
EasyChair Preprint
№ 5456

Curious Exploration and Return-based Memory
Restoration for Deep Reinforcement Learning

Saeed Tafazzol, Erfan Fathi, Mahdi Rezaei and Ehsan Asali

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 4, 2021

Curious Exploration and Return-based Memory
Restoration for Deep Reinforcement Learning

Saeed Tafazzol1, Erfan Fathi1, Mahdi Rezaei2 , and Ehsan Asali3

1 Advanced Mechatronics Researcher Lab, IR. {s.tafazzol,e.fathi}@qiau.ac.ir
2 Institute for Transport Studies, University of Leeds, UK. m.rezaei@leeds.ac.uk

3 The University of Georgia, USA. ehsanasali@uga.edu

Abstract. Reward engineering and designing an incentive reward func-
tion are non-trivial tasks to train agents in complex environments. Fur-
thermore, an inaccurate reward function may lead to a biased behaviour
which is far from an efficient and optimised behaviour. In this paper, we
focus on training a single agent to score goals with binary success/failure
reward function in Half Field Offense domain. As the major advantage of
this research, the agent has no presumption about the environment which
means it only follows the original formulation of reinforcement learning
agents. The main challenge of using such a reward function is the high
sparsity of positive reward signals. To address this problem, we use a
simple prediction-based exploration strategy (called Curious Exploration)
along with a Return-based Memory Restoration (RMR) technique which
tends to remember more valuable memories. The proposed method can
be utilized to train agents in environments with fairly complex state and
action spaces. Our experimental results show that many recent solutions
including our baseline method fail to learn and perform in complex soccer
domain. However, the proposed method can converge easily to the nearly
optimal behaviour. The video presenting the performance of our trained
agent is available at http://bit.ly/HFO_Binary_Reward.

Keywords: Deep Reinforcement Learning · Replay Memory · Sparse
Binary Reward · Prediction-based Exploration · Parametrised Action
Space · Soccer 2D Simulation · Half Field Offense.

1 Introduction

Machine learning is one of the main sub-categories of AI with applications in
various domains such as healthcare [1], autonomous vehicles [2] or robotics systems
[3]. The general objective is to teach single or multiple agents to successfully
perform a task with a minimum guidance from a human. Reinforcement Learning
is a leading paradigm for teaching hard-to-code tasks to robotic agents. A
reinforcement learning agent mainly relies on the experience it gains through
some trial and error runs. Such an agent focuses on finding a balance between
exploration and exploitation and it tries to learn actions with long-term benefits.
In other words, the agent repeatedly interacts with an unknown environment with
the goal of maximising its cumulative reward [4]. To enable the agent to perceive

https://orcid.org/0000-0003-3892-421X
http://bit.ly/HFO_Binary_Reward

2 S. Tafazzol et al.

rewards from the environment, a human expert has to design a reward function
specific to the domain which is subjective to the expert’s knowledge about the
task. Moreover, the hand-crafted reward function may compromise the goal we
truly care about. To address the difficulty with the design of a decent reward
function for a reinforcement learning agent, this paper focuses on a problem
mentioned in [5] namely, reward engineering. M. Hausknecht and P. Stone propose
a method capable of training a single agent to learn how to score on an empty
goal from scratch, based on a hand-crafted reward function. Without this reward
function, the agent is hopeless to learn anything. In order to overcome such a
limitation, we suggest a prediction-based exploration strategy (namely, curious
explorer) which is much more successful than a mere random action selection
algorithm. Using curious exploration, the agent attempts to perform actions
which it has less clue about its outcome (this behaviour is called “curiosity”
in animals [6]). This way, the agent is always curious about novel situations
while learning from previous experiences. In other words, the exploration will
be highly affected by the curiosity of the agent, leading to a better convergence
rate to the nearly-optimal behaviour. According to our experiments, the agent
will eventually score goals. Our proposed exploration strategy turns the problem
of absent positive reward signals into a sparse one. To increase the density of
positive reward signals in replay memory, we utilise a different replay memory
than the standard one, in which seeks to remember more valuable memories
rather than bleak ones.

One of the main contributions of this work is taking advantage of a binary
reward function which directly focuses on the task’s main objective. Furthermore,
note that our work only follows the standard formulation of RL which only relies
on the next state as well as reward signal, both coming from the environment.

