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Abstract—Clinical trials, pivotal for evaluating medical inter-
ventions, are undergoing a shift with Clinical Trial Simulation
(CTS). CTS optimizes trial design, providing a cost-effective,
evidence-based approach to drug development and intervention
testing. The primary objective of this study is to use the power
of simulations to evaluate the effectiveness of behavioral inter-
ventions, specifically addressing alcohol, depression, and tobacco
as risk factors, in enhancing tuberculosis treatment outcomes.
Implementing a robust power analysis framework and introduc-
ing the concept of ’resimulations”, our study enhances statistical
rigor and reliability across various intervention scenarios. This
offers a versatile approach applicable to diverse research areas,
providing a comprehensive framework to design and simulate
Randomized Controlled Trials (RCTs), enabling reliable robust
clinical studies.

Index Terms—Biostatistics, Simulations, Clinical Trial Design,
Randomized Controlled Trials, Power Analysis, Sample Size Opti-
mization, Comorbidity, Tuberculosis, Intervention Testing

I. INTRODUCTION

Tuberculosis (TB), a global threat, has encountered
setbacks due to COVID-19, leading to an 18% decline in TB
diagnoses from 2019 to 2020 [[1]. Despite this, the World
Health Organization (WHO) estimates that over one million
children develop TB annually, constituting 12% of the global
TB burden [2]. TB is intricately linked with co-morbidities
like HIV, diabetes, alcohol abuse, smoking, and depression,
posing challenges in diagnosis and treatment [3]]. Concurrent
pathologies, along with alcohol dependence and smoking,
contribute to widespread drug resistance and low adherence
to TB therapy [4] [S]. Conducting clinical trials to observe
the effect of interventions for such comorbidities can help
us improve treatment outcomes [6]. Noteworthy clinical
trials (Study 31/A5349, TRUNCATE-TB, SHINE, STREAM,
NiX-TB, ZeNix, TB-PRACTECAL) have shown promise in
shortening TB treatment duration [7].

However, clinical trials for testing novel treatments and
drugs face several challenges, notably high logistical and
financial costs associated with their execution [8]] [9]. These
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costs can be a significant barrier, frequently restricting the
breadth and depth of experimental research [7]. Ethical
considerations in clinical trials are paramount, particularly
in balancing patient welfare with scientific inquiry, ensuring
informed consent, and addressing the morality of placebo
use in the control group [4]]. Based on these challenges,
approaches to ensure treatment efficacy in clinical trials are
of paramount importance. A critical aspect in this context
is sample size estimation, which is crucial for achieving
statistical significance and ensuring that the trial results are
reliable [10]. An undersized study may subject participants
to needless and possibly harmful treatments without yielding
valuable knowledge, while an oversized study risks involving
too many subjects in such treatments [11]]. Frequently, sample
size calculations in clinical trials are poorly conducted and
reported [[12]], leading to reproducibility and accuracy issues.
This often results in under-powered studies that fail to
conclusively demonstrate treatment effectiveness [13]]

Another challenge in estimating treatment effectiveness
in clinical trials is the presence of multiple risk factors
associated with a disease, such as in tuberculosis, where
diabetes, smoking, alcohol use, and other drug use significantly
influence trial outcomes and interpretations, complicating the
analysis and management of the disease [6]. Furthermore,
comorbidities often lead to worse health outcomes and an
increased load on healthcare infrastructure. Interventions
for patients with comorbidities in primary care require
complex, tailored strategies. A review by Smith et al.
(2012) [14] indicates limited overall effectiveness but
suggests interventions targeting specific risk factors or
functional difficulties may show improved outcomes. These
considerations highlight the need for meticulous preclinical
trial design studies that incorporate these factors, thereby
enhancing the relevance and applicability of clinical trial
findings in real-world settings.

Clinical trial simulations for Randomized Controlled



Trials (RCTs) present a novel method for optimizing
trial designs and resource allocation. By simulating RCTs
before execution, researchers can effectively determine
optimal population sizes and distribution, reducing costs and
improving the efficiency of trials. This approach allows for
refined study designs and ensures the reliability of trial results.

