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Abstract. The paper presents: an object detection algorithm for coherent recep-

tion of signals coming from a monitoring network consisting of several sensors; 

an algorithm for detecting an extended object by analog signals of sensors of a 

monitoring network. These algorithms use statistics that take into account the 

most stable features of the distribution of the source data. They can be imple-

mented in an automated decision support system. At the same time, decisions 

on the detection of a monitoring object made by an automated system will be 

more reliable  
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1 Introduction 

To carry out environmental monitoring, it is necessary to conduct continuous obser-

vations over time, based on a well-thought-out distribution of measuring instruments 

in space, for which it is necessary to use a stationary distributed multi-sensor remote 

monitoring system [1]. It should work efficiently, preferably at a real time scale. Effi-

ciency also means reducing the time frame for deciding on the classification of the 

observed object. Therefore, it is necessary to automate not only the data collection 

process, but also the classification algorithms of the monitoring object in order to 

attract the attention of the human operator only to objects that actually threaten the 

ecological state of the observed area and even at the stage of automated data pro-

cessing to weed out objects that do not threaten the ecological state of the zone of 

responsibility. A stationary network of stations included in the monitoring system 

requires the availability of communication channels with a Monitoring Control Point 

(MCP) [2]. Laying a cable communication network is often unprofitable. Therefore, 

for communication purposes it is necessary to use a radio channel or satellite commu-

nication [2]. Since the sensors of the monitoring network receive energy from the 

batteries, in order to save energy in the monitoring network, it is often justified not to 

pre-process the signal on the sensor, but to send analog signals to the MCP, which is 
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charged with processing the sensor signals and detecting the monitoring object [3]. 

Information exchange over the radio channel raises the problem of detecting an ana-

log signal with an unknown law of fluctuations against the background of noise with 

an unknown distribution [4].  To solve this problem, in this paper, it is proposed to 

develop the following algorithms: 

• an optimal algorithm for detecting a monitoring object during coherent reception 

of signals coming from a monitoring network consisting of several sensors; 

• the optimal sample size for detecting the object of the analog signals of the sensors 

of the monitoring network. 

2 Theoretical Analysis 

2.1 The optimal algorithm accordingly to the signal-to-noise ratio criterion 

for processing spatially distributed data from a monitoring network 

consisting of several sensors  

Let us consider the problem of coherent detection of a signal from an object distribut-

ed in N resolution elements, which are sensors of a monitoring network. It was shown 

in [4] that the optimal detector is that which calculates the likelihood ratio:  

 

  


)(
2

1101

0 ])
2

1

2

1
exp[()(

)(

1
)( 2

N

k k

n
n

k

N
k

xXl



 (1) 

where nx - detector output envelope samples , Nn ,.....,2,1   

0  and 1 - signal variances received from )( kN  sensors, that did not fix the object 

and k  sensors, fixed object accordingly . 

        From equation (1) we can see, that that detector which is optimal accordingly to 

the signal-to-noise ratio criterion  can be implemented by a rather complex circuit, 

and, in addition, for its implementation a priori information is required about the pa-

rameters of  signal )( 1 and noise )( 0 , which, as a rule, in real monitoring condi-

tions are unknown. Therefore the rule (1) characterizes the potential for detecting an 

object and cannot be realized in many practical cases. 

         It is necessary to develop an optimal by signal / noise criterion algorithm for 

coherent detection of a signal from a monitoring object received from )( kN  sensors 

on the background of noise interference provided that the signal and noise parameters, 

as well as the position of the fixed object k sensors among N  sensors of the monitor-

ing network are a priory unknown. Detection is formulated as the statistical task of 

testing general linear hypotheses  [4-10] and the optimal rule is found in the class of 

so-called invariant rules  [11].  

       We use the following premises: 
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1. There are statistically independent radio pulses sent by  )1( NN  sensors. In the 

absence of the object of observation, these pulses have the same average power. 