We use RoboCup 2D Half Field Offense (HFO) domain [7] to perform our
experiments. Using the proposed method in [5] as our baseline, we focus on the
task of scoring on an empty goal with a binary success/failure reward function.
However, instead of a hand-crafted reward signal, we suggest using a binary
reward signal. To deal with the challenges in exploiting sparse binary reward
signals, we suggest using Curious Exploration as well as Return-based Memory
Restoration. The experimental results show that after experiencing sufficiently
enough game episodes, the agent can reliably score goals almost every time.

The rest of this paper is organised as follows: the related work is discussed in
Section 2; Section 3 explains the background on deep reinforcement learning in
parametrised action space and the HFO domain. Section 4 presents our proposed
method and finally, Section 6 shows and analyses the experimental results followed
by future work and conclusion.

2 Related Work

Experience replay memory [8] plays a vital role in the performance of Deep RL
algorithms. Many advancements have been made to improve the efficiency of
this component. For instance, Hindsight Experience Replay (HER) [9] saves all

Title Suppressed Due to Excessive Length 3

the state transitions of an episode in the replay buffer not only with the original
goal of the episode, but also with a subset of other goals. The work uses a binary
reward signal and can converge fast to the solution. HER is explicitly designed
to handle binary reward which has been rarely used in other works. Nonetheless,
it is hard if not impossible to implement HER in adversarial situations.

Another work called Prioritized Experience Replay (PER) [10] that modifies
the sampling process of the experience replay memory. PER relies on Temporal
Difference (TD) error to prioritise over the memories in the replay buffer. Handling
a replay memory involves two decisions; which experiences to store, and which
experiences to replay. PER addresses only the latter while our proposed method
focuses on the former.

Intrinsic Curiosity Module (ICM) [11] is an exploration method that learns
the state space encoding with a self-supervised inverse dynamics model. ICM
wisely chooses the features of the state space; i.e., it only considers the features
that can influence the agent’s behaviour and ignores others. Having the ability
to ignore the state factors that the agent has no incentive to learn them enables
ICM to solve the noisy-TV problem. Since our environment does not suffer from
noisy-TV problem and also the state space prediction in 2D soccer simulation
environment is not very complex, in our work, we adhere to the original version
of Curious Exploration.

Zare et al. [12] have implemented a goalie cooperating defender’s decision
making in HFO domain using Deep Deterministic Policy Gradient (DDPG). Their
work exploits binary success/failure reward function and predefined hand-coded
actions (so called “high-level actions”). Having used the high-level behaviours,
the ratio of positive rewards is high enough to learn the task. In our case, we
use the original HFO actions (so called “low-level actions”). This way, the agent
is not prone to subjective implementation of hand-coded actions and learns the
task from scratch, objectively.

3 Background

In this section we provide the fundamental background about Deep Deterministic
Policy Gradient (DDPG) [13] (a robust deep reinforcement learning algorithm)
and Half Field Offense Domain [7] as the prerequisite for the section Methodology
to control our agent(s) in continuous action space of the soccer robot field.

3.1 Deep Deterministic Policy Gradient

This method uses Actor/Critic architecture which decouples the value learning
and action selection (Fig. 1). Actor network µ parametrised with θµ gets the state
as input in order to output the desired action. Critic network Q parametrised
with θQ gets the state and action as input, then estimates the Q-value for the
input action. To update Q-value the critic uses Temporal Difference (TD) [14]
equation which defines a critic loss function for neural network setting as follows:

LQ(s, a|θQ) = (Q(s, a|θQ)− (r + γQ(s′, µ(s′|θµ)′|θQ)))2 (1)

4 S. Tafazzol et al.

Fig. 1: Actor/Critic network architecture used in parametrised action space. Note
that along with continuous parameters, four discrete scalars are used to indicate
which action is active [5]

On the other hand, the loss function for the actor model is simply −Q which
yields to the following gradient with respect to the actor’s parameters:

−∇θµQ(s, a|θQ) = −∇aQ(s, a|θQ)∇θµµ(s|θµ) (2)

A Parametrised Action Space Markov Decision Process (PAMDP) [15] is defined
by a set of discrete actions, Ad = {a1, a2, ..., ak}. Each discrete action a ∈ Ad
features ma continuous parameters, {pa1 , pa2 , ..., pak} ∈ Rma . In this process, an
action must be chosen first; then, paired with associated parameters. Soccer
2D simulation [16,17] environment is modelled as a PAMDP with four actions
including dash, turn, kick, and tackle while each action has its own parameters.

