

Green Design of a Descaling Machine for Remanufacturing Cleaning Based on QFDE

Chen Chen, Qing Shan Gong, Ming Mao Hu, Jiang Zhigang, Xiong Yurong and Cao Zhanlong

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

September 6, 2022

Green Design of A Descaling Machine for Remanufacturing Cleaning Based on QFDE

Chen Chen School of Mechanical Engineering Hubei University of Automotive Technology Hubei, China 18210880967@163.com Qingshan Gong School of Mechanical Engineering Hubei University of Automotive Technology Hubei, China gongqingshan@163.com

Yurong Xiong School of Mechanical Engineering Hubei University of Automotive Technology Hubei, China 1310872113@qq.com Mingmao Hu School of Mechanical Engineering Hubei University of Automotive Technology Hubei, China hu@huat.edu.cn Zhigang Jiang Key Laboratory of Metallurgical Equipment and Control Technology Wuhan University of Science & Technology Hubei, China jiangzhigang@wust.edu.cn

Zhanlong Cao School of Mechanical Engineering Hubei University of Automotive Technology Hubei, China 526799286@qq.com

Abstract-The importance of the reuse of steel plates is highlighted, because of the intensifying pressure of recession and natural resource shortages. The surface rust of steel plates is removed by a remanufacturing cleaning process so that they can be reused, which in turn reduces steel waste and saves costs. remanufacturing cleaning However, the process has disadvantages such as high-labor intensity, high-energy consumption, and high pollution. Therefore, it is necessary to design a descaling machine for remanufacturing cleaning with high efficiency, low pollution, and good cleaning and rust removal effect. Firstly, quality function deployment for the environment (QFDE) is used to obtain the functional characteristics that the designer needs to focus on, and a better structural scheme is obtained by constructing the functional structure expansion solution domain. The design of a descaling machine is a win-win for both customers and manufacturers.

Keywords—remanufacturing; quality function deployment for the environment (QFDE); descaling machines

I. INTRODUCTION

Remanufacturing has come into being to alleviate the pressure caused by resource scarcity and environmental pollution [1]. It can repair or upgrade wasted mechanical equipment so that its quality and environmental protection performance are not lower than new products [2]. The price of remanufactured products is not higher than 50% of that of new products, and remanufacturing can save energy by 60% and reduce pollutant emissions by more than 80% [3],[4].

The research on remanufacturing-oriented product design mainly focuses on remanufacturing design methods, remanufacturing evaluation, remanufacturing impact factor identification, and so on. For research in remanufacturing design methods [5][6][7], Wang et al. [8] proposed a multi-objective optimal redesign method and redesigned wasted mechanical equipment with multi-objective optimization. Similarly, Huang et al. [9] proposed a remanufacturing solution design method based on the reconstruction of incomplete information of old parts. Haziri et al. [10] proposed a framework for remanufacturing design based on the information feedback from remanufacturing design. These methods can help researchers study the remanufacturing design of products. At the same time, the remanufacturing evaluation of mechanical equipment has also been emphasized [11],[12]. Ong et al. [13],[14] quantitatively evaluated disassembly and recyclability in remanufacturing evaluation. Research on remanufacturing evaluation of mechanical equipment can help researchers reduce unnecessary remanufacturing designs for used mechanical equipment. In addition, some researchers have conducted research on remanufacturing impact factor identification of mechanical equipment [15][16]. Shi et al. [17] explored the basic elements of the remanufacturing evaluation of mechanical equipment. Zwolinski et al. [18] conducted a cluster analysis of successfully remanufactured products based on remanufacturing product profiles (RPP).

The aforementioned studies provide a useful reference for the green design of descaling machines for remanufacturing cleaning. A descaling machine for remanufacturing cleaning used for cleaning and derusting in the remanufacturing process. It is a significant equipment in the remanufacturing process. With the emphasis on remanufacturing, the demand for descaling machines for remanufacturing cleaning has gradually increased, but people have not paid attention to its green features. Based on this, this paper proposes the green design of descaling machines for remanufacturing cleaning. The green design of descaling machines for remanufacturing cleaning can reduce environmental pollution from the source of manufacturing and use, and is conducive to reducing the cost of enterprises. It adopts the QFDE method. Firstly, it adopts the construction of HOQ to obtain the demand importance, and then obtains the importance of functional characteristics. Finnally, the functional analysis is used to get the structural scheme.