India, bearing the highest global TB burden and ranking
second in tobacco consumption, along with significant alcohol
use, prompts a critical examination of the intricate relationship
between these factors and TB treatment outcomes [6]. Recog-
nizing the lack of clarity in this domain, our study aims to
fill this gap by conducting a simulation study. We analyze the
impact of comorbidity features, exploring scenarios where TB
patients solely consume alcohol, solely take tobacco, have poor
mental health, or certain combinations of these conditions.
Implementing interventions for smoking cessation, alcohol re-
duction, and mental health symptom management, we strive to
optimize sample sizes and design a multi-factorial RCT before
implementation. Assumptions include an overall TB treatment
failure rate of 12%-15%, with interventions expected to reduce
this rate by 50 %. The goal is to design a comprehensive
trial, evaluating main intervention effects through participant
comparisons with and without interventions. Beyond the scope
of individual participant outcomes, this endeavor aims to create
a dynamic platform for healthcare practitioners to experiment
with different risk factor interventions, explore the diverse im-
pacts of comorbidities across various use cases, and effectively
plan clinical studies.

II. RELEVANT WORK

Sample size optimization is crucial for ensuring reliable
evidence in clinical trials, guiding treatment -efficacy
assessments, and clinical decision-making [10]. Typically,
trials involve two groups: a case group receiving the
intervention and a placebo group receiving an inactive
treatment. Traditional methods rely on power calculations,
often using mathematical formulas or Monte Carlo simulations
[15] [[16]]. However, complex trial designs pose challenges
addressed by various methods like SimSam and MLPowSim
packages [17] [18]. Multi-objective optimization algorithms
like NSGA-II offer theoretical solutions but may be
impractical for demanding problems [[19]. Surrogate models,
particularly Gaussian process regression with efficient
global optimization algorithms, address these challenges
effectively [20]. Randomization, a common method in trials,
controls bias, with simple randomization ensuring complete
randomness but potentially leading to uneven group sizes,
especially in smaller studies [21f]. Cluster randomized trials,
randomizing individuals in groups, offer advantages in
healthcare evaluations and interventions, making higher-level
randomization more feasible and practical [21].

Comorbidity, defined as the presence of additional
conditions alongside a primary one [22], can impact treatment
efficacy by introducing competing risks and interactions,

including drug-drug, drug-disease, and disease-disease
interactions, thereby affecting the risk-benefit balance
[23] [24] [25]. In a cross-sectional analysis, Hanlon et
al. (2019) [26] investigated the prevalence of comorbidity
and multimorbidity among 122,969 participants in 116
industry-funded trials of novel drug therapies across 22 index
conditions. They compared these findings with comorbidity
data from 2.3 million community-dwelling patients in the
UK, providing insights into the representation of individuals
with comorbidities in clinical trial settings [26]. Unger
et al. (2019) [27] investigated the association between
comorbidities and participation in cancer clinical trials among
patients with breast, colorectal, lung, or prostate cancer
[27]. Using data from a national survey, Charlson et al.
(1987) [28]] examined the decision-making process regarding
trial participation in relation to 18 comorbid conditions.
Logistic regression analysis revealed insights into how
the presence of comorbidities influenced discussions about
trials, trial offers, and actual participation, shedding light on
factors impacting patient engagement in clinical research [27].

Previous research has highlighted the critical importance of
sample size calculation in the context of clinical trial design,
emphasizing its integral role in ensuring the statistical power
needed to detect significance [10]. Underpowered studies
risk inconclusive results, jeopardizing the overall success
of the research endeavor. The complexity of sample size
determination is compounded by the competing objectives
of maximizing statistical power and minimizing budgetary
constraints. The determination of optimal sample size is
a pivotal step in crafting a research protocol, striking a
delicate balance between maximizing statistical power
and minimizing costs associated with involving too many
participants. It remains a universal challenge. Although work
has been done statistically to answer the contradictions of
sample size determination, a comprehensive solution that
incorporates this facet in the designing of RCTs has not yet
been extensively researched. [29] [15] [30]

Designing RCTs before their actual implementation serves
as a strategic tool to test novel trial designs, understand trial
requirements, and optimize resource allocation. PyTrial, a
machine learning framework, is tailored for clinical trials,
featuring over 30 algorithms across six tasks [31]. Its trial
patient simulation task uses generative models to create
synthetic clinical trial data, closely mimicking real patient
records. Another module predicts patient outcomes, aiding in
evaluating treatments while minimizing risks. While PyTrial
offers a robust solution for clinical trial design and execution,
it lacks capabilities for testing multiple interventions on a
single synthetic dataset.

