
EasyChair Preprint
№ 9023

Augmenting Digital Textbooks with Reusable
Smart Learning Content: Solutions and Challenges

Jordan Barria-Pineda, Arun Balajiee Lekshmi Narayanan and
Peter Brusilovsky

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 7, 2022



Augmenting Digital Textbooks with Reusable
Smart Learning Content: Solutions and

Challenges⋆

Jordan Barria-Pineda1[0000−0002−4961−4818], Arun Balajiee Lekshmi
Narayanan1[0000−0002−7735−5008], and Peter Brusilovsky1[0000−0002−1902−1464]

University of Pittsburgh, Pittsburgh PA 15260, USA

Abstract. A powerful set of educational tools has emerged over the last
decade with the rise in the adoption of online adaptive learning content.
An increasingly popular tool in this space is the “intelligent textbook” as
a platform to support and distribute content for e-learning, given its re-
semblance with real-life physical books. Existing efforts in this direction
include the development of digital textbooks where both textual con-
tent and interactive learning activities (i.e., examples, problems, etc.) are
carefully handcrafted by the authors so that they are perfectly placed to
follow the knowledge acquisition-practice flow. However, this approach is
very time-consuming, and it requires the work of high-expertise authors.
In this work, we suggest and discuss a scalable solution: we take existing
digital textbooks and augment them by using repositories of existing on-
line learning material associated with the subject matter. We present our
current work in this direction and discuss challenges and opportunities
for the future work.

Keywords: Smart Learning Content · Intelligent Textbooks · Educa-
tional Recommendations

1 Introduction

A gradual switch from paper-based to “electronic” textbooks (e-textbooks) opened
an exciting opportunity to extend these classic learning tools with functional-
ities not previously available in paper format. Among the most appealing and
popular ways to extend textbooks with new functionalities is converting exam-
ples and problems, a traditional component of textbooks in many domains, into
interactive learning activities. This approach makes textbooks truly interactive
and augments learning by reading with learning by doing.

One of the first domains to embrace this kind of interactive textbook was com-
puter science education (CSE) where the development of interactive learning ac-
tivities from algorithm animations to automatically-assessed programming prob-
lems was a popular research direction. The need to integrate interactive learning
⋆ Copyright © 2022 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).



2 Barria-Pineda et. al.

activities with online textbooks has been extensively discussed by the computer
science education community for many years [24] and some best examples of
interactive textbooks have been produced for computer science subjects. Among
these examples are ELM-ART [7], the first adaptive textbook with interactive
problems and examples for learning LISP, OpenDSA [13], the first open-source
infrastructure for collaborative construction of e-textbooks with interactive ani-
mations and problems (originally developed for Data Structures and Algorithms
course), and RuneStone books [12] a popular infrastructure for presenting on-
line textbooks for programming augmented with interactive learning activities.
These and other interactive textbooks have been extensively evaluated in various
learning contexts and their effectiveness was convincingly demonstrated [31, 11,
21].

However, the current platforms for the development and delivery of interac-
tive textbooks for CSE share the same problem: the “custom” nature of their
production. These textbooks are expected to be developed “as a whole” for a
specific purpose, with text and interactive problems developed and integrated
together as a part of the authoring process. This approach allows developing
excellent examples of interactive textbooks but doesn’t support scaling up this
process. For each “holistically developed” interactive textbook, there are dozens
of professionally authored textbooks on the same subject that are not augmented
with interactive content because this option has not been considered at the time
of their creation. At the same, there are large repositories of interactive learning
content of different types that could be used to augment these books. A missing
piece in the infrastructure is the integration of an arbitrary textbook with its
corresponding interactive content.

An important step towards building this infrastructure was done in OpenDSA
project [13], which offered an opportunity to connect any LTI-compatible interac-
tive content to OpenDSA textbooks. However, it is still focused on custom-built
textbooks and doesn’t support existing textbook. The project presented in this
paper attempts to take the next step in this direction and make both textbooks
and integrative learning content reusable. Our goal is to build an infrastructure
that allows turning any textbook available in electronic format (such as PDF)
into an interactive textbook by augmenting it with interactive learning con-
tent from existing repositories. This paper presents an important component of
this infrastructure - and interface that support augmentation of existing books
with interactive content without breaking the structure of these textbooks. In
the following sections, we present our current implementation of this interface,
demonstrate the approach for integrating smart content into textbook structure,
and discuss future work in this direction.