II. METHODS

A. QFDE for remanufacturing-oriented mechanical equipment

QFDE is a green design method that can well integrate the user's requirements and environmental needs for consideration [19]. The workflow of QFDE is shown in Fig. 1.

Fig. 1. QFDE-based product design flow char

B. Requirement-function mapping for remanufacturingoriented mechanical equipment design

QFDE can use HOQ to create requirement and engineering characteristic correlation matrix [20], as shown in Fig. 2.

Fig. 2. HOQ for remanufactured mechanical equipment

- (1) Composition of HOQ
- 1) Identify customer requirements, which is obtained using the hierarchical analysis method [21]. The voice of the customer (VOC) is:

$$\boldsymbol{\omega}^{\prime} = \{\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, \cdots, \boldsymbol{\omega}_{i}, \cdots, \boldsymbol{\omega}_{m}\}$$
(1)

2) The matrix of correlations between customer requirements and functional characteristics is expressed as matrix *A*:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
(2)

3) The importance of functional characteristics is:

$$V = \omega^T A = \{ \upsilon_1, \upsilon_2, \cdots, \upsilon_n \}$$
(3)

(2) Mapping of feature parameters

Fig. 3 shows the mapping relationship from design parameters to remanufacturing characteristics and then to remanufacturing process association.

Fig. 3. Characteristic -parameter mapping model

III. CASE STUDY

A. Customr Requirements

Step 1. HOQ for building a descaling machine for remanufacturing cleaning is shown in Fig. 4, and the customer requirements and functional characteristics in the figure are represented by codes as shown in TABLE 1 [22]. The intersection between customer requirements and functional characteristics is the relationship strength, which is expressed in numbers. "9" shows the relationship is strong, "3" shows it is relatively strong, and "1" shows weak relation. And "-3" shows a negative correlation, "-9" shows a strong negative correlation.

Step 2. According to the data in Fig. 4, the correlation matrix A between customer requirements and functional characteristics is:

$$A = \begin{bmatrix} 9 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 3 & \cdots & 0 \\ 3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}_{12 \times 19}$$
(4)

Step 3. To obtain the importance of functional characteristics, a matrix for determining the importance of customer requirements is constructed, as shown in TABLE 2. The scoring criteria of the judgment matrix are divided into 1-9. If the ratio of the scoring criteria is greater in the numerator than in the denominator, then the characteristics of the corresponding row are more important than those of the column; and vice versa.

Step 4. Bring the data from Table 2 into Equation (1) to obtain ω^{T} :

$$\omega^T = \{0.073, 0.06, 0.03, 0.04, 0.112\}$$

 $, 0.097, 0.045, 0.202, 031, 0.012, 0.91 \}$ (5)

Based on the known data in Equations (5)-(4), combined with Equation (3), determine the importance of the functional characteristics V:

$$V = \omega^{T} A$$

= {1.677, 2.796, 1.911, 0.591, 1.131, 0.903, 0.336, 1.143, 0.657, 1.893, 0.112, 1.272, 1.38, 0.57, 0.549, 0.319, 0.279, 1.138, 0.549}