To take advantage of DDPG, Hausknecht and Stone [5] use a scalar for
each discrete action to determine which action must be chosen. Along with the
parameters for each action, this constitutes a continuous action space (Fig.1).
For example, four discrete scalars for the actions (dash, turn, kick, and tackle)
are paired with their parameters (a total of 6 parameters) in HFO domain. As
mentioned before, DDPG’s critic network utilises TD formula to update the
Q-value function. However, there is also an alternative option for updating the
Q-value function, called Monte Carlo (MC) [4], which is able to learn online from
experience. Nonetheless, opposed to TD-methods, Monte Carlo approaches do
not bootstrap value estimates and instead learn directly from returns. In other
words, On-policy MC employs on-policy updates without any bootstrapping,
while Q-Learning uses off-policy updates with bootstrapping. Both TD and MC
try to roughly calculate the action-value function Q(s, a) directly from experience
tuples of the form (st, at, rt, st+1, at+1). Furthermore, having visited all state-
value pairs an infinite number of times, both methods can provably converge to

Title Suppressed Due to Excessive Length 5

optimally. Nevertheless, the fundamental contrast between the two methods can
be realised by investigating their update targets. The update target formula for
Monte Carlo is defined as follows:

R̂ =
T∑
i=t

γi−tri (3)

and the update target function for Temporal Difference is defined as:

qtarget = r + γQ(s′, µ(s′|θµ)′|θQ) (4)

To stabilise the learning procedure, [18] proposes a mixed update paradigm for
critic network in the following form:

y = βR̂+ (1− β)qtarget (5)

where β is a scalar ∈ [0, 1] indicating the mixture of returned reward in the
episode (R̂) and the target value for q-learning (qtarget). In our experiments, we
use β = 0.2. According to the definition of y, we modify the loss function for the
mixture of the two algorithms as follows:

LQ(s, a|θQ) = (Q(s, a|θQ)− y)2 (6)

3.2 Half Field Offense Domain

Half Field Offense (HFO) [7] domain is a simplified soccer 2D simulation task
where agents attempt to defend or score goals. HFO features a continuous state
space and a parametrised action space where we will explore more in the following
sections. In the context of State Space, the agent uses egocentric continuously-
valued features. These features include the angle and the distance to important
objects in the field such as ball, players, and landmarks. As mentioned before,
HFO features a parametrised action space. The mutually-exclusive discrete actions
to choose from are as follows:

1. DASH(power, direction) moves in the indicated direction ∈ [−180, 180] with
power ∈ [0, 100]. It must be noted that agent moves faster in the direction
that aligns with its body angle compared to other directions.

2. TURN(direction) turns according to the indicated direction ∈ [−180, 180]
3. KICK(power, direction) kicks the ball if the agent is kickable according to

power ∈ [0, 100] and direction ∈ [−180, 180].
4. Tackle(power) tackles the ball or other players with power ∈ [0, 100]. Note

that tackle is usually effective in defensive behaviour and we do not use it in
our experiments since we train agents for offensive behaviour.

The reward signal used in [5] is hand-crafted in order to guide the agent through
the process of scoring a goal. The reward signal in their work is defied as follows:

rt = dt−1(a, b)− dt(a, b) + Ikickt + 3(dt−1(b, g)− dt(b, g)) + 5Igoalt (7)

6 S. Tafazzol et al.

where dt(a, b), dt(b, g) are respectively the distance of the agent from the ball and
the distance of the ball from the goal centre at time t. Ikickt is a binary variable
indicating that the agent has touched the ball for the first time at time t.Igoalt is
also a binary variable indicating that the agent scored a goal at time t.
However, for our research we only use the last term or more precisely:

rt = 5Igoalt (8)

We show that our method, unlike the one in [5], is able to learn the task of scoring
goals with this new reward signal formulation.

4 Proposed Method

Reinforcement learning is hopeless to learn anything without encountering a
desirable reward signal in exploration phase [4]. In our case, due to the fact that
a random agent never scores a goal, by using a success/failure reward signal,
our baseline article [5] fails to learn the task. To overcome this issue, we use
a prediction-based exploration strategy called “Curious Exploration”. However,
this exploration strategy degrades the problem of completely absent positive
reward signal into a sparse one. To deal with the sparsity, we modify the replay
memory in a way that it tends to remember more promising memories and we call
it “Return-based Memory Restoration”. Complete source code for our agent is
available at https://github.com/SaeedTafazzol/curious_explorer. In the following
subsections, we will describe the two mentioned approaches in more detail.