The law of the distribution of the noise background is considered normal. 

2. In the presence of an object of observation, the resulting fluctuation in resolution is 

the additive sum of the signal with unknown amplitude  )...,2,1( kmm   and 

Gaussian noise with unknown variance 
2 . Coherent processing is assumed. In-

dependent voltage samples are taken at the output of the linear path of the MCP  

receiver at time instants following the resolution interval.  ),...,2,1( Nnxn  . 

3. Processing is carried out during the p  periods of the signal, so that each reference 

element n  will correspond to a sample vector ),....,( 1 npn xx  with multidimensional 

normal probability density 
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The mean values and the covariance matrix of the vector are determined from the 

expressions  ;)( ninixE   ;))(( ijnjnjnini xxE    1 Aij , where E  - is the 

sign of mathematical averaging, and 0n , if )( kNn  , and 0n  at  kn . It 

is also believed that the matrix )( ijaA  - is common to all vectors N , having di-

mension  p  , but unknown . 

           The challenge is that by sample   
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determine the presence or absence of a signal about the existence  of a monitoring 

object. Matrix X  consists of p  column vectors ),.......,( 1 Nii xx , and each such vector 

has its own mean value vector  ),...,( 1 Niii   . 

Given the accepted assumptions, the task of detection is to test complex hypotheses  

0H  and 1H  regarding parameters i  and A . 

                 0:0 iH       0:1 iH      pi ,....,2,1   А is unknown (3) 

Hypothesis testing  (3) fits into the scheme of testing multidimensional linear hypoth-

eses. As follows from the general theory [12], principles of invariance and  sufficien-
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cy allows you to reduce the sample X  when testing hypotheses (3) to maximally 

invariant statistics of the form  
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and the set of parameters  i and )( ija - to maximal invariant  
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In expressions (4),  (5) 
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formula (4) has off center  2
p - off-center distribution with the noncentrality param-

eter 
2 and p degrees of freedom, and the denominator has central distribution 

)(
2

pN  , so the statistics  pTpN /)(   has off-central F distribution with  p  and 

)( pN   degrees of freedom and with the noncentrality parameter 
2 . 

Regarding the parameter 
2  of  F - distribution initial hypotheses (3) can now be 

formulated as follows : 

 

 ;0:0 H       0:1 H  (6) 

Using the method of constructing optimal rules [13], it can be shown that the most 

powerful invariant criterion for testing hypotheses (6) has a critical region of the form  

 .CT   (7) 

Threshold level  C  determined by the given probability of false alarm   from the 

condition  

 



C

pNp dyyF )(),(  (8) 

where )(, pNpF  -is central F distribution with p and )( pN   degrees of freedom. 

       The expressions (4), (7) determine the functional scheme  of the detector with 

completely unknown correlation properties of vectors ),...,( 1 npn xx . For practical 

implementation, algorithm (7), (8) can be concretized, for example, in the case of the 

absence of inter-period correlation. In this case, the discovery rule and parameter 
2  

take the form 
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- is the average for all N signal-to-noise ratio for one 

observation period. The detector efficiency is determined by the power function of 

rule (7), (8), which shows the dependence of the probability of correct detection on 

the parameter 
2 . It can be calculated directly from off-center tables of F - distribu-

tion [14].  

2.2 Optimal algorithm according to the signal-to-noise ratio criterion  for 

detecting an extended object by analog signals of monitoring network 

sensors  

To develop an algorithm for classifying an extended object (for example, classify-

ing the observed water surface as clean or polluted by oil emissions) using a distribut-

ed multisensor geographic information system, suppose: 

 The central post decides to detect / not detect an object (contamination) based on 

signals received from N sensors under the same observation conditions ; 

 The resulting radio signal of each sensor is the additive sum of the non-fluctuating 

signal of unknown amplitude  0
)(


j
i   ( j =1,2- is numbers of object  -  e.g. clean 

water surface and dirty water surface, Ni ) and Gaussian noise with unknown 

dispersion 2
i . At the output of the receiver’s linear path, the amplitude samples 

)( j
ix are taken for the signal of each sensor. 