											\geq									C	Custome	r requir	ements	Code	Custor requir	mer ements	Code
								\land	Х	Х	$\langle \rangle$	$\left. \right\rangle$								Н	ligh auton	nation		CN_1	Easily		CN_7
							\land	Х	Х	Х	X	Х	$\left.\right>$							E	Efficient			CN_2		ibration	CN_8
					/	6	X	\bigotimes	$\langle \rangle$	X	$\langle \rangle$	\wedge	\bigcirc	\diamond						L	low nois	e		CN_3	High s	afty	CN_9
			/	\langle	\otimes	8	X	\langle	9X	X	X	$\langle \rangle$		9	\otimes	>	~			А	Affordab	le		CN ₄	Reman ble	ufactura	<i>CN</i> ₁₀
	/	\langle	\otimes			$\left \right\rangle$	\otimes	X	X	\otimes	$\langle \rangle$	9	$\left \right\rangle$	X	X	X	$\left< \right>$	>	\searrow	Η	ligh dep	endabilit	y	CN ₅	Good derustl	ing	<i>CN</i> ₁₁
Í	ک ن	ی۔ 2	۲ ۲	C4	ک دن	ے ٽ	ک ن	$ \rightarrow $) ເ	$ \rightarrow $	ک ت	ک ن	C13	C14	C ₁₅	× ပီ	C ₁₁	× ن	FC ₁₉	L	ittle pol	lution		CN ₆	Long of Life	operation	<i>CN</i> ₁₂
R ₁	9	ш.	ш.	ш.	ш.	L	ш.		9	u 9	ш.		L	ш.	ш.	LL	ш.	ш.	L	F	unction	al chara	cteristics	Code	Functi charac	onal cteristics	Code
N ₂ N ₃			3	3	1			9												D	Degree of	fautoma	tion	FC ₁	Frictio gap	nal sub	<i>FC</i> ₁₁
N ₄	3	_	_	_	_		0			9		3	_			1		1		Η	ligh relia	ability		FC_2		erability	<i>FC</i> ₁₂
N ₅		9 3	3	3	9		3	9			1	9	3	3	0					N	/lechanic	cal vibrat	ion	FC ₃	Easily disasse	emble	<i>FC</i> ₁₃
N ₇	_	3	0	4	_	9		9		3			9		3				3	Ν	/lovemei	nt Coordi	nation	FC_4	Easily	clean	FC_{14}
N ₈ N ₉	_	3	9	1	_			9		3		_	_							Α	brasion	resistanc	e	FC_5		classify	<i>FC</i> ₁₅
N ₁₀		3	9	1	3	3				5		9	9	9	9	9	9	9	9	А	After-sale	es treat		FC ₆	Easily reproce	ess	<i>FC</i> ₁₆
-NI			3																								
N ₁₁		9																9		С	Corrosion	n resistan	ce	<i>FC</i> ₇	Easily reasser	nble	<i>FC</i> ₁₇
N₁₂ g. 4.	HC				ldin	g a	des	scal	ing	ma	chin	ne fo	or re	ema	nuf	fact	urir	-			Corrosior Noise	n resistan	ce	FC ₇ FC ₈	reasser	nble upgrade	FC ₁₀
N ₁₂	HC				ldin	g a	des	scal	ing	mao	chin	ie fo	or re	ema	nuf	fact	urir	-		N	Voise	n resistan			reasser	upgrade	FC ₁₀
g. 4. eanir	HC 1g	DQ	for	bui		-			-									ng	emen	N L	Voise			FC ₈	reasser Easily	upgrade	FC ₁₀
g. 4. eanir	HC	DQ 1	for	bui for		erm			he i		orta		of			ner		ng uire	emen CN ₅	N L	Voise			FC ₈	reasser Easily	upgrade	FC ₁₀
g. 4. eanir	HC	DQ Mat	for	bui for	det	erm		ng t	he i V ₂		orta C	nce	of		tom	ner 1 I ₄		ng uire		N L	Voise Low ener	gy consu	mption	FC ₈ FC ₉	reasser Easily Easily	upgrade test	<i>FC</i> ₁₈ <i>FC</i> ₁₉
BLE	HC ng 2. 1	DQ Mat	for	bui for	det CN ₁	erm		ng t CN	ihe i V ₂		orta C	nce 2 N 3	of		tom CN	ner 1 1 ₄ 2		ng uire	CN ₅	N L	Voise Low ener CN ₆	consu	mption	<i>FC</i> ₈ <i>FC</i> ₉ <i>CN</i> ₉	reasser Easily Easily CN ₁₀	upgrade test <i>CN</i> ₁₁	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂
