Note on the Odd Perfect Numbers Frank Vega EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. # Note on the Odd Perfect Numbers #### Frank Vega CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France #### **Abstract** The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Under the assumption of the Riemann Hypothesis, we claim that there is not any odd perfect number at all. Keywords: Riemann Hypothesis, Prime numbers, Odd perfect numbers, Superabundant numbers, Sum-of-divisors function 2000 MSC: 11M26, 11A41, 11A25 #### 1. Introduction The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. As usual $\sigma(n)$ is the sum-of-divisors function of n: $$\sum_{d|n} d$$ where $d \mid n$ means the integer d divides n, $d \nmid n$ means the integer d does not divide n and $d^k \parallel n$ means $d^k \mid n$ and $d^{k+1} \nmid n$. Define f(n) and G(n) to be $\frac{\sigma(n)}{n}$ and $\frac{f(n)}{\log \log n}$ respectively, such that \log is the natural logarithm. We know these properties from these functions: **Proposition 1.1.** [1]. Let $\prod_{i=1}^r q_i^{a_i}$ be the representation of n as a product of primes $q_1 < \cdots < q_r$ with natural numbers as exponents a_1, \ldots, a_r . Then, $$f(n) = \left(\prod_{i=1}^{r} \frac{q_i}{q_i - 1}\right) \times \prod_{i=1}^{r} \left(1 - \frac{1}{q_i^{a_i + 1}}\right).$$ **Proposition 1.2.** For every prime power q^a , we have that $f(q^a) = \frac{q^{a+1}-1}{q^a \times (q-1)}$ [2]. If $m, n \ge 2$ are natural numbers, then $f(m \times n) \le f(m) \times f(n)$ [2]. Moreover, if p is a prime number, and a, b two positive integers, then [2]: $$f(p^{a+b}) - f(p^a) \times f(p^b) = -\frac{(p^a - 1) \times (p^b - 1)}{p^{a+b-1} \times (p-1)^2}.$$ ${\it Email address:} \ {\tt vega.frank@gmail.com} \ (Frank\ Vega)$ Say Robins(n) holds provided $$G(n) < e^{\gamma}$$ where the constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The importance of this property is: **Proposition 1.3.** Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann Hypothesis is true [3]. In mathematics, $\Psi = n \times \prod_{q|n} \left(1 + \frac{1}{q}\right)$ is called the Dedekind Ψ function. Say Dedekind (q_n) holds provided $$\prod_{q \le q_n} \left(1 + \frac{1}{q} \right) > \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(q_n)$$ where $\zeta(x)$ is the Riemann zeta function and $\zeta(2) = \frac{\pi^2}{6}$. The importance of this inequality is: **Proposition 1.4.** Dedekind (q_n) holds for all prime numbers $q_n > 3$ if and only if the Riemann Hypothesis is true [4]. Let $q_1 = 2, q_2 = 3, ..., q_k$ denote the first k consecutive primes, then an integer of the form $\prod_{i=1}^k q_i^{a_i}$ with $a_1 \ge a_2 \ge \cdots \ge a_k \ge 0$ is called an Hardy-Ramanujan integer [5]. A natural number n is called superabundant precisely when, for all natural numbers m < n $$f(m) < f(n)$$. **Proposition 1.5.** If n is superabundant, then n is an Hardy-Ramanujan integer [6]. Let n be a superabundant number, then $p \parallel n$ where p is the largest prime factor of n [6]. For large enough superabundant number n, we have that $q^{a_q} < 2^{a_2}$ for q > 11 where $q^{a_q} \parallel n$ and $2^{a_2} \parallel n$ [6]. For large enough superabundant number n, we obtain that $\log n < (1 + \frac{0.5}{\log p}) \times p$ where p is the largest prime factor of n [7]. In mathematics, the Chebyshev function $\theta(x)$ is given by $$\theta(x) = \sum_{p \le x} \log p$$ with the sum extending over all prime numbers p that are less than or equal to x [7]. **Proposition 1.6.** [7]. For $x \ge 89909$: $$\theta(x) > (1 - \frac{0.068}{\log(x)}) \times x.