

## Construction and application demonstration of virtual simulation experimental teaching center for mechanical equipment

Tianbiao Yu, Chao Zhang, Xuefei Tan, Yadong Gong, Jiashun Shi, Ping Zou and Shichao Xiu

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

December 12, 2019

# Construction and application demonstration of virtual simulation experimental teaching center for mechanical equipment

Tianbiao,Yu Mechanical engineering and auto mation college Northeastern University Shenyang,China tbyu@mail.neu.edu.cn Chao,Zhang Mechanical engineering and auto mation college Northeastern University Shenyang,China 1910116@stu.neu.edu.cn Xuefei,Tan Mechanical engineering and auto mation college Northeastern University Shenyang,China chaozh1228@foxmail.com

Jiashun,Shi Mechanical engineering and auto mation college Northeastern University Shenyang,China 1670317@stu.neu.edu.cn Ping,Zou Mechanical engineering and auto mation college Northeastern University Shenyang,China pzou@me.neu.edu.cn Shichao,Xiu Mechanical engineering and auto mation college Northeastern University Shenyang,China shchxiu@mail.neu.edu.cn

Abstract-Relying on the strong discipline advantages and abundant scientific research achievements, the virtual simulation experimental teaching center of mechanical equipment of Northeastern University is facing large, complex and high-end mechanical equipment, aiming at improving students' engineering practice and innovation ability, and has established an experimental teaching system with complete projects, advanced contents, rich resources and the combination of virtual and real. Expansibility, compatibility and prospective simulation experiment management and sharing platform are built in the experimental center. To realize centralized management, open use and sharing of teaching resources. Moreover, we have a highlevel experimental teaching team with rich experience in teaching and scientific research, which has formed the experimental teaching characteristics of "laying equal stress on physical experiment and virtual experiment", "laying equal stress on inschool learning and off-campus practice", "laying equal stress on theoretical learning and scientific research".

### Keywords—virtual simulation; Northeastern University; experimental teaching system; mechanical equipment

## I. GENERAL SITUATION OF CONSTRUCTION

Northeastern university is a multi-disciplinary and research-oriented national key university with engineering as its main part. It is also a key construction University of "211 Project" and "985 Project" of the state. The College of Mechanical Engineering and Automation is one of the four key engineering colleges in Northeast University. At present, the college has four undergraduate majors: mechanical engineering, vehicle engineering, industrial design, process equipment and control engineering, and they are all the key construction majors of the university. Among them, mechanical engineering is a national characteristic specialty, Liaoning ordinary colleges and universities undergraduate engineering personnel training mode reform pilot specialty, process equipment and control engineering major is Liaoning characteristic specialty.

Yadong,Gong

Mechanical engineering and auto

mation college

Northeastern University

Shenyang, China

gongyd@mail.neu.edu.cn

The rapid development of computer technology, multimedia technology, virtual reality technology, artificial intelligence technology and database technology provides reliable, safe and economical experimental methods and means for the design and development, processing and manufacturing, assembly testing, fault detection and comprehensive training of large and complex mechanical equipment [1]. In recent years, schools and colleges have attached great importance to the construction of virtual simulation experiments and laboratories. During the Eleventh Five-Year Plan period, more than 20 million yuan was invested in the construction of virtual teaching environment, virtual laboratory conditions, teaching staff and experimental reform.

In the process of development, the virtual simulation experimental teaching center of mechanical equipment follows the experimental teaching concepts of "laying equal stress on physical experiment and virtual experiment", "laying equal stress on in-school learning and off-campus practice", "laying equal stress on theoretical learning and scientific research"[2]. The virtual simulation experimental teaching center of mechanical equipment mainly undertakes the virtual design, virtual processing, virtual assembly, virtual measurement and virtual engineering training courses of four undergraduate majors of mechanical engineering, vehicle engineering, industrial design, process equipment and control engineering and other related majors of the college. In addition, it also serves the under graduates' various innovative competitions and postgraduate research. The Centre currently has:

- The virtual simulation laboratory of mechanical foundation
- The virtual simulation laboratory of mechanical vibration and reliability
- The virtual prototyping technology laboratory
- The virtual machining and simulation laboratory
- The virtual instrument and virtual test technology laboratory
- The hydraulic drive virtual simulation laboratory
- The virtual simulation laboratory of vehicle engineering
- The virtual simulation laboratory for process equipment and control
- The industrial design virtual simulation laboratory

## II. EXPERIMENTAL TEACHING RESOURCES

Nine virtual simulation laboratories have set up 55 virtual simulation experiments involving 30 courses. The center undertakes experimental teaching, design practice and engineering training practice teaching for related majors of the whole school, with an annual teaching workload of 27780 hours. According to the teaching needs of different majors, classified teaching is implemented in virtual simulation experiment teaching. For students majoring in mechanical engineering, basic experiment, design experiment and comprehensive experiment are offered. Some students choose innovative experiment. For students majoring in nonmechanical engineering, virtual simulation experiment teaching is mainly based on basic experiment and supplemented by a few design and synthesis experiments. In addition, as the main supporting unit of the University Students' extracurricular technological innovation design and production, the center provides equipment, equipment, places and guidance.