 Observation of objects is carried out for some time T , during which readings for 

the signal of each sensor n  are taken. Thus, for each object, the sample space is 

represented as n  sample vectors ),...,( )1()1(
1

)1(
nxxx   ; ),...,( )2()2()2(

nxxx   ; 

n,1 . 

Vectors  )1(
x  and )2(

x  have a normal probability density  
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The mean values and elements of the covariance matrix are determined from the 

expressions  
1)()()()()()(
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  , where E – is the 

sign of mathematical averaging. We consider that the matrix  )( ikA  is common to 

vectors )1(
x  and )2(

x , but its elements are unknown. 

The classification task is by the sample nxx ,1,, )2()1(    determine whether ob-

jects belong to the same class or belong to different classes. 

Based on the assumptions made, this problem can be formulated as two hypotheses 

-  1. objects are of the same type; 2. objects are of the different type: 

 
)2()1(

0 : iiH   ; 
)2()1(

1 : iiH    for all  Ni ,1  (12) 

In expression  (12) the parameter 
)( j

i   is matrix column having dimension )1( n   

with elements ),...,(
)()(

1
j

ni
j

i  . 

          As follows from the general theory [15], the principles of invariance and suf-

ficiency allow us to reduce the sample space nxx ,1,, )2()1(  , when testing hypoth-

eses (12) for maximally invariant statistics (MI) of the form  
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and the parameter space is to MI 
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It can be shown that there is uniformly the most powerful (UMP) criterion for test-

ing hypotheses (12), (12), which rejects the hypothesis  0H   in case if 

 T > C, (15) 

where С – is the  threshold constant . 

 The constant  С should be determined from the condition that under the hypoth-

esis  0H   )0( 2   the probability of the fulfillment of condition (15) was no more 

than a certain predetermined significance level  . Whereas statistics  T21 /  under 
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the hypothesis  0H  has central F distribution with N1 and )12(2  Nn  

degrees of freedom [16], the constant C can be found from the expression 
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The rule (15) can be specified for the case when the matrix A is diagonal. In this 

case, it has the form  
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where )12/(1  NnCNC . 

From the expressions (13) and (17) it can be seen that  ),1;2,1(
)(

Nijx
j

i  - are 

maximum likelihood estimates for parameters 
)( j

i , calculated for the sensor N  sig-

nals for the first and second objects, and the value in the denominator is the sum of 

the parameter 2
i estimates calculated for the signal of the first and second object of  

i-th sensor. Thus, to distinguish between objects, it is necessary to estimate the ampli-

tudes of the N sensor signals, calculate the square of the distance between the param-

eters of the signals of the classified objects by the sensors of the same name, and sum 

them with weights inversely proportional to the noise variance. The amount received 

is compared with a threshold, in case of exceeding which a decision is made on 

whether the objects belong to different classes. 

        Algorithm (15) can also be used to detect a distributed object, if we put 

nx ,1;0)2(   . Formula (17) in this case takes the form  
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, где )1/(2  NnCNC . (18) 

Considering that under the hypotesis 1H  statistics T  has off-central  F distribu-

tion  with off-center parameter 2  and 21,  degrees of freedom, the probability of 

correctly distinguishing between objects is determined by the expression  

  
0

2 ),()(
21

 dFCTP  (19) 

and can be calculated according to the tables of  off-central  F distribution  [17].  
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3 Results 

Figure 1 shows the curves characterizing the effectiveness of the detector of oil 

pollution of the water surface depending on the resolving power of the network of 

contact sensors constructed in accordance with the algorithm described by expres-

sions (4), (7). Characteristics calculated for false alarm probability value  
210  

and the number of received signal periods  2p  provided that the value of the sig-

nal-to-noise ratio averaged over all N sensors for one observation period iq  is inde-

pendent of resolution (uniform distribution of translational buoys (contact sensors) 

along the length of contamination). For comparison, the same figure shows the power 

function of the potential most powerful rule (MP) of coherent detection of a known 

signal [18] in the presence of only one sensor ( 1N ).  