Monte Carlo Simulations (MCS) are used in Randomized
Controlled Trials (RCTs) for their capability to employ
random sampling and statistical models for predicting and
analyzing outcomes [32[] [33] [16] [34]. A key study by



Goldenholz’s et al. (2017) [16] on epilepsy RCTs using
MCS illustrates its effectiveness in optimizing trial design,
highlighting how trial parameters influence costs and placebo
responses. However, a limitation of MCS is its reliance on
accurate data models to reflect real-world complexities, which
can impact the generalizability of simulation results.

Recent collaborative efforts have been undertaken to de-
velop a robust R function for simulating a two-group parallel-
arm randomized controlled trial (RCT) with interim analyses
[35]. The primary focus of the simulation was on binary
outcomes, specifically exploring the probability of death for
each group. The flexibility of the simulation design allowed
for tuning various parameters, including the total number of
participants, the frequency and schedule of interim analyses,
the chosen group-sequential design, as well as conventional
trial analysis parameters such as the significance level (alpha),
the type of test (1-sided vs. 2-sided), and others. The function
computes essential statistics like odds ratios, confidence limits,
p-values, and the number of successes for each specified
interim analysis. While this method offers flexibility in tuning
parameters, its applicability is confined to specific trial scenar-
ios and outcomes. The efficiency and scalability of the R code
may also be subject to improvement, considering alternative
coding practices.

III. METHODOLOGY

A. Sample Study Description

We consider a Tuberculosis simulation study, with the
primary objective of evaluating the effectiveness of behavioral
interventions targeting risk factors of alcohol use, tobacco
use, and mental health issues in improving tuberculosis
treatment outcomes. This study population is conceptualized
as a cohort of individuals undergoing TB treatment, with
treatment outcomes categorized as either ”0” for adverse
outcomes (such as treatment failure, death, or recurrence) or
”1” for positive outcomes signifying recovery.

Addressing the complexity of multiple risk factors and their
various overlaps in the study population, we consider single as
well as multi-morbidity risk factor interventions in our study.
Our simulations explore the interplay of multiple intervention
groups dividing the population into eight intervention groups.
To determine the optimal sample sizes for each treatment
versus control group, we conduct statistical power analysis,
aiming for a statistical power above 80 %. We implement
recursive resampling to achieve these optimized sample
sizes, ensuring the power analysis criteria are met. Our
study hypothesizes that comorbidity interventions improve
treatment outcomes, a theory we aim to validate.

Through this simulation study, we aim to validate our
Randomized Controlled Trial (RCT) design framework and
demonstrate its applicability across various clinical scenarios.

B. Data Collection

In our study, we leveraged data from the Geneva WHO
Global TB Reports spanning 2020 to 2022 [2] [1] [36] to
establish a comprehensive dataset of TB patients worldwide,
accessed through the WHO TB Report app. This rich
source provided region-specific information on TB patients,
offering insights into population distribution and comorbidity
prevalence, such as the gender-based disparity in alcohol
consumption. This data formed the foundation for our
study, allowing us to simulate realistic scenarios mirroring
real-world conditions.

Furthermore, we employed correlation analysis and
K-means clustering techniques to identify key population
variables essential for our simulation model. K-means
clustering enabled us to categorize data points into distinct
clusters, facilitating a deeper understanding of population
characteristics and comorbidity patterns. Correlation analysis
provided insights into the relationships between intervention
effectiveness and statistical distribution, guiding our selection
of variables for simulation modeling. This data-driven
approach ensured that we created a representative base
population, necessary for precisely assessing intervention
efficacy and guiding the design of our simulation framework.

C. Simulation Modeling

For our simulation framework, we consider several pa-
rameters describing the population’s characteristics, such as
total sample size, demographic information (age, gender, BMI,
education), percentage of people with risk factor conditions
(alcoholism, depression, tobacco use), percentage overlaps be-
tween conditions, intervention status, and treatment outcomes.
The framework simulates a dataset of clinical trial data based
on input parameters and percentage distributions.