2 Related Work

Multiple research efforts have been carried out during the last decade in order
to develop technology-enhanced textbooks. Electronic Textbooks (e-textbooks)
support content distribution at scale in different formats and for different pur-



Augmenting Digital Textbooks with Smart Learning Content 3

poses. In recent years, there have been many discussions that project what tech-
nological enhancements could surround the use of intelligent e-textbooks in edu-
cation [23]. Among these discussions, a few noteworthy contributions such as the
use of intelligent question-asking [19], intelligent tutoring [29], and augmenta-
tion of assessment questions [10] bring to the light the possibilities of interesting
enhancements in smart digital textbooks. On the one hand, these technological
enhancements could be implemented as artificially intelligent agents or systems
in e-textbooks that deliver, recommend or scaffold the learner’s needs while
reading [32]. On the other hand, it could be possible to integrate reusable smart
content that are adaptive to the needs of the user, without necessarily adapting
or personalizing the system behaviour to the learner. In general, the main idea
has been to maintain the affordances of physical textbooks combined with the
capabilities of web pages. However, some efforts have been made to incorpo-
rate the design of the novel functionalities for students that could expand the
potentialities of intelligent textbooks [30].

In our work, we take this second route of augmentation of intelligent text-
books with adaptive, personalized learning material presented as Smart Learning
Content (SLC) [5]. Typically, there are 5 different levels of SLCs [5], namely,

1. Level 1 SLCs are independent of the delivery platform for learning. In this
setup, the variables used by the SLC to personalize content do not persist,
once the session is closed and is stateless.

2. Level 2 The SLC and the delivery platform for learning are integrated into
a single system and the delivery platform saves the data produced by the
SLC, which is used across several user sessions. A limitation of this setup is
that the SLC would need to be developed specifically for the delivery plat-
form and cannot exist outside of the system. For example, CodeAcademy 1,
KhanAcademy 2, Brilliant 3

3. Level 3 All content in the SLCs is internal to the platform, but the delivery
platform supports multiple SLCs. For example, OpenDSA [13]

4. Level 4 The platform supports multiple SLCs and allows the use of external
content, using proprietary protocols to retrieve the external content. For
example, BlueJ or Moodle with plug-in support, TestMyCode [28], A+ [18]
and JavaGuide [15].

5. Level 5 The platform supports multiple SLCs that use standard protocols,
such as Learning Tools Interoperability (LTI), allowing for maximum flexi-
bility. For example, LTI with Moodle 4.

Among these levels, our earlier discussions cover implementations that could
be considered as level 2 SLCs [8]. We also discussed implementations that utilize
the benefits of Learning Tools Interoperability (LTI) [2] to integrate early imple-
mentations of level 5 SLCs in the intelligent textbooks. In this work, we explore
1 http://codeacademy.com
2 https://khanacademy.org
3 https://brilliant.org
4 https://docs.moodle.org/400/en/LTI_and_Moodle



4 Barria-Pineda et. al.

possibilities for an implementation that could meet the gold standards discussed
as levels 3 and 4 in our prior work, that is, to support multiple SLCs that are
both native and external resource recommendations to the delivery platform. In
this case, we set the platform content delivery to be the intelligent textbook.

3 Reading System to Support Social Aspects of Learning

For our implementation in this work, we utilize our reading system [3], a plat-
form for social navigation and social aspects of learning. This system offers
many features for the students in a course such as textual annotations and so-
cial comparison plots (for comparing self-progress with the progress of the rest
of the class peers). The system is intended to support and enhance self-regulated
learning in the student using this to read e-textbooks. The system distributes
course content by leveraging the use of open and accessible textbook materials
on topics in various courses ranging from Introductory Information Retrieval to
Introductory Object-Oriented Programming. It provides helpful visualizations
to view the reading progress over the duration of the course, with interactive
multiple-choice quizzes at the end of each section, presented within a pop-up
window. Considering these aspects, this system provides an excellent platform
to support extensible SLCs like animated programming exercises [25], program-
ming construction examples [14] and external content recommendations (e.g.,
Wikipedia articles) [22]. By default, there are native content recommendations
available in an intelligent textbooks system, which could be considered to satisfy
the principles of level 3 SLCs.