     It can be seen from the figure 1 that ignorance of the noise and signal levels in 

the decision elements leads to losses in the signal-to-noise ratio. However, with in-

creasing resolution, the detector’s efficiency increases. This is due to the fact that the 

increase allows a more accurate assessment of noise and signal levels. So, when 

8N  the loss in the signal-to-noise ratio is ~4 dB, and when 22N  - less than 1 dB.  

 

Fig. 1. The probability of detecting oil pollution of the water surface by signals received from a 

network of contact sensors 

Figure 2 shows the dependences of the probability )(NP of correct distinguishing 

between two objects, calculated by the formula (19), for different values of the signal 

sample size n.  
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Fig. 2. The dependence of the probability of distinguishing objects P (N) for a different number 

of sensors in the monitoring system (N) for several values of the signal sample size (n) 

In this case, the noncentrality parameter 2  of F distribution was assumed con-

stant, independent of the number N of sensors in the monitoring system . As can be 

seen from Figure 2, the dependences have an optimum in the probability of distin-

guishing between objects, and its position depends on the size of the sample n. The 

presence of an optimum and its position are apparently due to the following reasons. 

On the one hand, with an increase in the number of sensors in the monitoring system, 

the difference in signals increases, that is, the “distance” between objects in the pa-

rameter space increases. Let us explain what was said by the following example. Let 

the objects have the same area, but a different distribution of them among the sensors. 

The value of the parameters of the amplitudes of the signals from the first and second 

objects 
)1(

i   and 
)2(

i  for N =3  is presented in table form 1. 

At N = 1, the distance in the parameter space between objects A and B is (
3

1

А
i -


3

1

B
i )

2
=9-9=0 and it’s not possible to distinguish between them. At the same time, 

for N= 3 we get 
3

1

( А
i - B

i )
2
=(3-1)

2
+(4-5)

2
+(2-3)

2
=6, i.e. the difference in parame-

ters is significant. On the other hand, with a decrease in the number of sensors in the 

monitoring network, the correlation between the signals of objects of various classes 

increases. Moreover, the accuracy of parameter estimates can be improved by increas-

ing the accumulation time, i.e., increasing the size of the sample  n. 
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Table 1. The value of the parameters of the amplitudes of the signals from the first and second 

objects  

Object i 1 2 3  

A А

i  3 4 2 

3

1

А
i =9 

B B
i  

1 5 3 

3

1

B
i =9 

 

4 Conclusion 

The proposed algorithm in the sense of signal-to-noise ratio for processing spatially 

distributed data coming from a monitoring network consisting of several sensors with 

the following practically important properties: a) does not depend on a priori un-

known parameters 
2  and n    ( Nn ,...,2,1 ) and provides a constant probability of 

false alarm at any noise level; b) is invariant to the location of k sensors that recorded 

the object and (N-k) sensors that have not fixed the object, among N sensors of the 

monitoring network; c) has the highest probability of correct detection, depending on 

the average signal-to-noise ratio and for large pN   close to potential.    

The proposed algorithm for detecting an extended object by the analog signal of 

sensors of the monitoring network can be used to identify objects if, for example, as 

Nixi ,1,
)2(

 , a priori estimates of the parameters of the recognized object are used. 

The practical significance of the results lies in the development of analog signal 

detection algorithms that are resistant to changes in the signal-to-noise ratio in the 

communication channels of the sensors of the monitoring network with a monitoring 

and control post. Algorithms can be implemented programmatically using various 

programming languages and used to automate the process of classifying monitoring 

objects at a monitoring and control point. 
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