4.1 Exploration and Exploitation Agents

Our framework takes advantage of two internal agents that take responsibility
to perform either the exploration or the exploitation task. Indeed, one agent
only focuses on the exploration by looking for novel states while the other agent
concentrates on exploitation attempting to score goals. However, since only one
of these two agents can be active at a time, the soccer agent has to follow a
procedure to switch between the two. A widely used policy to obtain a satisfactory
trade-off between exploration and exploitation is ε− greedy [4] where ε indicates
the probability of taking a random action. In our framework, ε is the probability
of activating the exploration agent. Hausknecht and Stone [5] anneal ε from
1.0 to 0.1 over the first 10,000 updates in the experiments. Nevertheless, this
annealing function only works well with a hand-crafted incentive reward function.
Regarding the fact that our reward signal is a binary function which is quiet
different from our baseline’s reward function, we use a different annealing function
which anneals the amount of exploration by a constant factor every time a positive
reward signal is gained. This choice of annealing function relies on the fact that
a reinforcement learning agent cannot learn anything with a dead reward signal.
In other words, it is pointless to expect the agent to perform exploitation when
it has not seen any reward signal other than zero.

https://github.com/SaeedTafazzol/curious_explorer

Title Suppressed Due to Excessive Length 7

Fig. 2: The overall structure of Curious Exploration (CE) algorithm

4.2 Curious Exploration (CE)

Exploration in reinforcement learning assists the agent to observe new patterns
which can lead to a better learned policy [4]. Random action selection is a
commonly used exploration approach; however, it is highly probable to visit
previously seen states while exploration. Therefore, exploring big environments
is problematic using random selection. As an example, a random moving agent
in the space has the expectation of staying at the same place. Therefore, to visit
more novel states, we should design a proper exploration strategy.

The first challenge to solve is to come up with a method to identify and
differentiate the novel states from previously seen states in continuous state-
space. One potential solution is to have a model responsible for learning the
forward dynamics of the environment. This way, if the model can predict the
future state, we can assume that the agent has previously been in a similar
situation and vice versa. Note that the prediction accuracy is a good metric to
examine the performance of the learned forward dynamics model. To formulate
the learning procedure, we exploit the formulation of Markov Decision Process
for reinforcement learning. To elaborate more on this, lets assume the agent is
at st attempting to take the action at. Performing the given action, the agent’s
predictor should be able to identify s′t+1 and r′t+1 as the foreseen values for st+1
(the next state) and rt+1 (the upcoming reward), respectively. The predictor P
then has the following loss function:

LP = ||(P (st, at)− (st+1, rt+1))||2 (9)

where (st+1, rt+1) is the concatenation of the next state and the upcoming
reward vectors. Such a loss function formulation, which is only dependent to
the transitions, enables the predictor to learn the model in a supervised manner.
Having an evaluation metric to measure the status novelty (LP), we can now add
the exploration component to our framework. To do so, we can use the predictor’s
loss function as a reward signal (which is called “intrinsic reward”) for an explorer
agent (Fig.2). Opposed to the prediction model, which is a regression problem,

8 S. Tafazzol et al.

reaching a novel state may require the agent to perform a series of actions (not
necessarily one action). This means that the exploration process is basically a
reinforcement learning problem that tends to reach the desired outcome in the
long run. Having that in mind, we can calculate intrinsic reward in the following
form:

rit = LP (10)

Interestingly enough, animals use the same notion to explore their world more
efficiently. More precisely, they like to examine things which they are unsure
of the outcome; this intention in animals is called “Curiosity” [19]. The reason
this method closely follows the curiosity behaviour is that our agent tries to
perform actions with unknown outcomes. We show that this method guides
the agent to score goals during the training process which leads to generate
numerous promising memories. The experimental results show that such amount
of promising memories is sufficient for the agent to learn how to score goals.

4.3 Return-based Memory Restoration (RMR)

The utilisation of curious exploration may lead to some memories with positive
reward signals; however, the memories may be too sparse for the agent to properly
learn a difficult task in complex environments. For example, the soccer agent
may only score a goal every few episodes.

