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Abstract—The coreless D-shaped fiber that is transferred by
graphene oxide (GO) and polymethyl methacrylate (PMMA), is
demonstrated to be highly sensitive to temperature due to the
evanescent field penetration into the PMMA, which possesses an
extremely high negative thermal optical coefficient.
Experimental results show a high sensitivity of 4.816 nm/°C with
a linear correlation of 0.9974 over a wide temperature range.
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I. INTRODUCTION

Temperature measurement is playing an increasingly
important role in fields such as chemistry, physics,
agriculture, machinery and aerospace, environmental
protection, and biomedical. Due to their features of anti-
electromagnetic interference, corrosion resistance, high
sensitivity, and long-distance distributed measurement,
various fiber-optic temperature sensors can be schemed such
as fiber interferometers [1-2], fiber gratings [3-4]. Owing to
the low thermal optical coefficient/thermal expansion
coefficient of quartz material, the relative temperature
sensitivity is, however less than dozens of pm/°C [5]. Su et
al. proposed a suspended core microstructure fiber optic
temperature sensor, whose sensitivity is about 0.05 nm/°C
[6]. In order to improve the sensitivity, coating materials
with high thermal optical coefficients can be involved [7-9].
For instance, Xue et al. reported a sensitivity of -3.88 nm/°C
by encapsulating the fiber in a capillary filled with
isopropanol [ 10]. However, these methods require additional
manufacturing processes such as splicing, filling and precise
alignment, which leads to extremely high production costs
and then the complexity.

Due to advantages of simple structure, easy fabrication
and low cost, D-shaped fibers (DFs)-based sensors [11-12]
are widely used. Here, a high-sensitivity temperature sensor
based on a coreless D-shaped single-mode fiber is proposed,
where the evanescent field can be improved with the help of
graphene oxide (GO) and PMMA coating. Within the
temperature range of 30-50°C, the temperature sensitivity
for the heating process was measured to be 4.816 nm/°C with
a high R2 of 0.9974. This indicates that this temperature
sensor has relatively high temperature sensitivity.

II. SENSING SCHEME
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Fig. 1 the sensing scheme

Figure 1 indicates the three-dimensional structure of the
DF-based sensor. Initially, the coreless D-shaped SMF is
manufactured by homemade polishing device, where the
optimized scheme can effectively excite higher-order modes,
and then involve multimode interference. Furthermore, the
evanescent field is dramatically penetrated into the PMMA
film with the help of graphene oxides.

III. EXPERIMENTAL RESULTS
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Fig. 2 Transmission spectra with/without the coating PMMA-GO

The comparison between the coating GO-PMMA and
uncoating structure is shown in Fig.2, where a spectral
analyzer (OSA, AQ6317C, with a resolution of 0.02 nm) and
a broadband source (ASE, with a spectral range of 1250-1650
nm) are employed to record its transmission spectra.
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Fig. 3 the temperature measurement

Furthermore, the spectra present a significant red shift in
response of the increased temperature when placed the sensor
in a column oven (LCO 102 DOUBLE). The test results
demonstrate that the transmission spectra indicate a significant
blue shift, as shown in Fig. 3. It also means the PMMA with a
highly negative thermal optical coefficient plays an important
role.
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Fig. 4 Comparison of performance with/without the GO coating

Moreover, our proposed scheme shows advantaged

performances in the aspects of sensitivity and stability in
comparison with only the PMMA coating, which can be found
in Fig. 4.

IV. CONCLUSION

A highly sensitive sensing scheme is proposed. The

PMMA coating can be replaced with other materials, like
electro-optic materials, magneto-optic materials, etc.
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