$$ In number theory, a perfect number is a positive integer n such that f(n) = 2. Euclid proved that every even perfect number is of the form $2^{s-1} \times (2^s - 1)$ whenever $2^s - 1$ is prime. It is unknown whether any odd perfect numbers exist, though various results have been obtained: **Proposition 1.7.** Any odd perfect number N must satisfy the following conditions: $N > 10^{1500}$ and the largest prime factor of N is greater than 10^8 [8], [9]. Using these results, we finally claim that there is not any odd perfect number at all. # 2. Results **Theorem 2.1.** *Under the assumption of the Riemann Hypothesis, we claim that there is not any odd perfect number at all.* *Proof.* Let N be a large enough odd perfect number, then we will show its existence implies that the Riemann Hypothesis is false. If N is a large enough odd perfect number, then a superabundant number n that is a multiple of N would be large enough as well. We would have $$f(n) \leq f(N) \times f(\frac{n}{N})$$ according to the Proposition 1.2. That is the same as $$f(n) \le 2 \times f(\frac{n}{N})$$ since f(N) = 2, because N is a perfect number. Hence, $$\frac{f(n)}{2} = \frac{(2 - \frac{1}{2^{a_2}}) \times f(\frac{n}{2^{a_2}})}{2}$$ $$= f(\frac{n}{2^{a_2}}) \times \frac{(2 - \frac{1}{2^{a_2}})}{2}$$ $$= f(\frac{n}{2^{a_2}}) \times \frac{2^{a_2+1} - 1}{2^{a_2+1}}$$ when $2^{a_2} \parallel n$ due to the Proposition 1.2. In this way, we have $$\frac{f(\frac{n}{2^{a_2}})}{f(\frac{n}{N})} \le \frac{2^{a_2+1}}{2^{a_2+1}-1}.$$ However, we know that $p < 2^{a_2}$ because of $p > 10^8 > 11$ and the Propositions 1.5 and 1.7, where p is the largest prime factor of n. Consequently, $$\frac{2^{a_2+1}}{2^{a_2+1}-1} \le \frac{2 \times p}{2 \times p-1}$$ since $\frac{x}{x-1}$ decreases when $x \ge 2$ increases. In addition, we know that $$\frac{2 \times p}{2 \times p - 1} \le f(p)$$ where we know that $f(p) = \frac{p+1}{p}$ from the Proposition 1.2. Certainly, $$2 \times p^2 \le (p+1) \times (2 \times p - 1)$$ $$= 2 \times p^2 + 2 \times p - p - 1$$ $$= 2 \times p^2 + p - 1$$ where this inequality is satisfied for every prime number p. So, $$\frac{f(\frac{n}{2^{a_2}})}{f(\frac{n}{N})} \le f(p)$$ where we know that $p \parallel n$ from the Proposition 1.5. Under the assumption of the Riemann Hypothesis, we have that $$e^{\gamma} > G(n)$$ $$= \frac{f(\frac{n}{p}) \times f(p)}{\log \log n}$$ $$\geq \frac{f(\frac{n}{p}) \times f(\frac{n}{2^{a_2}})}{f(\frac{n}{N}) \times \log \log n}$$ since f(...) is multiplicative and as a consequence of Proposition 1.3. This is equivalent to $$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} < \frac{e^{\gamma}}{f(\frac{n}{2^{a_2}})} \times \log \log n.$$ From the Propositions 1.1 and 1.5, we know that $$f(\frac{n}{2^{a_2}}) = \left(\prod_{i=2}^k \frac{q_i}{q_i - 1}\right) \times \prod_{i=2}^k \left(1 - \frac{1}{q_i^{a_i + 1}}\right)$$ where $q_k = p$ and $q_1 = 2$. We know that $$\frac{q_i}{q_i - 1} = \frac{q_i + 1}{q_i} \times \frac{q_i^2}{q_i^2 - 1}$$ and $$\frac{q_i^2}{q_i^2 - 1} \times (1 - \frac{1}{q_i^{a_i + 1}}) \ge 1.$$ Using the previous inequalities, we obtain that $$f(\frac{n}{2^{a_2}}) \ge \prod_{i=2}^k \frac{q_i + 1}{q_i}.$$ Under the assumption of the Riemann Hypothesis: $$\prod_{q \le p} \left(1 + \frac{1}{q} \right) > \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(p)$$ which is the same as $$\zeta(2) \times \prod_{q \le p} \left(1 + \frac{1}{q} \right) = \frac{\pi^2}{6} \times \prod_{q \le p} \left(1 + \frac{1}{q} \right)$$ $$= \frac{\pi^2}{6} \times \frac{3}{2} \times \prod_{2 < q \le p} \left(1 + \frac{1}{q} \right)$$ $$= \frac{\pi^2}{8} \times \prod_{2 < q \le p} \left(1 + \frac{1}{q} \right)$$ $$> e^{\gamma} \times \log \theta(p).