TABLE I: Description of Variables in Population Data

Variable Type Distribution
Age Continuous Range: 18 to 60;
Mean of 35; Std
Deviation of 15
Gender Categorical Male-Female 50-
50 split
BMI Categorical Three  Buckets

(10%,50%, 30%)

Alcoholism, Smoking, Depression | Binary Predictor variables | Base Assumption
(20%,25%, 20%)

17 Unique Val-
ues, intervention
status

Intervention Categorical Variable

Treatment Outcomes Binary Response variable | 0-Adverse
Outcomes 1-

Good Outcomes

We modeled the distribution of demographic variables based
on our analysis of the WHO Global TB Report Data as
mentioned in the previous section. The 3 risk factors of



alcohol, depression, and tobacco usage were modeled as
binary predictor variables, reflecting risk factors in individuals
based on specified population percentages and overlaps(initial
sample 20%, 25%, 20%). Additionally, the percentage overlap
parameters model the overlap of multiple risk factors in the
population and calculate the inclusion-exclusion principle. The
population’s risk factor status had seven unique categories,
accounting for individual and overlapping cases of the three
risk factors. For a given risk factor status, interventions were
administered by a 50-50 split, indicating an equal chance for
an individual with a particular condition to receive one of
the available interventions. Intervention status is a categorical
variable with 17 unique values, describing the types of inter-
ventions for risk factors that a patient receives.

TABLE II: Comorbidity Groups and Intervention Groups

Comorbidity |[A|D|T Intervention Type Treatment vs
Control
0 0/0|0 Unaffected UNAFFECTED
1 110]0 Alcoholism A/NA
2 0|1]0 Depression D/ND
3 0|01 Tobacco Use T/NT
4 111]0 Alcoholism+Depression AD/NAD
5 1101 Alcoholism+Tobacco Use AT/NAT
6 0|11 Depression+Tobacco Use DT/NDT
7 1| 1] 1]|Alcoholism+Depression+Tobacco Use | ADT/NADT

Treatment outcomes in our study are binary and determined
by the interaction of risk factors and interventions. They are
randomly assigned based on the probability of success for each
risk factor and intervention combination, with these probabili-
ties influencing the likelihood of a positive treatment response.
For instance, a person with alcoholism receiving an inter-
vention has a high probability of a good treatment outcome.
However, if they also have depression without intervention,
the probability decreases. A person with alcoholism and no
intervention has a lower probability of a good outcome. The
interplay of these variables creates a nuanced understanding
of treatment outcomes based on the presence of risk factors
and corresponding interventions.

D. Power Analysis

Following population simulation, we conduct a t-test
power analysis. This analysis is crucial for determining
the likelihood of observing the effects of the interventions
on the improvement of treatment outcomes in a real-world
population. By testing the null hypothesis, we can establish
whether any observed differences are statistically significant
[37]. This analysis aids in ensuring our study is adequately
powered to detect the interventions’ effects.

In our study, we identified seven distinct risk factor
statuses(including individual risk factors, their dual
combinations, and the collective combination of all three).
For each status, individuals were split into two intervention
statuses: those receiving the intervention (treatment) and those
not (control). This created a total of 14 intervention statuses.
Our power analysis compared each risk factor condition’s
treatment group with its corresponding control group, across
all seven conditions, to evaluate our study’s ability to detect
the intervention’s true effect on each risk factor.

E. Resimulations: Optimized resampling

In maintaining the integrity of our simulation outcomes,
every power analysis case must achieve a statistical power
above the crucial threshold of 0.80. This standard is key
to rejecting the null hypothesis, correctly identifying true
effects, and substantiating our results [37]. To address this,
we implemented an optimized resimulation approach. Our
recursive method precisely calculates statistical power for
different treatment-control groups, targeting a minimum power
of 0.75 for credible results. Should any group not meet this
benchmark, we iteratively add more samples, thus engaging in
a recursive cycle of sample resampling and power reevaluation.
We also introduced a factor of randomization to ensure that
the dataset encompassed nearly ideal numbers for each sub-
group. While not essential for all parameters, randomization is
crucial for certain factors to ensure simulation precision [21]].
Our innovative backtracking technique dynamically modifies
sample sizes until each treatment-control pair reaches the
preferred power level. This iterative sample size refinement
provides statistical consistency across various intervention
scenarios.