4 Augmenting Reusable Smart Learning Content

We set the goals for level 3 and 4 SLCs, which we describe again here,

1. Level 3 Integrate Multiple SLCs that are native to the platform such as
OpenDSA [13]

2. Level 4 Support multiple SLCs on the platform such that external content
can be integrated into the system.

Currently, we implemented two ways to integrate SLC into a textbook: a
list of recommended videos (see the red tab in Fig. 1) and a list of statically
attached interactive exercises (see the green tab in Fig. 1). The video interface
was developed for an information retrieval textbook. It shows recommended
videos using thumbnails, which work as links to related content on YouTube5 and
multimedia sharing websites. These implementations could consider a ranking
and rating-based approach to listing the content to allow the factor of “human-in-
the-loop” recommendations to support and enhance intelligent recommendations
to the users of these systems and their students in these courses.
5 https://www.youtube.com



Augmenting Digital Textbooks with Smart Learning Content 5

Fig. 1. Smart Content (green tab) along with the Video Recommendations (red tab)
in an information retrieval textbook

The second way (a list of interactive programming exercises) was developed
for e-textbooks on introductory programming. The list of available exercise types
with descriptions is provided in Table 1. These exercises range from simple prob-
lems that test the student’s understanding of the inputs or outputs of a given
program to puzzles that can be solved in several steps. Interactive and animated
examples could make the process of reading and understanding the code more
engaging for the reader. This could scaffold a student’s learning in their process
of understanding a course on introductory concepts in programming. Such an
SLC integration could possibly turn the mundane process of reading a textbook
into a rich, interactive experience that offers possibilities for hands-on content
experimentation. Further, students who are curious learners can explore the con-
cepts discussed on a page with a related live, interactive examples to keep them
engaged.



6 Barria-Pineda et. al.

Table 1. Types of Systems for Integrated Python Programming Exercises

System Types of Exercises

QuizPET [6] Parameterized code tracing problems for Python with automatic assessment

PCEX [14] Program construction examples in an engaging, interactive form
in order to increase motivation

WebEX [4] Web-based programming examples in Python & other languages

2D Parsons [17] A 2D version of Parson’s puzzles for Python

PCRS [33] Programming problems that provide incomplete skeleton code
and checks the answers using a set of tests

Jsvee [25] Animated programming examples to visualize the program steps

5 Proof-of-Concept Implementations

We collected a set of SLCs from various sources, in order, to offer a wide range
of online learning activities to students. The available content ranges from a low
level of interactivity (i.e., educational videos and worked-out examples) to more
interactive activities (i.e., parsons problems and coding-from-scratch problems).
In this paper, we will focus on two courses as study cases:

1. A Graduate course on Information Retrieval based on an open source text-
book

2. An Undergraduate course on Programming in Python with the main text-
book for reference, “Python for Everybody”6.

5.1 An Information Retrieval Textbook with Smart Content

For the Information Retrieval course we focused on augmenting the existing
reading resources within the system with educational videos scraped from the
web, more specifically from the YouTube platform7. We decided to present this
augmentation as non-intrusive recommendations shown at the right margin of
the active page. The steps we followed for generating these educational video
recommendations are presented below:

1. Candidate videos’ collection: Collecting a set of videos from YouTube cover-
ing the core Information Retrieval concepts presented in the course. We de-
termined this set of concepts by automatically extracting them from the tex-
tual content of the course reading sections by following one of the approaches

6 https://www.py4e.com
7 https://www.youtube.com/results?search_query=information+retrieval



Augmenting Digital Textbooks with Smart Learning Content 7

for presented by Thaker et.al. in [27]. In this concept extraction approach,
first noun phrase chunking is performed to obtain candidate keyphrases from
a text and then the keyphrases are ranked based on their tf-idf score 8. As an
outcome of this process, each section of the course ends up associated with
a list of concepts, which are covered in the corresponding text. With this
list of concepts (mainly unigrams and bigrams) we prepared a set of queries
in the format “information retrieval concept” (e.g. “information retrieval zipf
law”). We executed the queries by using the YouTube Search API, and for
each query that is executed, we considered only the top 20 videos as potential
candidates.

2. Videos’ textual representation: We proceeded to get the transcripts of the
candidate videos by using the youtube-dl API9, so we could get the content
presented in a textual format. Additionally, we concatenated the title and
the description of the video (which was useful for having a representation
for videos without an available transcript).