In order to deal with the sparsity of the memories with positive rewards, we
modify the structure of the replay memory to motivate it to remember more
valuable memories. To do so, one potential solution is to use the reward saved
in each transition as an evaluation metric. Nevertheless, this may not perform
well since there exist just a few memories with positive reward signal throughout
the experiment. Alternatively, we exploit the total discounted reward (return)
or more precisely

∑T
i=t γ

i−tri. Having the return value, we can calculate the
probability of forgetting the evaluated memory (f):

f = e−α(return) (11)

where α is a hyper-parameter indicating how forgetful our replay memory is.
Increasing the α value leads to a less forgetful replay memory. In our experiments,
we set α = 1. To utilise this formula, we use a modified architecture of experience
replay memory rather than its original version [8]. The original replay memory
architecture enjoys a queue (FIFO) to store the memories and removes the mem-
ory at the head of the queue without any exception. However, RMR will examine
the memory at the head location and calculates the probability of forgetting f
it. Then, with probability of f the memory is forgotten and with probability of
1− f the memory is restored back to the tail of the queue (Fig.3). Below, Alg.1
1 represents the Pseudo-code of the RMR’s memory handling algorithm:

Title Suppressed Due to Excessive Length 9

Fig. 3: The architecture of Return-based Memory Restoration (RMR)

Algorithm 1: Adding a new memory to RMR’s replay memory
Input: new_memory
oldest_memory = queue.pop();
while e−α(oldest_memory.return) < random(0, 1) do

queue.add(oldest_memory);
oldest_memory = queue.pop();

end
queue.add(new_memory);

5 Experimental results

We evaluated the performance of the proposed method in the parametrised HFO
domain for the task of approaching the ball and scoring a goal. Three types of
agents were considered as follows:

– The baseline agent which using epsilon-greedy with random action selection
(DDPG).

– The baseline agent enhanced with curious exploration (DDPG + CE).
– The baseline agent enhanced with curious exploration and Return-based

Memory Restoration (DDPG + CE + RMR)

We used binary reward formulation for all three types of the agents. For each
agent, we conducted three independent train and test experiment. Each training
and testing rounds take 50,000 and 1,000 episodes, respectively. Each training
round took almost six hours on a Nvidia GeForce GTX 1070 GPU platform.

The first agent, i.e. the standard DDPG failed to learn anything and never
scored a single goal using binary reward function. Note that DDPG agent can
perform the task with nearly-optimal performance using a hand-crafted reward
function. In contrast, both DDPG + CE and DDPG + CE + RMR agents could
reliably learn to score goals. It can be seen that DDPG + CE + RMR achieves a
better performance in terms of the gained rewards per episode (Fig.4).

As represented in Fig.4, DDPG + CE + RMR can converge faster to the
optimal behaviour compared to DDPG + CE which is because of paying attention
to more valuable and promising memories (maintained through RMR). In fact,
the increased performance of DDPG + CE + RMR model is probably because
of remembering earlier memories with positive return reward. Indeed, the agent
without RMR fails to learn much in first episodes in which positive reward signal

10 S. Tafazzol et al.

Fig. 4: A comparison of average rewards among the three types of agents. The
rewards are averaged over five rounds of experiments for each agent.

DDPG DDPG + CE DDPG + CE + RMR
Round 1 0.000 0.978 0.989
Round 2 0.000 0.977 0.988
Round 3 0.000 0.917 0.986
Round 4 0.000 0.867 0.964
Round 5 0.000 0.858 0.963

Avg 0.000 0.919 0.978

Table 1: The success rate achieved by the agents examined in our experiments.
As expected, DDPG + CE + RMR agent shows the best performance among
the three.

is seen due to the fact that it quickly forgets them. On the other hand, by using
RMR, sparse positive signals become more dense in replay memory. However,
when the positive reward signal becomes dense enough, the agent without RMR
also learns how to score goals in our environment. In contrast, this may not be
the case when the agent has to deal with a more complex environment. In other
words, reward signal may stay sparse after exploration when the task is hard to
be learned.

As mentioned before, we ran 5 rounds of experiment (training and testing)
for each type of agent and calculated the success rate per round. Table 1 shows
the success rate achieved by each agent in each round as well as the average
result acquired by the agent. According to the results, DDPG completely fails to
do the task; DDPG + CE can achieve %91.9 success rate and DDPG + CE +
RMR outperform both other methods by almost a margin of %6.