IV. RESULTS

Our simulation function was employed to test and
validate a range of population scenarios, each varying in
size and the distribution of key feature characteristics. We
performed a power analysis of the simulated data’s respective
treatment/control groups and evaluated their statistical power.

The resimulation algorithm effectively managed to conserve
the percentage distribution of the intervention groups in the
initial population even after increasing the total number of
samples. It also has a successful impact on increasing the
power per treatment/control group of the population above
the threshold value, successfully achieving its outcome of
enhancing the statistical power and reliability of the study’s
findings [37]. This iterative recursion approach ensures that
each treatment-control pair attains the desired power level.

The above table presents different initial population use
cases, showing their initial average statistical power and the
final sample size, along with the final average power achieved,
exceeding the critical threshold of 0.80. The relative differ-
ence between the final sample size after resimulation can be
attributed to randomization [21]] due to the resampling that we



TABLE III: Initial vs Final Power

Initial Sample Size | Initial Average Power |Final Sample Size |Final Average Power
10000 0.60 16460 0.89
12000 0.63 16240 0.87
15000 0.79 16120 0.86
20000 0.92 20180 0.92

have implemented. The variation in final sample sizes after
resimulation is due to the randomization inherent in our re-
sampling method. When the initial power already surpasses the
0.80 threshold, the function minimally iterates, demonstrating
its reliability across various initial sample scenarios.

TABLE IV: Initial vs Final Size after Resimulation

Initial Sample Size | Risk Factor Distribution | Risk Factor Overlap | Final Sample Size

10000 8%-8%-8% 49%-4%-4%-3% 16460
12000 8%-8%-8% 490-4%-4%-3% 16240
10000 8%-10%-8% 490-4%-5%-3% 17760
10000 10%-10%-10% 5%-5%-5%-3% 13560
20000 8%-8%-8% 4%-4%-4%-3% 20180

The simulation results indicate that larger final sample sizes
are necessary when risk factors are initially distributed at
low and equal percentages. Conversely, smaller final sample
sizes are required when these factors are high and equal. The
largest final sample sizes are observed when risk factors are
distributed at high but unequal percentages.

These results underscore a critical aspect of clinical trial
design: the initial distribution of risk factors influences the
necessary scale of a study. A balanced distribution of high-
risk factors can optimize sample size [38], while a skewed
distribution necessitates a larger cohort to ensure statistical
significance. This insight is crucial for researchers planning
trials, as it affects resource allocation, trial duration, and the
overall feasibility of detecting meaningful treatment effects.

V. DISCUSSION

Our study introduces a comprehensive approach to the
simulation, optimization, and design of randomized controlled
trials (RCTs) for pulmonary tuberculosis treatment. A function
to generate synthetic clinical trial datasets is developed. These
datasets simulate a broad range of population characteristics,
considering factors such as condition prevalence (alcoholism,
depression, tobacco use), demographic variables (age, gender,
BMI, education), treatment interventions, and outcomes.

The power analysis framework we established plays a
pivotal role in determining the necessary sample size for
achieving a statistical power of at least 0.80. We introduce
the concept of “resimulations,” addressing the critical need
for statistical power in clinical research. Resimulations offer
an iterative approach to achieving the desired statistical power

for each treatment-control pair, ensuring a reliable study
design.

Our solution extends beyond the framework and is
implemented as a Web application. This web application
automates the RCT population design process, enabling
researchers to input study details and receive a re-simulated
dataset with optimized statistical power and sample sizes,
eliminating manual calculations.

In the future, the method can be scaled up, accommodating
an increased number of interventions and supporting various
trial designs. It can also facilitate the design of clinical trials
for testing new drug therapies by simulating diverse patient
populations with varying comorbidities and demographic char-
acteristics. This enables researchers to assess the efficacy and
safety of experimental drugs more comprehensively before
advancing to costly and time-consuming clinical trials. In
the world of public health interventions, such as vaccination
campaigns or disease prevention programs, our methodology
allows for the simulation of intervention impacts on different
population groups. By integrating demographic data and risk
factors, organizations can make informed decisions about
resource allocation and implementation strategies, maximizing
the effectiveness of public health initiatives.
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