BLE	HCng 2.1	DQ Mat	for	for	deta 2 N 1 1 1/3	erm		ng t <i>CN</i> 1 1/	<u>he i</u> V ₂ I I		orta C	nce 2 N 3 3	of		tom <i>CN</i> 3/.	ner 1 1 ₄ 2 2		uire	CN ₅ 3/5 3/5 1/5	N L	Noise Low ener CN ₆ 1/2 1/2 1/6	cn ₇ 3/4	CN ₈	FC ₈ FC ₉ CN ₉ 1/3 1/3 1/9	reasser Easily Easily CN ₁₀ 3/7	upgrade test <i>CN</i> ₁₁ 3/8	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4
SN ₁₂ g. 4. BLE	$\frac{1}{2.1}$ $\frac{2.1}{2N_1}$ $\frac{2.1}{2N_2}$ $\frac{2.1}{2N_2}$	DQ Mat 1 2 3	for	buil	<u>det</u> 2 N ₁ 1 1/3 2/3			ng t CN 1	<u>he i</u> V ₂ I I		orta C	nce 2N ₃ 3 1 2	of		tom CN 3/2 1/2 1	2 2 2		uire	CN ₅ 3/5 3/5	N L	Noise Low ener CN ₆ 1/2 1/2 1/2 1/6 1/3	CN ₇ 3/4 3/4	cN ₈ 3/2 3/2 1/2 1	FC ₈ FC ₉ CN ₉ 1/3 1/3 1/9 2/9	reasser Easily Easily CN ₁₀ 3/7 3/7	upgrade test <i>CN</i> ₁₁ 3/8 3/8 1/8 1/4	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2
SN ₁₂ g. 4. BLE	$\frac{HC}{ng}$ $\frac{2.1}{CN_1}$ $\frac{CN_2}{CN_3}$	DQ Mat 1 2 3	for	buil	deta 2 N 1 1 1/3			ng t <i>CN</i> 1 1/	the i V ₂ I I /3		orta C	nce 2N ₃ 3 1	of		tom CN 3/2 3/2	2 2 2		uire	CN ₅ 3/5 3/5 1/5	N L	Noise Low ener CN ₆ 1/2 1/2 1/6	rgy consu CN ₇ 3/4 3/4 1/4	CN ₈ 3/2 3/2 1/2	FC ₈ FC ₉ CN ₉ 1/3 1/3 1/9	reasser Easily Easily CN ₁₀ 3/7 3/7 1/7	upgrade test <i>CN</i> ₁₁ 3/8 3/8 1/8	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4
EN ₁₂ g. 4. eanir BLE	$\frac{1}{2.1}$ $\frac{2.1}{2N_1}$ $\frac{2.1}{2N_2}$ $\frac{2.1}{2N_2}$	DQ Mat	for	buil	<u>det</u> 2 N ₁ 1 1/3 2/3			ng t CN 1 1/ 2/ 5/	the i V ₂ I I /3		orta C	nce 2N ₃ 3 1 2	of		tom CN 3/2 1/2 1	$\frac{\text{her } 1}{I_4}$		ng uire	CN ₅ 3/5 3/5 1/5 2/5	N L	Noise Low ener CN ₆ 1/2 1/2 1/2 1/6 1/3	rgy consu CN ₇ 3/4 3/4 1/4 1/2	cN ₈ 3/2 3/2 1/2 1	FC ₈ FC ₉ CN ₉ 1/3 1/3 1/9 2/9	reasser Easily Easily <i>CN</i> ₁₀ 3/7 3/7 1/7 2/7	upgrade test <i>CN</i> ₁₁ 3/8 3/8 1/8 1/4	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2
SN12 g. 4. eanir BLE	HC ng 2.1 CN_1 CN_2 CN_3 CN_4 CN_5 CN_6 CN_7	DQ Mat	for	for	<u>det</u> CN ₁ 1 1/3 2/3 5/3	erm		ng t CN 1 1/ 2/ 5/	$\frac{1}{1}$			nce 2N ₃ 3 1 2 5	of		tom CN 3/2 1/2 1/2 5/2	$\frac{1}{2}$			CN ₅ 3/5 3/5 1/5 2/5 1	N L	Noise Low ener CN ₆ 1/2 1/2 1/2 1/6 1/3 5/6	29y consu CN ₇ 3/4 3/4 1/4 1/2 5/4	cN ₈ 3/2 3/2 1/2 1 5/2	FC ₈ FC9 CN9 1/3 1/3 1/9 2/9 5/9	reasser Easily Easily <i>CN</i> ₁₀ 3/7 3/7 1/7 2/7 5/7	upgrade test <i>CN</i> ₁₁ 3/8 3/8 1/8 1/4 5/8	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2 5/4
