be proved, which is addressed in this section. Let φ := φ̂, i.e., L := Lφ̂.384
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I Theorem 43 (cf. 34-35/Claim 1). These statements are equivalent: a) 6|= φ(rj) iff 6|= ψs(rj)385

for some s. b)ψ(ri) = T for any i ∈ L. c) |=αφ by α = {ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)}.386

Proof. We will show a⇒ b, b⇒ c, and c⇒ a (see Kenneth H. Rosen, Discrete Mathematics387

and its Applications, 7E, pg. 88). Firstly, a⇒ b holds, because a holds by assumption (see388

Note 19 and Scope L:5), and b holds by definition (Scan L:9). Also, ψ(ri|rj) is true due to389

ψ(ri) |= ψ(ri|rj) (see Lemmas 32-33), where ψ(.) =
∧
ri by Lemma 20. Next, we will show390

b⇒ c. We do this by showing that satisfiability of φ is preserved throughout the assignment391

α = {ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)} construction, because any partial truth assignment392

ψ(ri|rj) is constructed arbitrarily through consecutive steps having the Markov property.393

Thus, construction of ψ(ri|rj) in the next step is independent from the preceding steps, and394

depends only upon ψ(rj |rk) in the present step. The construction process is specified below.395

Step 0: Pick any ri0 in φ. The reductions due to ri0 partition L into L(ri0) and L′(ri0).396

Note that i0 ∈ L, and that i0 ∈ L(ri0). Hence, i0 /∈ L′(ri0) by Lemma 27. Thus, ri0⇒ ψ(ri0)397

such that φ(ri0) = ψ(ri0) ∧ φ′(ri0) in Step 0. Then, pick an arbitrary ri1 in φ′(ri0) for Step 1.398

Step 1: L(ri0) ∩ L′(ri0) = ∅ in Step 0, and the reductions due to ri1 over φ′(ri0) partition399

L′(ri0) into L(ri1 |ri0) and L′(ri1 |ri0), thus ri1⇒ ψ(ri1|ri0). See also Lemma 28. Therefore,400

L(ri0) ∩ L(ri1|ri0) = ∅, because L′(ri0) ⊇ L(ri1|ri0). As a result, L is partitioned into L(ri0),401

L(ri1|ri0), and L′(ri1|ri0) due to ri0 and ri1. Thus, ψ(ri0) and ψ(ri1|ri0) are disjoint, as well402

as true. Hence, ψ(ri0) ∧ ψ(ri1|ri0) = T, and φ(ri0 , ri1) = ψ(ri0) ∧ ψ(ri1|ri0) ∧ φ′(ri1|ri0).403

Step 2: The preceding steps have partitioned L into L(ri0)∪L(ri1|ri0) and L′(ri1|ri0), and404

ri2 in φ′(ri1|ri0) partitions L′(ri1|ri0) into L(ri2|ri1) and L′(ri2|ri1), i.e., L′(ri1|ri0) ⊇ L(ri2|ri1).405

Hence,
(
L(ri0) ∪ L(ri1|ri0)

)
∩ L(ri2 |ri1) = ∅. Therefore, ψ(ri0) ∧ ψ(ri1|ri0) and ψ(ri2 |ri1) are406

disjoint, as well as true. As a result, ψ(ri0) ∧ ψ(ri1|ri0) ∧ ψ(ri2 |ri1) = T, and φ(ri0 , ri1, ri2) =407

ψ(ri0)∧ψ(ri1|ri0)∧ψ(ri2 |ri1)∧φ′(ri2 |ri1). Note that α ⊇ {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1)}, and408

that L is partitioned into L(ri0), L(ri1|ri0), L(ri2|ri1), and L′(ri2|ri1) such that L′(ri2|ri1) 6= ∅.409

Step n: rin partitions L′(rim |ril) into L(rin |rim) and L′(rin |rim) such that L′(rin |rim) = ∅.410

Then, L(ri0)∪L(ri1|ri0)∪ · · · ∪L(rim |ril) and L′(rim |ril), hence L(rin |rim), form a partition411

of L. Therefore, ψ(ri0) ∧ ψ(ri1|ri0) ∧ · · · ∧ ψ(rim |ril) and ψ(rin |rim) are both disjoint and412

true, thus α = φ(ri0 , ri1, . . . , rim, rin) = ψ(ri0)∧ψ(ri1|ri0)∧ · · · ∧ψ(rim |ril)∧ψ(rin |rim) = T.413

Consequently, φ is composed of ψ(.) disjoint and satisfied, thus |=αφ, hence b⇒ c holds.414

Finally, we show c ⇒ a. Scope (ri, φ) transforms ri∧ φ into ψ(ri) ∧ φ′(ri), thus (ri∧ φ) ≡415 (
ψ(ri) ∧ φ′(ri)

)
. Since φ and ψ(ri) are satisfied, φ′(ri) is satisfied. Therefore, unsatisfiability416

of ψs(ri) for some s is necessary and sufficient for the unsatisfiability of φs(ri) for any s. J417

I Note. ψ(ri) ≡ φ(ri) for all i ∈ L. Also,
∧
Ck such that Ck = (ri� rj� rv) transforms into418 ∧

Ci such that Ci =
(
ψ(xi)⊕ ψ(xi)

)
, thus

∧
Ck ≡

∧
Ci. Recall that φ =

∧
Ck, where φ := φ̂.419

I Note. The assignment α construction is driven by partitioning the set L′(.) such that420

L← L− L(ri0) in Step 1, and L← L− L(rin−1 |rin−2) for in ∈ L′(rin−1 |rin−2) in Step n > 2.421

I Note (Construction of α). In order to form a partition over the set φ, α is constructed such422

that ψ(ri1 |ri0) = ψ(ri1)− ψ(ri0), and ψ(rin |rin−1) = ψ(rn)−
(
ψ(ri0) ∪ · · · ∪ ψ(rin−1 |rin−2)

)
423

for n > 2. On the other hand, if the construction involves no set partition, then α =
⋃
ψ(ri)424

for i = (i0, i1, . . . , in), where i0 ∈ L, i1∈ L′(ri0), . . . , in ∈ L′(rim |ril), thus ri0≺ ri1≺ · · · ≺ rin.425

Note that there is no need to construct φ′(ri) in Scan/Scope L:9 (cf. Algorithm 5).426

For instance, if Example 40 involves no set partition, then α = {ψ(x7), ψ(x2), ψ(x1)}, in427

which ψ(x7) = {x7, x6}, ψ(x2) = {x2}, and ψ(x1) = {x1, x2, x7, x6}. Also, x7 ≺ x2 ≺ x1 due428

to x2 ∈ φ′(x7) and x1∈ φ′(x2|x7). Moreover, ψ(x7), ψ(x2|x7), and ψ(x1|x2) form a partition429

over the set φ, where ψ(x2|x7) = ψ(x2)− ψ(x7) and ψ(x1|x2) = ψ(x1)−
(
ψ(x2|x7) ∪ ψ(x7)

)
.430

As a result, α = φ(x7, x2, x1) = {x7, x6} ∪ {x2} ∪ {x1} such that {x7, x6} ∩ {x2} ∩ {x1} = ∅.431
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