## Table 1 virtual simulation experiment of major and class hours

| College                          | Major                                              | Class<br>Number | Class<br>Size | Class<br>Hours | Person<br>Hours |
|----------------------------------|----------------------------------------------------|-----------------|---------------|----------------|-----------------|
| College of<br>Mechanical         | Mechanical<br>engineering                          | 14              | 30            | 50             | 19500           |
| Engineering<br>and<br>Automation | Process<br>equipment and<br>control<br>engineering | 3               | 90            | 30             | 3600            |

|                             | Industrial<br>design                              | 1  | 30 | 12  | 360   |
|-----------------------------|---------------------------------------------------|----|----|-----|-------|
|                             | Vehicle<br>engineering                            | 2  | 60 | 30  | 3600  |
|                             | Material<br>forming and<br>control<br>engineering | 4  | 30 | 6   | 720   |
| College of<br>Materials and | Metallurgical<br>engineering                      | 5  | 30 | 6   | 900   |
| Metallurgy                  | Thermal<br>energy and<br>power<br>engineering     | 2  | 30 | 6   | 360   |
|                             | Material<br>science and<br>engineering            | 2  | 30 | 6   | 360   |
|                             | Environmental<br>science                          | 2  | 30 | 6   | 360   |
| College of<br>Resources and | Environmental<br>engineering                      | 2  | 30 | 6   | 360   |
| Civil<br>Engineering        | Mining<br>engineering                             | 3  | 30 | 6   | 360   |
|                             | Safety<br>engineering                             | 2  | 30 | 6   | 360   |
|                             | Mineral<br>processing<br>engineering              | 2  | 30 | 6   | 360   |
| College of<br>Science       | Solid<br>mechanics                                | 1  | 30 | 6   | 180   |
| Total                       | 13                                                | 41 |    | 152 | 27780 |

The main virtual simulation experiments are shown in Table 2.

Table 2 Virtual simulation experiment scheme of mechanical equipment

| Virtual Simulation Experiment of Mechanical Foundation                            |                      |                                                  |  |  |
|-----------------------------------------------------------------------------------|----------------------|--------------------------------------------------|--|--|
| Name of experiment item                                                           | Experimental<br>type | Name of the<br>original<br>theoretical<br>Course |  |  |
| Mechanism     Improvement Innovative     Design Experiments     Innovative Design | Foundation type      | Machine<br>Design                                |  |  |
| Experiments of<br>Composite Mechanisms                                            | Foundation type      | .0.1                                             |  |  |

| Cam mechanism motion<br>simulation experiment                                                                        | Foundation type       |                                                  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|
| • Dynamic performance simulation experiment of mechanism                                                             | Comprehensive<br>type | Foundation of<br>Mechanical<br>Design            |
| • Virtual assembly and<br>disassembly experiment<br>of reducer                                                       | Design type           | Mechanical                                       |
| ADAMS Practical     Practice                                                                                         | Open type             | Principle                                        |
| Virtual Simulation Experim                                                                                           | nent of Mechanica     | l Design                                         |
| Name of experiment item                                                                                              | Experimental<br>type  | Name of the<br>original<br>theoretical<br>course |
| <ul> <li>Virtual simulation<br/>experiment of<br/>mechanical vibration</li> </ul>                                    | Comprehensive<br>type | Theory and<br>Application of                     |
| • Virtual simulation<br>experiment of<br>mechanical reliability                                                      | Comprehensive<br>type | Application of<br>Modern<br>Machinery<br>Design  |
| Robot motion simulation<br>analysis and three-<br>dimensional modeling<br>experiments                                | Comprehensive<br>type | Sensors and<br>Testing<br>Technology             |
| • Product reverse design experiments                                                                                 | Innovative<br>type    | Teennology                                       |
| • Virtual simulation experiment of product optimization design                                                       | Comprehensive<br>type | Computer<br>Aided Abrasive<br>Tool Design        |
| • Solidworks software application                                                                                    | Open type             | Theory and                                       |
| • ANSYS software application                                                                                         | Open type             | Application of<br>Mechanical<br>Vibration        |
| • Virtual testing technology experiments                                                                             | Open type             | Development                                      |
| <ul> <li>Virtual instrument design<br/>and development<br/>experiments</li> </ul>                                    | Comprehensive<br>type | and<br>Application of<br>Mechanical              |
| • Product parametric design and development experiments                                                              | Design type           | CAD                                              |
| Virtual Simulation Experiment                                                                                        | of Mechanical Ma      | -                                                |
| Name of experiment item                                                                                              | Experimental<br>type  | Name of the<br>original<br>theoretical<br>course |
| Virtual prototype and function simulation experiment                                                                 | Comprehensive<br>type | Technical                                        |
| Virtual programming and simulation of NC system                                                                      | Comprehensive<br>type | Foundation of<br>Machinery<br>Manufacturing      |
| Virtual machining experiment                                                                                         | Open type             |                                                  |
| <ul> <li>Application experiments of<br/>programmable controller PLC</li> <li>Industrial robot programming</li> </ul> | Comprehensive<br>type | Machinery<br>Manufacturing<br>Equipment          |
| industrial robot programming                                                                                         | Comprehensive         | Lymphich                                         |

