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Abstract. In this paper, we further develop the approach to image recognition based on 3D structural 

information representation and utilization of super-recursive algorithms. The approach suggested in this 

paper synthesizes feature recognition techniques with structural shape representations. In addition, 

problems of object identification, weak object identification and viable object identification are 

considered. 
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1. Introduction 

Visual perception depends on two things: object recognition and image identification. The 

first is a general process while the latter involves applying multiple aspects of knowledge. 

Banerjee, et al, (1990) gives an explanation of the basics of computer vision. Here we isolate 

several aspects of that overall problem, leading to a new framework.  That framework is 

presented here; it clarifies different steps toward the goal of recognizing objects and shows the 

importance of super-recursive algorithms in certain practical imaging situations. One particular 

conclusion then is that computations from visual input have thus far met with limited success in 

part because of a failure to recognize the continuous (rather than halting) nature of image 

processes. 

This paper considers image recognition under the following conditions. Initial information 

consists of: first, a set RA of two-dimensional (2D) images of a three-dimensional (3D) object 

(shape) A; and second, a collection C of sets Ri where each consists of 2D images of a 3D object 

(shape) Ai (i = 1, 2, 3, … , n). The recognition problem is to find the set Ri that best fits 

information that we have about the object A, that is, the set RA . When such a set Ri is found, we 

say that the object A is recognized as the object Ai .  

A restricted form of the recognition problem is the identification problem where we seek a 

set Ri that coincides with the set RA . When such a set Ri is found, we say that the object A is 

identified as the object Ai . 



One more form of the recognition problem is the weak identification problem where we seek 

a set Ri that contains the set RA as its subset, i.e., RA  Ri . When such a set Ri is found, we say 

that the object A is weakly identified as the object Ai .  

Weak identification differs from (and is weaker than) identification. If an object A is 

identified as the object Ai , then A is weakly identified as the object Ai as any set is a subset of 

itself. However, it is possible that an object A is weakly identified as the object Ai , but later some 

new information about A arrives. E.g., the system can acquire new 2D images of the object A. 

Any new images involve extending the set RA to the set RA’ where that new set stops being a 

subset of the set Ri.  The result causes A to no longer be weakly identified as the object Ai . 

One more form of the recognition problem is the viable identification problem. In that case, 

we seek a set Ri such that the set RA contains the set Ri as its subset, i.e., Ri  RA . When such a 

set Ri is found, we say that the object A is viably identified as the object Ai . Viable identification 

is weaker than identification: if an object A is identified as the object Ai , then A is viably 

identified as the object Ai because any set is a subset of itself. However, not every object A is 

viably identified as the object Ai can be identified as the object Ai because the set RA can be 

strictly larger than the set Ri . 

We first consider techniques and categories that apply to image recognition.  

 

2. Models and Structural Representation  

To understand an object composed of the concatenation of 3D shapes, we usually consider 

segmentation or region-growing methods that terminate. Frequently that is only possible when 

one adds restrictive assumptions. Indeed a common approach to object recognition has been to 

assume that objects have certain invariant properties present in all views (Banerjee, et al, 1990). 

Then to create object recognition one forms a function from the set of object views to the set of 

real numbers. This is the base of one main approach to image recognition. In it, the whole 

recognition process is broken down into extraction of a number of different properties followed 

by a final decision based on these properties. Similarities between properties of the given object 

and properties of the previously viewed objects are determined and used in the recognition 

process. It is possible to extract a huge quantity of properties and different conditions are used to 

stop the process and to go to the next stage. That is why, for its efficient realization, this stage 



requires super-recursive algorithms (Burgin, 2005) with any-time algorithms (Zilberstein, 1996) 

as their delimiters. Another way to describe this is building discriminating feature spaces. 

However, in the majority of cases, chosen properties are not expected to be entirely invariant 

but only to lie within a certain range. This brings us to feature spaces and the concept of 

approximate or fuzzy invariance, which is considered in neoclassical analysis (Burgin, 1995). 

Properties of different objects may have partially overlapping ranges. However, using a 

sufficient number of properties allows one to identify each object from a given sample. In this 

approach, an object is treated as a point in the feature space. Invariant properties and features are 

often hierarchically organized to make recognition algorithms simpler.  

Another approach to object recognition is based on invariant properties. Specifically this 

applies to the theory of high-order invariants (Gibson, 1979). In it, invariant object properties are 

reflected in high-order invariants, which are then used in object recognition.  