For a further analysis on Curious Exploration, the predictor’s loss and ex-
plorer’s reward gain are plotted (Fig. 5). As can be seen, higher reward gain of
the explorer (Fig.5.a) corresponds to the higher prediction error (Fig.5.b). The
first spike in predictor’s loss (after learning basic dynamics) happens when the
agent starts interacting with the ball. After noticing a strange behaviour from

Title Suppressed Due to Excessive Length 11

Fig. 5: a) Exploration reward graph gained by the exploration agent; b) Prediction
loss graph that shows two spikes revealing the time that the agent first intercepts
the ball and when the agent scores a goal for the first time

the ball (e.g. when the ball is kicked), the agent becomes extremely curious about
this object. By interacting and examining this object while trying to learn its
dynamics, it will eventually score goals. Now, because it did not know about
positive reward signal gained by scoring a goal, it becomes curious about scoring.
Through this process, the amount of exploration is annealed towards exploitation.

6 Conclusion and Future Work
This paper presented a framework capable of learning how to score on an empty
goal in HFO domain with only a binary success/failure reward using a combination
of DDPG, Curious Exploration, and Return-based Memory Restoration methods.
The research showed how the training process can be improved by exploiting
Return-based Memory Restoration which seeks to remember more valuable
memories. The experimental results confirmed our proposed method can achieve
nearly-optimal behaviour while the baseline method entirely failed to learn any
tasks.

The prediction-based exploration method, used in this article, is prone to
noisy-TV problem. In our environment, however, we did not face such an issue;
but, this may change with more complex situations where it may include stochastic
agents. To deal with this challenge, we suggest applying ICM [11] to stabilise the
exploration process.

Furthermore, the behaviour of RMR must be further examined in more
complicated environments. An interesting possibility is to use RMR (which
modifies the memory maintenance procedure in experience replay memory) along
with a state-of-the-art sampling method such as Prioritized Experience Replay
(PER). The learning performance of the method could be also investigated for
more complex tasks using only a binary success/failure reward function.

12 S. Tafazzol et al.

References

1. Mahdi Rezaei and Mohsen Azarmi. Deepsocial: Social distancing monitoring and
infection risk assessment in covid-19 pandemic. Applied Sciences, 10(21):7514, 2020.

2. Mahdi Rezaei, M Sarshar, and M.M. Sanaatiyan. Toward next generation of driver
assistance systems: A multimodal sensor-based platform. In Int Conf. on Comp
and Automation Engineering (ICCAE), volume 4, pages 62–67, 2010.

3. Ehsan Asali, Farzin Negahbani, Saeed Tafazzol, Mohammad Sadegh Maghareh,
Shahryar Bahmeie, Sina Barazandeh, Shokoofeh Mirian, and Mahta Moshkelgosha.
Namira soccer 2d simulation team description paper 2018. RoboCup 2018, 2018.

4. Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

5. Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized
action space. arXiv preprint arXiv:1511.04143, 2015.

6. Daniel E Berlyne. Curiosity and exploration. Science, 153(3731):25–33, 1966.
7. Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram

Kalyanakrishnan, and Peter Stone. Half field offense: An environment for multia-
gent learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents (ALA)
Workshop. sn, 2016.

8. Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

9. Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. arXiv preprint arXiv:1707.01495, 2017.

10. Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015.

11. Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International Conference on
Machine Learning, pages 2778–2787. PMLR, 2017.

12. Nader Zare, Mahtab Sarvmaili, Omid Mehrabian, Amin Nikanjam, Seyed Hossein,
Aref Sayareh Khasteh, Omid Amini, Borna Barahimi, Arshia Majidi, and Aria
Mostajeran. Cyrus 2d simulation 2019.

13. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

14. Gerald Tesauro. Temporal difference learning and td-gammon. Communications of
the ACM, 38(3):58–68, 1995.

15. Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning
with parameterized actions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

16. Hidehisa Akiyama. Agent2d base code, 2010.
17. Hidehisa Akiyama and Tomoharu Nakashima. Helios base: An open source package

for the robocup soccer 2d simulation. In Robot Soccer World Cup, pages 528–535.
Springer, 2013.

18. Matthew Hausknecht and Peter Stone. On-policy vs. off-policy updates for deep
reinforcement learning. In Deep Reinforcement Learning: Frontiers and Challenges,
IJCAI 2016 Workshop, 2016.

19. Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in
model-building neural controllers. In Proc. of the international conference on
simulation of adaptive behavior: From animals to animats, pages 222–227, 1991.