Comprehensive

|   | and simulation experiments                                           | type                  | Technology                                             |
|---|----------------------------------------------------------------------|-----------------------|--------------------------------------------------------|
| • | Practical exercises and simulation experiments of                    | Open type             | NC machine<br>tool technology                          |
| • | proe<br>UG practical exercises and<br>simulation experiments         | Open type             | Electrical<br>Control<br>Technology of<br>Machine Tool |
| • | Comprehensive experiments of<br>flexible systems                     | Comprehensive<br>type | Tolerance and<br>Technical                             |
| • | Comprehensive experiments of<br>advanced manufacturing<br>technology | Innovative type       | Measurement<br>Advanced<br>Manufacturing<br>Technology |

## Virtual simulation experiment of electromechanical and hydraulic control

|   | Name of experiment item                                                                    | Experimental<br>type  | Name of the<br>original<br>theoretical<br>course      |
|---|--------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|
| • | Simulation experiment of position servo system                                             | Comprehensive<br>type |                                                       |
| • | Virtual disassembly experiment<br>of hydraulic components<br>(pumps, cylinders and valves) | Open type             | Hydraulic and<br>Pneumatic<br>Transmission            |
| • | Design and simulation of<br>hydraulic circuit                                              | Design type           |                                                       |
| • | Dynamic performance<br>simulation of hydraulic<br>system                                   | Comprehensive<br>type | Pneumatic<br>Transmission<br>and Control              |
| • | Time domain response and analysis experiments                                              | Design type           | Design of                                             |
| • | Comprehensive simulation<br>experiment of control system<br>correction                     | Comprehensive<br>type | Mechatronics<br>System                                |
| • | Design and simulation of mechanical automatic control system                               | Open type             | Control<br>Foundation of<br>Mechanical<br>Engineering |
| • | Virtual instrument design and development experiments                                      | Innovative type       | Lingineering                                          |
| • | Comprehensive simulation<br>experiment of hydraulic<br>system                              | Open type             |                                                       |
| • | Hydraulic station virtual assembly experiment                                              | Comprehensive<br>type |                                                       |

## Virtual simulation experiment of process equipment and control engineering

|   | Name of experiment item                                     | Experimental<br>type  | Name of the<br>original<br>theoretical<br>course |  |
|---|-------------------------------------------------------------|-----------------------|--------------------------------------------------|--|
| • | Fluid flow resistance simulation<br>experiment              | Comprehensive<br>type | Process<br>Principle                             |  |
| • | Simulation test of characteristic curve of centrifugal pump | Design type           | Thermal<br>Engineering                           |  |
| • | Simulation experiment of fluid                              | Design type           | Fluid                                            |  |

| relative particle separation                                                             |                       | Mechanics                           |
|------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|
| <ul> <li>Experiments on hydrodynamic<br/>characteristics of packed<br/>column</li> </ul> | Comprehensive<br>type | Vacuum<br>Coating                   |
| Functional simulation     experiment of vacuum pump                                      | Comprehensive<br>type | Drying<br>Capacity and<br>Equipment |
| • Virtual experiment of liquid-<br>liquid extraction                                     | Design type           | Water<br>Treatment<br>Technology    |
| • Virtual experiment of<br>innovative design of vacuum<br>pump                           | Open type             | Vacuum<br>Application               |