One more approach to object recognition is based on decomposition of objects into their 

constituent parts and reconstruction of object shapes using some geometrical primitives. We 

assume that any object can be decomposed into (and reconstructed from) a small set of generic 

components. The components are obtained by mapping properties and features onto a structural 

description of an object. The mapping has to be stable, i.e., preserved across different views.  

As Biederman (2007) writes, shape is the major route by which we gain knowledge about our 

visual world. Hence we now turn to the shape recognition problem. One of the most popular 

approaches uses structural encoding of geometrical shapes. To be able to apply mathematical 

tools, we now formalize this problem.  

The goal is to recognize a given object. We assume that an object is (or at least, has) a 

physical body and this body has some shape.  

As in (Banerjee, et al, 1990), a geometrical 3D shape position is a subset of the 3D space R3 

that satisfies the following conditions: 

(1) A is compact and does not have isolated points.  

(2) The interior of A is not empty. 

These conditions are similar to but not the same as conditions from (Banerjee, et al, 1990). 

Their third condition is implied by our first condition because R3 is a metric space (Kuratowski, 

1966).  



Taking an equivalence relation E between geometrical 3D shape positions, we define the 

pure geometrical 3D shape of an object as an equivalence class of the relation E. Usually, this 

equivalence relation E is defined by admissible shape transformations. Often such 

transformations as translations (shifts), rotations, and dilation are considered. For instance, 

according to (Banerjee, et al, 1990), two objects have the same shape if and only if one is a 

translation, dilation and rotation of the other. Unfortunately these conditions are insufficient in 

some cases. For instance, face recognition demands taking into account local transformations to 

represent different expressions of the same face. A face image conveys much more than just 

shape: e.g., viewing position, illumination conditions, and facial expression. Thus, any face 

recognition system must take into account the changes in face appearance induced by these 

factors, representing these changes by local transformations. 

However, in many cases the object’s shape does not give a complete characterization. Some 

object A may have many other additional properties and characteristics besides shape, e.g., color 

or weight. Attaching these characteristics to the shape of A, we obtain a labeled geometrical 3D 

shape of the object A. To do this, we take a geometrical 3D shape state, which is a geometrical 

3D shape position, plus the values of the label, i.e., the values of those properties and 

characteristics that are attached to shapes. Thus, an object recognition program can use both 

shape information and additional parameters.  

As we know shapes of many objects are extremely complex when they are examined with 

unlimited precision. That is why a natural approach to shape representation, analysis, 

recognition, and understanding deals with finite ensembles of data. There are three main types of 

such representations: parametric, imaging, and structural.  

In the parametric approach, a shape R is described by a system of – mostly numerical – 

parameters that characterize object features, such as eyes, mouth, and nose.   

In the imaging approach, a shape R is portrayed by a system of generally 2D images (its 

views).   

In contrast, a shape R can be represented via a structural approach, through simpler items 

from a set of primitive elements. The following representation procedure is organized in these 

terms.  

A base B of primitive elements is chosen (constructed). An example of such a base is the 

system of geons suggested by Biederman (1987). 



Geons, or geometric icons, are simple 3D forms, such as cubes, spheres, cylinders or cones 

that satisfy the following conditions: 

1. They are view-invariant, i.e., they can be identified from different angles.  

2. They are stable and resistant to visual noise, making recognition of geons robust to 

occlusion and degradation. 

3. They are discriminable, i.e., each geon can be potentially distinguished from others almost 

from all viewpoints.  

Note that from some viewpoints different geons can look the same. For instance, from an 

end-on view, a cylinder and cone look like a sphere.  

A shape that is built of geons is called a geon complex.  

Geon complexes only approximate the majority of real- life shapes. Thus, the process of 

finding the best approximating geon complex may require a super-recursive algorithm. This is 

true because on each finite step we cannot be sure in all cases that we already have the best 

approximation for all cases.  

Hoffman and Richards (1986) suggested another object decomposition/reconstruction scheme 

based on description and recognition of contours. Here the shape primitives are called codons.  

In a general case, when we have a base B of primitive elements, a construction (shape) built 

of elements from B is called a B-complex. For instance, in algebraic topology, simplicial 

complexes are very useful and thus, popular (Spanier, 1966). They are built of simplexes.  

B-complexes can be represented by various structures such as 3D images, systems of 2D 

images, and diagrams (cf., for example, (Irani and Ware, 2003)). For instance, node-link 

diagrams are used extensively for many applications, including planning, communications 

networks, and computer software. The defining features of these diagrams are mostly circular or 

rectangular nodes connected by linear or arrow-headed lines, the links. A set of guidelines for 

such diagrams is derived from perception theory and these collectively define the concept of the 

geon diagram suggested by Irani and Ware (2003).   