3. Videos’ concept extraction and initial relevancy filter : Next step was extract-
ing the keyphrases from the textual representation of the video, which we
consider as a proxy for identifying the concepts covered there. For that task
we simply looked for exact textual match between the textual transcripts
and the list of concepts of the corresponding section. Thus, for each video
we ended up with a list of concepts (keyphrases) representing the covered
content. As an initial filter of video relevancy, we calculated the proportion
of concepts covered by the video and the set of concepts of each section. If
the match of the concepts presented in the video and the section was over
5%, we considered the video as “initially relevant”.

4. Reading-Video Similarity Calculation: We computed the similarity between
the initially relevant videos and the reading section by using different text
similarity metrics like Cosine and Jaccard similarity and applying tf-idf as
pre-processing of the textual data.

5. Video Recommendations’ Presentation: Finally, we sort the videos descend-
ing by the similarity score calculated in the previous step and show only
the top 20 on the tab (see Fig. 2). We display the video title along with its
thumbnail, which, when clicked, plays a video within a pop-up window (see
Fig. 3)

As a result, while navigating the reading sections through the online reader
students have also the option of deepening their acquired knowledge through
the recommended videos list. These external materials present the same or part
content from a different perspective or at a different level of detail. Finally,
in order to get feedback from the students about the suitability of the recom-
mended material for the section that they are reading, we added a section within
the video watching for them to express their opinion about the quality of the
recommendation (see the top right section in Fig. 3).

8 https://github.com/khushsi/ConceptExtractor
9 https://youtube-dl.org/



8 Barria-Pineda et. al.

Fig. 2. Video Recommendations Interface. In this figure, we show a list of videos with
their thumbnails to an Information Retrieval Textbook

Fig. 3. Video Recommendations Presentation and Rating Interface. This modal is dis-
played when a particular video is selected from the video recommendations interface,
allowing for “human-in-the-loop” interaction with the system, such that the recom-
mended videos are updated by the students’ rating to these videos



Augmenting Digital Textbooks with Smart Learning Content 9

5.2 A Python Programming Textbook with Smart Content

To support a Python Programming course we augmented a popular textbook
“Python for Everybody” with smart content. This textbook is available in several
formats, including as a PDF10. It consists of several chapters that cover the basics
of Python programming. The textbook starts with delivering the course content
from scratch, going into sequential topics, and keeping the target audience as
novice or beginner-level programmers in Python. We use this setup to experiment
with SLC implementations to help practise programming in Python with a set of
worked out examples and programming problems. We target SLCs that cannot
be directly covered within the text. We think that the programming exercises
could be presented as a list of short problems related to the material being read
in a given page, section or chapter of the book.

To test our current infrastructure, we attached a range of smart learning
content for Python to various sections of the textbook as shown in Fig. 4. When
a link to an SLC item from the list of entries for smart content is clicked, it
launches a dialog instance with the specific programming example or problem.
For example, Fig. 5 shows a code tracing problem from QuizPET system (Quizzes
for Python Educational Testing) [6]. Another kind of programming exercises for
Python that we made available in the book are interactive worked examples of
program construction from PCEX system with step-wise program explanations
and walk-through (Fig. 6. These exercises allow for the student to focus on
specifics of a given program).

In total, we demonstrated the ability to connect six types of SLC worked
examples and problems listed in Table 1. A more detailed description of these
SLC types could be found in [14]. When augmenting the book with SLC, we
considered Python programming activities that are related to the topics covered
in the text of a particular page of section in a chapter. These programming
activities use the knowledge or concepts covered in the textbook up to that
point and avoid the concepts that will be covered later in the textbook.

In the future version, we hope to provide a smart textbook authoring system
for course instructors, which will allow them to augment the same textbook with
SLC that they want to use in their classes. A prototype of this authoring system
with learning analytics support can be found in [1]. We also plan to support the
authoring process with instructor-focused content recommender system [9]. This
could be considered as our long term goal for smart content, but in the current
work of smart content design for programming exercises, we only focus on the
interface for delivering SLC to students through a textbook.