#### Virtual simulation experiment of industrial design

| 1 | Name of the original                                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                                                                                                                  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Name of experiment item                                                                                                                                                                                                                                                                                                | Experimental<br>type                                                       | theoretical<br>course                                                                                                                                                                                            |  |  |
| • | Comprehensive experiment of color composition                                                                                                                                                                                                                                                                          | Comprehensive<br>type                                                      | Product<br>Design                                                                                                                                                                                                |  |  |
| • | Design and production of three-<br>dimensional animation                                                                                                                                                                                                                                                               | Innovative type                                                            | Product<br>Display Design                                                                                                                                                                                        |  |  |
| • | Industrial product creative design experiments                                                                                                                                                                                                                                                                         | Comprehensive<br>type                                                      | Appearance<br>Design of<br>Construction                                                                                                                                                                          |  |  |
| • | Rapid prototyping of industrial products                                                                                                                                                                                                                                                                               | Design type                                                                | Machinery<br>Products                                                                                                                                                                                            |  |  |
| • | Virtual design experiments of industrial product appearance                                                                                                                                                                                                                                                            | Comprehensive<br>type                                                      | Design of<br>External<br>Protection for<br>High-grade<br>CNC Machine<br>Tools                                                                                                                                    |  |  |
|   |                                                                                                                                                                                                                                                                                                                        |                                                                            | Product Form<br>Design of<br>Large-scale<br>Complete<br>Equipment                                                                                                                                                |  |  |
|   | Virtual simulation experim                                                                                                                                                                                                                                                                                             | ent of vehicle engi                                                        |                                                                                                                                                                                                                  |  |  |
|   | Name of experiment item                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                                                                                                                                                  |  |  |
|   |                                                                                                                                                                                                                                                                                                                        | Experimental<br>type                                                       | Name of the<br>original<br>theoretical<br>course                                                                                                                                                                 |  |  |
| • | Virtual experiment on structure<br>and principle of automobile<br>driving system                                                                                                                                                                                                                                       |                                                                            | original<br>theoretical                                                                                                                                                                                          |  |  |
| • | and principle of automobile                                                                                                                                                                                                                                                                                            | type                                                                       | original<br>theoretical<br>course<br>Vehicle Design<br>Automobile                                                                                                                                                |  |  |
| • | and principle of automobile<br>driving system<br>Virtual experiment on structure<br>and principle of automobile                                                                                                                                                                                                        | type<br>Foundation type                                                    | original<br>theoretical<br>course<br>Vehicle Design<br>Automobile<br>Structure<br>Automotive<br>Electronics                                                                                                      |  |  |
| • | and principle of automobile<br>driving system<br>Virtual experiment on structure<br>and principle of automobile<br>transmission<br>Simulation experiment of<br>dynamic characteristics of                                                                                                                              | type<br>Foundation type<br>Foundation type                                 | original<br>theoretical<br>course<br>Vehicle Design<br>Automobile<br>Structure<br>Automotive<br>Electronics<br>Technology<br>Design of<br>Automobile<br>Body Structure<br>Principle of<br>Internal<br>Combustion |  |  |
| • | <ul> <li>and principle of automobile<br/>driving system</li> <li>Virtual experiment on structure<br/>and principle of automobile<br/>transmission</li> <li>Simulation experiment of<br/>dynamic characteristics of<br/>automobile suspension</li> <li>Comprehensive simulation<br/>experiment of automobile</li> </ul> | type<br>Foundation type<br>Foundation type<br>Design type<br>Comprehensive | original<br>theoretical<br>course<br>Vehicle Design<br>Automobile<br>Structure<br>Automotive<br>Electronics<br>Technology<br>Design of<br>Automobile<br>Body Structure<br>Principle of<br>Internal               |  |  |

| automobile                                                                                       | type                         | Technology                                                             |
|--------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|
| <ul> <li>Vehicle Virtual Driving<br/>Experiment</li> <li>Innovative Automotive Design</li> </ul> | Open type<br>Innovative type | Automobile<br>Manufacturing<br>Technology<br>Vehicle CAE<br>Technology |

### III. FUNCTION AND EFFECT

The virtual simulation technology provides a new method for principle demonstration, function simulation, fault diagnosis of large-scale complex mechanical equipment, process verification of complex precision parts, simulation analysis of complex integrated control and operation training of large-scale complex mechanical equipment, and makes up for many shortcomings of physical experiment of large-scale complex mechanical equipment [3].