SN12 g. 4. eanir BLE	$\frac{1}{2.1}$ $\frac{2.1}{2.1}$ $\frac{2.1}{2.1}$ $\frac{2.1}{2.1}$ $\frac{2.1}{2.1}$	DQ Mat	for	for (deta 2N ₁ 1 1/3 2/3 2 4/3 2/3			ng t CN 1 1/ 2/ 5/ 2	the i \mathbf{V}_2 1 \mathbf{I} \mathbf{V}_2 1 \mathbf{V}_2 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3			nce 2N ₃ 3 1 2 5 6	of		tom <i>CN</i> 3/2 1/2 1 5/2 3	$\frac{1}{2}$			CN ₅ 3/5 3/5 1/5 2/5 1 6/5	N L	CN6 1/2 1/2 1/2 1/6 1/3 5/6 1	29y consu CN ₇ 3/4 3/4 1/4 1/2 5/4 3/2	CN8 3/2 3/2 1/2 1 5/2 3	FC ₈ FC9 CN9 1/3 1/3 1/3 1/9 2/9 5/9 2/3	reasser Easily Easily CN ₁₀ 3/7 3/7 1/7 2/7 5/7 6/7	upgrade test CN ₁₁ 3/8 3/8 1/8 1/4 5/8 3/4	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2 5/4 2/3 1 1/2
EN12 g. 4. eanir BLE	$\frac{1}{10}$ $\frac{2.1}{2}$ 2.1	DQ Mat	for	for (<u>det</u> CN ₁ 1 1/3 2/3 5/3 2 4/3			ng t CN 1 1 1/ 2/ 5/ 2 4/ 2/	the i \mathbf{V}_2 1 \mathbf{I} \mathbf{V}_2 1 \mathbf{V}_2 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3 \mathbf{V}_3			nce N ₃ 3 1 2 5 6 4	of		tom CN 3// 3// 1// 1 5// 3 2	2 2 2 2			2N ₅ 3/5 3/5 1/5 2/5 1 6/5 4/5	N L	CN6 1/2 1/2 1/2 1/6 1/3 5/6 1 2/3	29y consu CN ₇ 3/4 3/4 1/4 1/2 5/4 3/2 1	cN8 3/2 3/2 1/2 1 5/2 3 2	FC ₈ FC9 CN9 1/3 1/3 1/3 1/9 2/9 5/9 2/3 4/9	reasser Easily Easily CN ₁₀ 3/7 3/7 1/7 2/7 5/7 6/7 4/7	upgrade test CN ₁₁ 3/8 3/8 1/8 1/4 5/8 3/4 1/2	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2 5/4 2/3 1
N12 g. 4. eanir BLE (<	HC $\frac{1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$ $\frac{2.1}{10}$	DQ Mat 2 3 4 5 5 7 3 3 9 0	for	for (deta 2N ₁ 1 1/3 2/3 2 4/3 2/3			ng t CN 1 1 1/ 2/ 5/ 2 4/ 2/	ihe i N2 I /3 /3 /3 /3 /3 3			nce 2N ₃ 3 1 2 5 6 4 2	of		tom <i>CN</i> 3// 3// 1// 1 5// 3 2 1	$\frac{\operatorname{her} 1}{2}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$			CN ₅ 3/5 3/5 1/5 2/5 1 6/5 4/5 2/5	N L	Voise Low ener CN6 1/2 1/2 1/2 1/2 1/6 1/3 5/6 1 2/3 1/3	29y consu CN ₇ 3/4 3/4 1/4 1/2 5/4 3/2 1 1/2	cN8 3/2 3/2 1/2 1 5/2 3 2 1	FC ₈ FC9 CN9 1/3 1/3 1/3 1/9 2/9 5/9 2/3 4/9 2/9	reasser Easily Easily CN ₁₀ 3/7 3/7 3/7 1/7 2/7 5/7 6/7 4/7 2/7	upgrade test CN ₁₁ 3/8 3/8 1/8 1/4 5/8 3/4 1/2 1/4	<i>FC</i> ₁₈ <i>FC</i> ₁₉ <i>CN</i> ₁₂ 3/4 3/4 1/4 1/2 5/4 2/3 1 1/2
N12 g. 4. eanir BLE (<	$\frac{1}{10}$ $\frac{2.1}{2}$ 2.1	DQ Mat 2 3 4 5 5 7 3 3 9 0	for		detr CN ₁ 1 1/3 2/3 2 4/3 2/3 3			ng ť CN 1 1/ 2/ 2/ 2/ 3	the i V ₂ 1 1 /3 /3 /3 /3 /3			nce N ₃ 3 1 2 5 6 4 2 9	of		tom CN 3/2 1/2 1 5/2 3 2 1 9/2	$\frac{\operatorname{her} 1}{2}$			CN ₅ 3/5 3/5 1/5 2/5 1 6/5 4/5 2/5 9/5	N L	Voise CN6 1/2 1/2 1/2 1/2 1/6 1/3 5/6 1 2/3 1/3 3/2	cN7 3/4 3/4 1/4 1/2 5/4 3/2 1 1/2 9/4	cN8 3/2 3/2 1/2 1 5/2 3 2 1 9/2	FC8 FC9 CN9 1/3 1/3 1/3 1/9 2/9 5/9 2/3 4/9 2/9 1	reasser Easily Easily CN ₁₀ 3/7 3/7 1/7 2/7 5/7 6/7 4/7 2/7 9/7	upgrade test CN ₁₁ 3/8 3/8 1/8 1/4 5/8 3/4 1/2 1/4 9/8	3/4 3/4 1/4 1/2 5/4 2/3 1 1/2 9/4