B-complexes are constructed as approximations for real- life shapes, providing structural 

representation of these shapes. However, even images are not solely shapes; they have many 

other properties and characteristics, e.g., color and brightness. For instance, an image of a face 

depends not only on its shape, but also on the viewing position, illumination conditions, and 

facial expression (Moses, et al, 1993; Rotshtein, et al, 2007). Thus, any face recognition system 



must overcome face-appearance changes introduced by such factors. Attaching these 

characteristics to a B-complex, we obtain a labeled B-complex, an approximate version of a 

labeled shape.   

 

3. Cognitive Identification and Recognition Operations  

To begin we seek a formulation that considers object recognition as a cognitive operation. 

Here an object may be a person, building, vehicle, geometrical shape, text in some natural 

language, image on the screen, etc. The following general schema provides a mathematical 

description of such a process. 

Consider two collections. The first, CO, is a discrimination collection of the problem where 

CO = { Ai ; i = 1, 2, 3, … , n}. The second is the model collection CM = { Mi ; i = 1, 2, 3, … , n} 

of the problem. Besides, an object A and its model MA are also given. We assume that all models 

have the same type, i.e., they belong to the set M of all models of a given type, and that there is a 

correlation or similarity measure m on the set M with values in a partially ordered set L. In other 

words, m : M  M  L is a mapping, which reflects how close two models are to one another. 

Usually, L is either the interval [0, 1] or the interval [-1, 1] or the whole real line R. 

Consider the example of a set RA of two-dimensional (2D) images of a 3D object (shape) A. 

Then RA is a model of A. This type of models, i.e., systems of 2D images of a 3D object, 

corresponds to the classical problem of 3D image recognition given related 2D images. Another 

type of models for a 3D object consists of its structural representations considered in Section 2. 

For instance, B-complexes give structural object models (descriptions). Labeled B-complexes 

give a parastructural object models (descriptions).  

Note that the set M of models in general and even a model MA of one object A can be 

potentially infinite. This is true because as a rule there are infinitely many admissible 

transformations of a geometrical shape.  

The recognition problem is to find an object Ai such that the correlation measure m (Mi , MA) 

is the highest for all Mi from the collection CM. When such a model Mi is found, we say that the 

object A is recognized as the object Ai .  

The highest-correlation measure operation appears in the subsequent diagram. We see there 

four central states and four transition operations, two of which depend on correlation or 

similarity measures: 



c 

 MSp                Mp 

 

mSp                            mp                (1) 
 

 Sp                    p 

s 

This recognition-problem model encompasses other situations and models. For instance, 

Ulman (1984) suggests that the process of object recognition is the inversion of the following 

correspondence. Given an object A, a large set of possible views of A is assigned to A. Object 

recognition starts with one or several, but not too many, views of an object A and goes to finding 

the original object A or, at least, its name, from these views. Assuming that views of an object 

constitute its model, we come to the already introduced model for the recognition problem.   

Recognition problem difficulties arise because of two possibilities. Sometimes the object 

model is too simple. This leads to weak-relevance. Alternatively, if it is possible to achieve high 

relevance it may be at computational costs. In many cases this makes the model very complex 

and almost intractable. For instance, the set of possible views of a given object is large. However 

different views of an object can be widely dissimilar.  

A restricted form of the recognition problem is the identification problem where we seek a 

model Mi that coincides with the model MA . When such a model Mi is found, we say that the 

object A is identified as the object Ai . In the categorical setting, this means that the 

correspondence c in the diagram (1) is the identity mapping.  

Definitions above imply the following result.  

Proposition 1. If an object A is identified as Ai , then A is recognized as Ai . 

A model MA of an object A is called attributive if it is a set RA of entities that characterize A. 

These entities are attribute values of A. For instance, in relational databases, object 

characteristics are used as its attributes (Elmasri and Navathe, 2000). In the case of 3D object 

recognition, two-dimensional (2D) images are attributes of a three-dimensional object (shape) A. 

All models Mi are also sets Ri that consist of attribute values of objects Ai . Attributive models 

allow us to consider two additional identification problems. 