The center fully serves undergraduate teaching, and can provide undergraduates with virtual prototype design and development, virtual assembly and function simulation, virtual processing and simulation analysis, virtual experiment and virtual measurement, virtual driving and virtual operation, virtual engineering practice for large and complex mechanical equipment such as high-grade numerical control machine tools, full-face road header, Aerospace long equipment, metallurgical complete set equipment, etc. Training (NC programming, PLC programming) and other virtual experiments and virtual practice training courses [4].

The virtual simulation experiment has many advantages, such as good vividness, intuitive experimental effect and good safety [5]. It is beneficial for students to understand and master the principle, manufacturing and assembly technology, use and operation of complex mechanical structures, to stimulate students' learning enthusiasm and innovative thinking, and to students' innovative practical activities[6].

The center implements open management, enhances the utilization rate of resources and maximizes the benefits of resources. On the premise of satisfying the experimental teaching of Undergraduates in our college, it is open to all undergraduates and postgraduates. In addition to virtual simulation experiment teaching, the center also serves all kinds of innovative competitions for undergraduate and graduate students. In the past three years, more than 1200 people have participated in various innovative competitions and completed more than 400 innovative competitions with excellent results. The center and cooperative enterprises build and share, open resources to cooperative enterprises, and provide technical training and new product development services for enterprises. In recent years, more than 600 technicians have been trained for machinery and equipment manufacturing enterprises such as Shenyang Machine Tool Group, Shenyang Blower Group and Shenyang North Heavy Industry Group, and more than 200 new products have been developed by advanced virtual simulation methods. Shenyang Daily reported on the front page of April 26, 2011 that Northeastern University Digital Design and Manufacturing Research Group used advanced virtual simulation experimental means to serve the new product development of

enterprises. In addition, the Holiday Center is open to primary and secondary school students, receiving more than 1300 visits to primary and secondary school students.

## IV. CHARACTERISTICS AND INNOVATION

In the process of development, the center follows the experimental teaching concepts of "laying equal stress on physical experiment and virtual experiment", "laying equal stress on in-school learning and out-of-school practice", "laying equal stress on theoretical learning and scientific research"[7]. Through virtual simulation experiments, many shortcomings such as high cost, difficult maintenance and poor safety of physical experiments for large and complex mechanical equipment are supplemented.

The center serves undergraduate experimental teaching with scientific research equipment and transforms scientific research achievements into experimental teaching means. It not only improves the experimental advancement, but also helps to broaden students' horizons and improve students' learning enthusiasm and learning effect [8].

We should strengthen cooperation and exchanges with enterprises in the construction of virtual simulation experimental teaching centers, increase investment in the construction of virtual simulation experimental teaching centers, and better serve the development of new products while cultivating talents. Through multi-field and deep-level cooperation, the construction level of virtual simulation experiment teaching center is guaranteed, and the advantages of enterprise in site, equipment and personnel are fully utilized to improve the teaching quality and effect of virtual simulation experiment.



The virtual simulation system Fig. 1.



Fig. 2. The virtual simulation experiment interface



Fig. 3.

The virtual simulation experiment interface



Fig. 4. The virtual simulation system

#### REFERENCES

- [1] M. R. Li, "Construction of hydraulic virtual simulation experimental teaching platform," Experimental Technology and Management. Beijing, vol. 2, March 2019.
- Y. N. Guo, Y. G. Wang, "Exploration and Practice on the Construction [2] of Virtual Simulation Experiment Teaching System for Aviation Power System," Journal of Higher Education. Heilongjiang, vol. 3, January 2019
- [3] J. G. Li, L. Zhou, "Research on Training and Evaluation Method of NC Machining Technology Based on Virtual Simulation," Experimental Technology and Management. Beijing, vol.12, December 2018.
- [4] X. H. Li, X. S. Shi, "Research on Robot Course Teaching Based on Virtual Simulation Technology," Journal of Chifeng University(Natural Science Edition). Chifeng, vol.1, January 2019
- [5] X. Q. Liu, W. X. Ge, "Construction and Management of National Virtual Simulation Experimental Teaching Cent," Experimental Technology and Management. Beijing, vol. 11, November 2018.
- [6] Y. Yu, L. Wu, "Design and Training Model of Virtual Simulation System for Tunnel Boring Machine," Experimental Technology and Management. Beijing, vol. 11, November 2018.
- [7] B. Sun, X. Y. Wang, "Design of Virtual Assembly and Simulation System for Mining and Transportation Equipment," Coal Mine Machinery. Haerbin, vol.8, August 2018.
- [8] M. R. Li, Y. Xi, "Exploring the Application of Virtual Simulation Experiment in the Course of Mechanical Basic Experiments" Journal of Machine Design. Tianjin, vol.2, Jun 2018.