The results of the importance of functional characteristics show that consumers are more likely to consider the following characteristics: efficient, remanufacturable and low noise.

B. Function analysis

In the design, according to the function tree (Fig. 5), it can be known that the functions correspond to their working methods and mechanical parts.

Fig. 5. Function tree about a descaling machine for remanufacturing cleaning

C. Obtain structural scheme

TABLE 3 shows the multiple mechanical structures that can achieve the same function and construct the functional structure expansion solution domain. Structure solution: steel wire rope + steel wire brush+ raceway + bag filter++ steel plate shield + cylindrical gear reducer.

The main mechanisms of a descaling machine for remanufacturing cleaning are the transmission device, the rough descaling device, and the fine descaling device. The design scheme diagram of the device mechanism is shown in Fig. 6.

Functional elements	Structure	Expansion Structure
Coarse descaling	Flexible cable	fine steel steel wire rope, steel wire, copper wire, iron wire
Fine descaling	Rolling brush	Parallel wire brush、 Steel wire brush、 Winding spring wire brush、 Copper wire brush
Steel plate conveyor	Roller	Chain conveyor, Raceway, Conveyor, Drum motor,
Dust removal	Dustor	Dry mechanical dust collector, Bag filter, Wet dust collector,
Protection	Protective shield	Steel plate shield Glass shield
Reduction	Reducer	Planetary gear reducer、Cylindrical gear reducer、Turbo worm gear reducer

1. Steel wire brush 2. Roller; 3. Steel plate guard; 4. Steel plate to be descaled 5. Steel wire rope 6 Press wheel 7. Steel plate 8. Console 9-11Motor 12-14. Belt 15. Pipeline 16. Bag filter 17. Cylindrical gear reducer Fig. 6. Scheme of a descaling machine for remanufacturing cleaning

IV. RUSULTS AND DISCUSSION

In this case, unlike most structural design studies, this paper first collects customer requirements before designing a descaling machine. The customer mainly considered the characteristics of efficiency, remanufacture and low noise. There are various mechanical structures to achieve these functions. And the optimal structural solution is a steel wire brush as the rust removal mechanism, and a bag filter as the dust removal mechanism. The structure scheme is designed out of descaling machines for remanufacturing cleaning to meet the customer's requirements. It also meets the current low-carbon and environmental protection concepts.

However, as the data in the correlation matrix between customer needs and functional characteristics constructed is based on expert ratings, we need to reduce some subjectivity.

V. CONCLUSIONS

In this paper, with the help of the QFDE method, we have obtained a structural solution for the descaling machine that meets the customer's needs and performs relatively well. The descaling machine for remanufacturing cleaning uses steel wire rope as flexible cable and steel wire roller brush to remove the rust layer on the surface of steel plates, which can achieve the best result without damaging the base structure of steel plate.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENT

This work is supported by Ministry of Industry and Information Technology Industrial Internet Innovation and Development Project (TC200A00W, TC200802C), Hubei Key R&D Program Project (2020BAA005), Hubei Provincial Education Department Key Projects(D20211803), Open Fund Project of Hubei Key Laboratory of Automotive Power Transmission and Electronic Control(ZDK1201802), and Hubei Automotive Industry College Doctoral Fund(BK202001).