In the weak identification problem, we seek a set Ri that contains the set RA as its subset, i.e., 

RA  Ri . When such a set Ri is found, we say that the object A is weakly identified as the object 

Ai . Weak identification is weaker than identification because if an object A is identified as the 

object Ai , then A is weakly identified as the object Ai as any set is a subset of itself. However, it 



is possible that an object A is weakly identified as the object Ai , but later some new information 

(in our case, some new 2D images of the object A) about A comes, extending the set RA to the set 

RA’ and the new set the set RA’ stops being a subset of the set Ri.  As a result, now A cannot be 

weakly identified as the object Ai . 

In the viable identification problem, we seek a set Ri such that the set RA contains the set Ri as 

its subset, i.e., Ri  RA . When such a set Ri is found, we say that the object A is strongly 

identified as the object Ai . The viable identification is weaker than identification because if an 

object A is identified as the object Ai , then A is viably identified as the object Ai as any set is a 

subset of itself. However, not every object A is viably identified as the object Ai can be identified 

as the object Ai because the set RA can be strictly larger than the set Ri . 

 

4. Recognizing 3D Shape From Structure 

The first stage of the structural recognition of 3D shapes is to build an adequate structural 

representation (model) MA of a given 3D shape (object) A. Here we consider B-complexes as 

models, e.g., geon complexes.  

To build a representation (model) MA , the recognition program RP needs to know what 

primitives to use and how to combine them. To find construction primitives, the program RP 

employs a simplified version PRP of an image recognition program. This program PRP 

identifies shape primitives and their connections in the given object A, using input information, 

e.g., the set of given views (2D images) of A. Finding the necessary shape primitives and their 

connections, the recognition program RP utilizes a construction program to build a B-complex 

D1 as the first approximation to the model MA .  

Then shapes A and D1 are compared, using a distance measure d defined for all plausible 3D 

shapes. To compare shapes of two 3D objects, it is possible to use measures suggested by 

Banerjee, et al (1990). The measurement procedure at first normalizes positions and volumes of 

the compared shapes. Then after normalizing their 3D orientation using the characteristic planes, 

they are superimposed on each other. The resulting volume of mismatch is taken to be a shape 

distance between the two 3D objects. It is formalized in the following formula 

d( A, B ) = m((A \ B )  (B \ A )) 

Here A and B are two 3D shapes, \ means the set-theoretical difference of two sets,  and m is 

some measure in R3.  



In the analog domain, this shape distance d satisfies metric properties. 

Note that in a general case, the function d is non-computable. Consequently, it is more 

efficient to use super-recursive algorithms because they are more powerful than recursive 

algorithms (Burgin and Klinger, 2005). As result they allow one to compute value of the distance 

d for more shapes than recursive algorithms can do.  

The chosen measure d allows the recognition program to estimate the distance between 

shapes A and D1 . If the distance d(A, D1) is sufficiently small, then the B-complex D1 is taken as 

the geometrical model of the object A. Otherwise, the recognition program RP builds a new B-

complex D2 and compares it to A. This process continues until a sufficiently close to A B-

complex Dn is constructed. Then the B-complex Dn is taken as the geometrical model of the 

object A. After obtaining the model MA , this model is compared to models from the set M and 

the correlations between each pair of models is measured.  

To build an adequate correlation or similarity measure m : M  M  L in the set M, we can 

use different approaches depending on the type of models in M.  

When M consists of structural object representations (descriptions) in terms of the shape 

primitives, e.g., geons, it is possible to take the measure suggested by Biederman (1987) as the 

correlation measure. Namely, if MA and MB are two shapes constructed from shape primitives and 

treated as the union of these primitives, then  

 m1( MA , MB ) = | MA MB | - | MA \ MB | - | MB \ MA |                      (2) 

or in a more general form 

m2( MA , MB ) =  f(| MA MB |) – g(| MA \ MB | + | MB \ MA |)               (3) 

Here f and g are positive functions and |C| denotes the number of primitives in the B-complex, 

e.g., geon complex, C. 

However, when two shapes (e.g., geon complexes) have the same primitives, they may be 

essentially different as shapes having different connections. Thus, it is necessary to develop 

measures m1and m2 taking into account connections. Namely, we assume that sets MA and MB in 

formulas (2) and (3) include not only shape primitives but also their connections.  

After an adequate correlation measure m is constructed, the last step of the recognition 

program PR is comparison of the model MA to all models MAi . When the model Mi with the best 

correlation with the model MA is found, the given object A is recognized as the object Ai . 

However, new data can cause it to become necessary to repeat the recognit ion process. 



 

5. Conclusion 

We have distinguished several aspects of the computer vision process, comparing them with 

each other as well as super-recursive processes. Constructing measures that evaluate system 

value of partial computations is a needed step toward practical utilization of the categories and 

principles described here.  
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