6 Discussion and Future Work

With our implementation, we show that it is possible to integrate and augment
e-textbooks with multiple SLCs. They are available as non-intrusive sidebars
for the reader to explore material relevant, without losing focus on the main
10 https://www.py4e.com/book



10 Barria-Pineda et. al.

Fig. 4. List of smart exercises displayed to practice Python programming. These are
links to the different programming exercises hosted on external repositories, to support
Level 4 smart learning content

Fig. 5. Smart Content Modal with a Programming Exercise in Python. In this example,
the student has to type the correct output to the program in the textbox below for
system to evaluate



Augmenting Digital Textbooks with Smart Learning Content 11

Fig. 6. Smart Content Modal with a programming exercise in Python. In this figure,
the student is asked to explain the different lines in a given program, broked down
into smaller steps and compare them with the standard explanations that the system
expects to be appropriate at those lines

text content of the intelligent textbook. Dynamic SLC recommendations pro-
vided at different levels of granularity by relevance (given section, chapter, page
or paragraph) is our next step to explore. Determining the most appropriate
granularity and difficulty level of the programming exercises in the smart con-
tent to act as useful recommendations that scaffold students’ learning. Further,
adaptations could model the patterns of user or student interactions with the
system to fine-tune the recommended SLC, further governed by the reader’s
control on the (“human-in-the-loop”) curation of the SLCs listed with rating and
ranking features. SLC of other types could take no inputs from the user, but
present as passive recommendations in relation to the concepts covered at a
page or section. Learner-sourced approaches to recommend questions [20, 16] is
another interesting research opportunity to explore and address the challenge of
dynamic content allocation. Questions that are most relevant to a page, section
or chapter could be dynamically curated in the side panel. The learner-sourced
SLC could be generated by peers taking the course or students who took the
course. This material could be rated and ranked by the current users to improve
the recommendations provided. Reusing resources in this manner could poten-
tially open the doors to exemplary SLCs integrated into intelligent textbooks
for other learner content delivery systems. These opportunities can be realized
by overcoming a few challenges discussed below.

6.1 Challenges

In our implementation towards integrating multiple SLCs, we find that allo-
cating the right content could be a potential challenge. While it is possible to
support personalized, integrable and adaptive SLCs for specific chapters or sec-



12 Barria-Pineda et. al.

tions within intelligent textbooks on different topics, it is a challenge to make
it scale up to different topics and courses in these system implementations. An-
other challenge is that for instructors teaching these programming courses, as
discussed by Chau et. al. [9], the content allocation for all the intended concepts
in the course may not be possible and this makes this implementation potentially
static. Further, a scope for future exploration is the allocations that adapts to the
teachers’ understanding of the course topics [26] is another challenge. It would
especially be interesting to include a smart content that is modeled by the topic
and the knowledge levels of the course instructors. Hence, the presented content
would then augment their understanding of the topics covered in the course. All
these three challenges consider a “human-in-the-loop” implementation. A final
challenge is to integrate an SLC to augment the content presented in the digi-
tal textbook as a recommender system that involves less human intervention to
improve its personalization. An example to support such an integration would
be recommendations to external web resources like Wikipedia with additional
information is not native to the content available within the text, but augments
the information provided without much scope for the user to rate or rank these
recommendations to match their personal choices. An implementation in this di-
rection [22] sets possible paths for us to explore as augmented SLC in our future
work and as a means to overcome this challenge. In the light of understanding
and overcoming these challenges, we will be able to explore and support more
types of dynamic SLCs in our future iterations of intelligent textbooks.

7 Conclusions

In this work, we present an interesting perspective on integrating smart learning
content (SLCs) in intelligent textbooks as the delivery platform. Along with
the possibility of supporting multiple SLCs, they could be native and external
resources using open, proprietary protocols (levels 3 and 4 SLCs) for retrieval.
This meets our goal that we set forth of building an infrastructure that could turn
any ordinary e-textbook into an intelligent, adaptive and interactive textbook.
Although not our goal to begin with, since our implementation uses the resources
that are not native, but external to the intelligent textbooks framework (we
benefit from using the SLC repositories developed by others), we present a system
that is flexible, suggesting that the learning content delivery platform can be
interchangeable (level 5). The seamless integration of the SLCs into intelligent
textbooks, allows for the possibility of interactive and engaging learning content
delivery platforms for curious learners. In the long term, this allows for better
adoption of enhanced intelligent e-textbooks. Finally, we discuss the challenges
encountered while making scalable integration of SLCs into the deliver platform.
We discuss existing solutions that could allow us to overcome these challenges.
Technical advancements in the not so distant future could help address these
challenges with efficient protocols for seamless augmentation of smart learning
content without breaking the structure of the e-textbooks.



Augmenting Digital Textbooks with Smart Learning Content 13

Acknowledgements We acknowledge the help offered by our colleagues in the
implementation of parser and smart learning content allocation in our intelligent
textbook implementation. Also, the work of one of the authors was funded by
CONICYT PFCHA/ Doctorado Becas Chile/ 2018 - 72190680.