REFERENCES

- C.H. Liu, Q.H. Zhu, F.F. Wei, W.Z. Rao, J.J. Liu, J. Hu and W. Cai, "A review on remanufacturing assembly management and technology," J. The International Journal of Advanced Manufacturing Technology, vol.105, pp. 4797-4808, 2019.
- [2] L. Yin, F.Y. Yang, F.P. Zhu and L.X. Fang, "Study on selective assembly of remanufacturing parts to be assembled based on NSGA-III," J. Journal of Mechanical Design,vol.3, pp. 53-60, 2022
- [3] M.A. Ilgin and S.M. Gupta, "Remanufacturing: Modeling and Analysis," J. Studies in informatics and control, vol.21, pp. 341-342, 2012.
- [4] B.S. Xu, S.C. Liu and H.D. Wang, "Vigorously develop the remanufacturing industry". J. Qiu Shi, vol.12, pp. 46-47, 2005.
- [5] Q.S. Gong, H. Zhang, Z.G. Jang, H. Wang, Y. Wang and X.L. Hu, "Nonempirical hybrid multi-attribute decision-making method for design for remanufacturing," J. Adv. Manuf, vol.7, pp. 423–437, 2019.
- [6] Y.B. Du, H.J. Cao, F. Liu, P. Yan and C.B. Li, "Evaluation of machine tool remanufacturing scheme based on entropy weight and AHP," J. International Journal of Computer Integrated Manufacturing, vol.17, pp. 84-88, 2011.
- [7] Q.S. Gong, Y.R. Xiong, Z.G. Jiang, J. Yang and C. Chen, "Timing Decision for Active Remanufacturing Based on 3E Analysis of Prod-uct Life Cycle," J. Sustainability,vol.14, 2022.

- [8] H. Wang, Z.G. Jiang, H. Zhang and Y. Wang, "Research on Multiobjective Optimization Redesign Method for Used Mechanical Equipment Based on Analytical Target Cascading," J. Journal of Mechanical Engineering, vol.55, pp.147-153, 2019.
- [9] W.H. Huang, Z.G. Jiang, T. Wang, Y. Wang and X.L. Hu, "Remanufacturing Scheme Design for Used Parts Based on Incomplete Information Reconstruction," J. Chinese Journal of Mechanical Engineering, vol.33, pp. 147-153, 2020.
- [10] L.L. Haziri and E. Sundin, "Supporting design for remanufacturing A framework for implementing information feedback from remanufacturing to product design," J. Journal of Remanufacturing, vol.10, pp.57-76 2020.
- [11] S.G. Liu, "Research on the remanufacturability evaluation of automobile crankshaft based on matter-element model," J. Highway and Transportation, vol.136, pp.1-4, 2010.
- [12] S.G. Liu, "Research on the evaluation technique of vehicle crankshaft remanufacturing," D. Wuhan University of Technology, vol.12, 2010.
- [13] S.K. Ong, H.C. Fang and A.Y.C. Nee, "A design feature-based approach for product remanufacturability assessment and analysis," J. Procedia CIRP, vol.53, pp. 15-20, 2016.
- [14] H.C. Fang, S.K. Ong and A.Y.C. Nee, "An integrated approach for product remanufacturing assessment and planning," J. Procedia CIRP, vol.40, pp. 262-267, 2016.
- [15] A.O. Thomas, A.O. Wilkistar, F. Sajjad and D.R. Anthony, "A Bi-level fuzzy analytical decision support tool for assessing product remanufacturability," J. Journal of Cleaner Production, vol.174, pp. 1534-1549, 2018.
- [16] L.I. Winifred, A.M. Christopher, P.H. Geoffrey and T.N. Stephen, "Development of design for remanufacturing guidelines to support sustainable manufacturing," J. Robotics and Computer-Integrated Manufacturing, vol.23, pp. 712-719, 2007.
- [17] J.L. Shi, "Analysis method research on multi-dimensional remanufacturability of mechanical equipment based on LCSA theory," D. Dalian University of Technology, vol.09, 2017.
- [18] Z. Peggy, L. Miguel-Angel and B. Daniel, "Integrated design of remanufacturable products based on product profiles," J. Journal of Cleaner Production, vol. 14, pp. 1333-1345, 2006.
- [19] Y. Mojdeh and R. Emad, "A framework for sustainable product design: a hybrid fuzzy approach based on Quality Function Deployment for Environment," J. Journal of Cleaner Production, vol.108, pp. 385-394 2015.
- [20] J.M. John, "Quality function deployment: How to make QFD work for you," J. The Journal of Product Innovation Management, vol.13, pp. 11-22, 1996.
- [21] T. L. Saaty, "A scaling method for priorities in hierarchical structures," J. Journal of Mathematical Psychology, vol.15, pp.234-281, 1977.
- [22] Q.S. Gong, "Research on Multi-objective Optimization Design Method of Mechanical Equipment Design for Remanufacturing," D. Wuhan University of Science and Technology, vol.08, 2020.