$$ $$4$$ due to the Proposition 1.4. Taking into account that $p > 10^8 > 3$ and n is superabundant: $$\frac{\pi^2}{8} \times f(\frac{n}{2^{a_2}}) > e^{\gamma} \times \log \theta(p).$$ Therefore. $$\frac{\frac{\pi^2}{8}}{\log \theta(p)} > \frac{e^{\gamma}}{f(\frac{n}{2^{a_2}})}.$$ We use the previous inequality to show that $$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} < \frac{\frac{\pi^2}{8}}{\log \theta(p)} \times \log \log n.$$ For large enough superabundant number n and $p > 10^8$, then $$\frac{\frac{\pi^2}{8}}{\log \theta(p)} \times \log \log n \leq \frac{\frac{\pi^2}{8}}{\log \left((1 - \frac{0.068}{\log 10^8}) \times 10^8 \right)} \times \log \left((1 + \frac{0.5}{\log 10^8}) \times 10^8 \right)$$ because of the Propositions 1.6 and 1.5. We obtain that $$\frac{\frac{\pi^2}{8}}{\log\left((1 - \frac{0.068}{\log 10^8}) \times 10^8\right)} \times \log\left((1 + \frac{0.5}{\log 10^8}) \times 10^8\right) < 1.2357481.$$ Thus, $$\frac{f(\frac{n}{p})}{f(\frac{n}{N})} < 1.2357481.$$ For every prime p_i that divides N such that $p_i^{a_i} \parallel N$ and $p_i^{a_i+b_i} \parallel n$ for a_i , b_i two natural numbers, we have that $$f(p_i^{a_i+b_i}) - f(p_i^{a_i}) \times f(p_i^{b_i}) = -\frac{(p_i^{a_i} - 1) \times (p_i^{b_i} - 1)}{p_i^{a_i+b_i-1} \times (p_i - 1)^2}$$ in the Proposition 1.2. This is equal to $$\frac{f(p_i^{a_i+b_i})}{f(p_i^{b_i})} = f(p_i^{a_i}) - \frac{(p_i^{a_i}-1)\times(p_i^{b_i}-1)}{f(p_i^{b_i})\times p_i^{a_i+b_i-1}\times(p_i-1)^2}.$$ Hence, $$\begin{split} \frac{f(\frac{n}{p})}{f(\frac{n}{N})} &= \prod_{i} \left(\frac{f(p_{i}^{a_{i}+b_{i}})}{f(p_{i}^{b_{i}})} \right) \\ &= \prod_{i} \left(f(p_{i}^{a_{i}}) - \frac{(p_{i}^{a_{i}}-1) \times (p_{i}^{b_{i}}-1)}{f(p_{i}^{b_{i}}) \times p_{i}^{a_{i}+b_{i}-1} \times (p_{i}-1)^{2}} \right) \\ &\approx \prod_{i} \left(f(p_{i}^{a_{i}}) \right) \\ &= f(N) \\ &= 2 \\ &> 1.2357481 \end{split}$$ since we know that the expression $$\frac{(p_i^{a_i} - 1) \times (p_i^{b_i} - 1)}{f(p_i^{b_i}) \times p_i^{a_i + b_i - 1} \times (p_i - 1)^2}$$ tends to 0 as b tends to infinity for every odd prime p. Certainly, the fraction $\frac{f(\frac{n}{p})}{f(\frac{n}{N})}$ gets closer to 2 as long as we take n bigger and bigger. However, $$1.2357481 < \frac{f(\frac{n}{p})}{f(\frac{n}{N})} < 1.2357481$$ is a contradiction. By contraposition, the number N does not exist when N would be a large enough odd perfect number under the assumption of the Riemann Hypothesis. In addition, we claim there is not any odd perfect number at all since the smallest counterexample N must comply that $N > 10^{1500}$ according to the Proposition 1.7. ## Acknowledgments The author would like to thank his mother, maternal brother and his friend Sonia for their support. ### References - [1] A. Hertlein, Robin's Inequality for New Families of Integers, Integers 18, (2018). - [2] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds, arXiv preprint arXiv:2005.09307(2020). - [3] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187–213 - [4] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (1) (2011) 33–38. - [5] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:doi:10.5802/jtnb.591. - [6] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of the American Mathematical Society 56 (3) (1944) 448–469. doi:doi:10.2307/1990319. - [7] S. Nazardonyavi, S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv preprint arXiv:1211.2147(2012). - [8] P. Ochem, M. Rao, Odd perfect numbers are greater than 10¹⁵⁰⁰, Mathematics of Computation 81 (279) (2012) 1869–1877. doi:doi:10.1090/S0025-5718-2012-02563-4. - [9] T. Goto, Y. Ohno, Odd perfect numbers have a prime factor exceeding 10⁸, Mathematics of Computation 77 (263) (2008) 1859–1868.