References

1. Albó, L., Barria-Pineda, J., Brusilovsky, P., Hernández-Leo, D.: Knowledge-based
design analytics for authoring courses with smart learning content. International
Journal of Artificial Intelligence in Education 32, 4–27 (2022)

2. Barria-Pineda, J., Akhuseyinoglu, K., Brusilovsky, P.: Learning content integration
into an electronic textbook for introductory programming (2019)

3. Barria-Pineda, J., Brusilovsky, P., He, D.: Reading mirror: Social navigation and
social comparison for electronic textbooks. In: iTextbooks@AIED (2019)

4. Brusilovsky, P.: Webex: Learning from examples in a programming course. In:
WebNet (2001)

5. Brusilovsky, P., Edwards, S., Kumar, A., Malmi, L., Benotti, L., Buck, D., Ihantola,
P., Prince, R., Sirkiä, T., Sosnovsky, S., Urquiza, J., Vihavainen, A., Wollowski,
M.: Increasing adoption of smart learning content for computer science educa-
tion. In: Proceedings of the Working Group Reports of the 2014 on Innovation
amp; Technology in Computer Science Education Conference. p. 31–57. ITiCSE-
WGR ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2713609.2713611

6. Brusilovsky, P., Malmi, L., Hosseini, R., Guerra, J., Sirkiä, T., Pollari-Malmi, K.:
An integrated practice system for learning programming in python: design and
evaluation. Research and Practice in Technology Enhanced Learning 13 (2018)

7. Brusilovsky, P., Schwarz, E., Weber, G.: Electronic textbooks on WWW: from
static hypertext to interactivity and adaptivity, pp. 255–261. Educational Tech-
nology Publications, Englewood Cliffs, New Jersey (1997)

8. Chacon, I.A., Barria-Pineda, J., Akhuseyinoglu, K., Sosnovsky, S.A., Brusilovsky,
P.: Integrating textbooks with smart interactive content for learning programming.
In: iTextbooks@AIED (2021)

9. Chau, H., Barria-Pineda, J., Brusilovsky, P.: Learning content recommender system
for instructors of programming courses. In: AIED (2018)

10. Dresscher, L., Chacon, I.A., Sosnovsky, S.A.: Generation of assessment questions
from textbooks enriched with knowledge models. In: iTextbooks@AIED (2021)

11. Ericson, B.J., Guzdial, M.J., Morrison, B.B.: Analysis of interactive features de-
signed to enhance learning in an ebook. In: Proceedings of the 11th International
Conference on International Computing Education Research. ACM (aug 2015).
https://doi.org/10.1145/2787622.2787731,

12. Ericson, B.J., Miller, B.N.: Runestone: A platform for free, on-line, and interactive
ebooks. In: Proceedings of the 51st ACM Technical Symposium on Computer Sci-
ence Education. p. 1012–1018. Association for Computing Machinery, New York,
NY, USA (2020), https://doi.org/10.1145/3328778.3366950

13. Fouh, E., Karavirta, V., Breakiron, D.A., Hamouda, S., Hall, S., Naps,
T.L., Shaffer, C.A.: Design and architecture of an interactive etextbook –
the OpenDSA system. Science of Computer Programming 88, 22–40 (2014).
https://doi.org/https://doi.org/10.1016/j.scico.2013.11.040



14 Barria-Pineda et. al.

14. Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P., Malmi, L., Pollari-Malmi, K.,
Schunn, C.D., Sirkiä, T.: Improving engagement in program construction examples
for learning python programming. International Journal of Artificial Intelligence
in Education 30, 299–336 (2020)

15. Hsiao, I., Sosnovsky, S.A., Brusilovsky, P.: Guiding students to the right ques-
tions: adaptive navigation support in an e-learning system for java programming.
J. Comput. Assist. Learn. 26, 270–283 (2010)

16. Huang, A., Hancock, D., Clemson, M., Yeo, G.C., Harney, D.J., Denny, P., Denyer,
G.: Selecting student-authored questions for summative assessments. bioRxiv
(2020)

17. Ihantola, P., Karavirta, V.: Two-dimensional parson’s puzzles: The concept, tools,
and first observations. Journal of Information Technology Education 10, 119–132
(2011), https://jite.org/documents/Vol10/JITEv10IIPp119-132Ihantola944.pdf

18. Karavirta, V., Ihantola, P., Koskinen, T.: Service-oriented approach to im-
prove interoperability of e-learning systems. In: 2013 IEEE 13th Interna-
tional Conference on Advanced Learning Technologies. pp. 341–345 (2013).
https://doi.org/10.1109/ICALT.2013.105

19. Koc-Januchta, M.M., Schönborn, K.J., Tibell, L.A.E., Chaudhri, V.K., Heller,
H.C.: Engaging with biology by asking questions: Investigating students’ inter-
action and learning with an artificial intelligence-enriched textbook. Journal of
Educational Computing Research 58, 1190 – 1224 (2020)

20. Ni, L., Bao, Q., Li, X., Qi, Q., Denny, P., Warren, J., Witbrock, M., Liu, J.:
Deepqr: Neural-based quality ratings for learnersourced multiple-choice questions.
ArXiv abs/2111.10058 (2021)

21. Pollari-Malmi, K., Guerra, J., Brusilovsky, P., Malmi, L., Sirkiä, T.: On the value
of using an interactive electronic textbook in an introductory programming course.
In: Proceedings of the 17th Koli Calling International Conference on Computing
Education Research. p. 168–172. Koli Calling ’17, Association for Computing Ma-
chinery, New York, NY, USA (2017). https://doi.org/10.1145/3141880.3141890,
https://doi.org/10.1145/3141880.3141890

22. Rahdari, B., Brusilovsky, P., Thaker, K., Barria-Pineda, J.: Knowledge-driven
wikipedia article recommendation for electronic textbooks. In: EC-TEL (2020)

23. Ritter, S., Fisher, J., Lewis, A., Finocchi, S.B., Hausmann, B., Fancsali, S.: What’s
a textbook? envisioning the 21st century k-12 text. In: iTextbooks@AIED (2019)

24. Rößling, G., Naps, T., Hall, M., Karavirta, V., Kerren, A., Leska, C., Moreno, A.,
Oechsle, R., Rodger, S.H., Urquiza-Fuentes, J., Velázquez-Iturbide, J.: Merging
interactive visualizations with hypertextbooks and course management. SIGCSE
Bull. 38(4), 166–181 (2006). https://doi.org/10.1145/1189136.1189184

25. Sirkiä, T.: Jsvee kelmu: Creating and tailoring program animations for com-
puting education. Journal of Software: Evolution and Process 30(2) (2018),
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1924

26. Sosnovsky, S.A., Brusilovsky, P.: Evaluation of topic-based adaptation and student
modeling in quizguide. User Modeling and User-Adapted Interaction 25, 371–424
(2015)

27. Thaker, K.M., Brusilovsky, P., He, D.: Concept enhanced content repre-
sentation for linking educational resources. In: 2018 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence (WI). pp. 413–420 (2018).
https://doi.org/10.1109/WI.2018.00-59

28. Vihavainen, A., Vikberg, T., Luukkainen, M., Pärtel, M.: Scaffolding students’
learning using test my code. In: Proceedings of the 18th ACM Conference



Augmenting Digital Textbooks with Smart Learning Content 15

on Innovation and Technology in Computer Science Education. p. 117–122.
ITiCSE ’13, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2462476.2462501

29. Walker, E., Wong, A., Fialko, S., Restrepo, M.A., Glenberg, A.M.: Embrace: Ap-
plying cognitive tutor principles to reading comprehension. In: International Con-
ference on Artificial Intelligence in Education. pp. 578–581. Springer (2017)

30. Walker, E., Wylie, R., Danielescu, A., Rodriguez III, J.P., Finn, E.: Balancing
student needs and learning theory in a social interactive postdigital textbook. In:
End-user considerations in educational technology design, pp. 141–159. IGI Global
(2018)

31. Weber, G., Brusilovsky, P.: ELM-ART: An adaptive versatile system for web-based
instruction. International Journal of Artificial Intelligence in Education 12(4), 351–
384 (2001)

32. Xu, Y., Warschauer, M.: Exploring young children’s engagement in joint reading
with a conversational agent. In: Proceedings of the Interaction Design and Children
Conference. p. 216–228. IDC ’20, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3392063.3394417

33. Zingaro, D., Cherenkova, Y., Karpova, O., Petersen, A.: Facilitating code-writing
in PI classes. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. p. 585–590. SIGCSE ’13, Association for Computing Machinery,
New York, NY, USA (2013)


