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Abstract— This paper investigates to use of information 
technology, i.e. machine learning algorithms for water 
assessment in Timor-Leste. It is essential to assess 
groundwater quality to ensure the safety and 
availability of well water. The Water Quality Index 
(WQI) is the standard tool for assessing water quality, 
which can be calculated from physicochemical and 
microbiological parameters. However, in developing 
countries, it is sometimes difficult due to machine 
malfunctions and limited human resources. In such 
case, missing-value imputation and machine learning 
models are useful for classifying water samples into 
suitable or unsuitable with significant accuracy. Some 
imputation methods were tested, and four machine-
learning algorithms were explored: logistic regression, 
support vector machine, random forest, and Gaussian 
naïve Bayes. We obtained a dataset with 368 
observations from 26 groundwater sampling points in 
Dili, the capital city of Timor-Leste. According to 
experimental results, it is found that 64% of the water 
samples are suitable for human consumption. We also 
found k-NN imputation method and random forest 
method were the clear winners, achieving 96% 
accuracy with three-fold cross validation. The analysis 
revealed that some parameters significantly affected 
the classification results.  

Keywords—water quality index, missing value imputation, 

classification, machine learning. 

I. INTRODUCTION  

Water is one of the fundamental natural resources for 
human life, with around 71% of Earth’s surface, while only 
4% is freshwater and 0.5% is suitable for human consumption 
[1] . Water quality has emerged as a critical concern in some 
developing countries, impacting both public health and the 
environment while playing a pivotal role in fostering 
sustainable economic development and growth. The 
significance of water quality management extends beyond its 
immediate implications, influencing broader societal well-

being and ecological sustainability. Nevertheless, based on a 
UN report, 2.1 billion people still lack access to drinking 
water and around 40% of the global population suffers from 
water scarcity [2]. Due to the increasing number of 
populations, urban development, and business activity, the 
community requires water supply demand and suitable water, 
such as quality and availability and easy to access.  

Timor-Leste is a country located in the southeastern Asia. 
Timor-Leste is currently facing various challenges in terms of 
water quality and quantity supply. Many rivers mostly have 
water flow only in the wet season. To maintain the water 
quality and quantity, the government and all of Timorese need 
to provide a positive contribution to conserve water resources 
both surface and groundwater. Despite government-led efforts 
in water supply system management and water quality control, 
challenges persist, particularly in communities relying on their 
boreholes. The assessments of water quality in the water 
bodies, untreated wastewater, car washing, and community 
wastewater are directly discharged into the streams and 
groundwater wells and boreholes without any adequate 
treatment resulting in deterioration of water quality [3]. 
According to the previous study: Groundwater faces 
significant threats due to various natural and human-induced 
factors, including extensive agricultural activities, marine 
intrusion, population growth, and industrial development [4]. 

This paper focuses on the situation in the capital city Dili, 
where groundwater is the main water source for water supply. 
Groundwater quality has been evaluated and monitored for 
more than 10 years. Several research projects showed that 
shallow groundwater in Dili city is contaminated by dissolved 
solids and microbiological concentrations [5]. In the other 
work [6] the aquifer is a complex geological formation 
containing unconsolidated and moderately sorted silts and 
cobbles, bounded by a coastline and mountains. As the 
population rapidly increases, we have to address water quality 
issues comprehensively to safeguard the citizens’ well-being. 

Water quality is determined by a combination of physical, 
chemical, and microbiological parameters of water. The 
quality of groundwater varies in time and location, and current 
assessing methods rely heavily on manual sampling and 
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laboratory analysis, which is time-consuming, resource-
intensive, human skill and inaccurate manual computations. 
Moreover, traditional statistical techniques may not fully 
capture the intricate relationships between diverse water 
quality parameters, hindering the development of accurate 
predictive models. Applying an sophisticated analysis for 
water quality, we have encountered the issue of missing values 
in environmental data, which has a potential to significantly 
impact the accuracy and reliability of our research findings. 

This work thus utilizes the Water Quality Index (WQI). By 
calculating the index, we can easily evaluate whether water is 
suitable or not. Though the WQI can be calculated 
deterministically as described later, in this work we introduce 
Machine Learning (ML) for water quality estimation. Our 
final goal is to leverage ML not only for estimating the quality 
in one sampling point, but also for modeling the whole water 
flow in Dili city. This paper is thus a first step to the goal. 
Several studies have explored the application of ML, 
specifically the Random Forest (RF) algorithm, for predicting 
and classifying water samples. These studies integrate various 
classifiers, including RF, to assess water purity, underscoring 
its effectiveness in monitoring water quality and protecting 
public health [5]. A research has shown that, among 
classifiers, RF accurately predicts the WQI, emphasizing its 
optimization through feature selection, such as dissolved 
oxygen and biochemical oxygen demand [6]. RF consistently 
outperformed the other models in terms of accuracy when 
predicting groundwater quality in India [8]. Nasir et al. further 
improved the classification accuracy of WQI with their model 
[7]. In this paper, we also explore the application of ML 
techniques to classify water data in Dili. By leveraging the 
power of ML algorithms, it is possible to analyze large 
datasets comprising multiple parameters and pollutants 
simultaneously, leading to more comprehensive and timely 
assessments of water quality. This study has the following 
main objectives: (i) to examine statistics of physicochemical 
and microbiology properties of well water, (ii) to calculate 
WQI in the urban area and visualize the results for further 
discussion, and (iii) to judge water samples using ML 
classifiers; water data are categorized into two classes: 
suitable or unsuitable for human consumption.  

II. DATA AND METHODS 

This study aims to compute WQI and build ML models for 
classification using physicochemical and microbiology 
features.  The methodology in this study including data 
acquisition, preprocessing and analysis, WQI computation, 
data splitting, classification model building, and evaluation 
process is illustrated in Figure 1. 

 

Fig. 1. The framework of our proposed scheme. 

A. Dataset  

The whole dataset is split into training (80%) and test 
(20%) datasets. For the data analysis and model evaluation, 3-
fold cross-validation is applied to tune hyperparameters in 
four ML models: Linear Regression (LR), Support Vector 
Machine (SVM), RF, and Gaussian Naïve Bayes (GNB). 

Data collection: Water samples in Dili were obtained by the 
National Laboratory of Water Supply, Ministry of Public 
Works in Timor-Leste. The dataset contains 368 samples 
collected from 26 sampling points of groundwater from 2017 

to 2018. From each sample water analysis results were 
obtained consisting of 16 physicochemical features and two 
microbiological parameters, as indicated in Table 1. Note that 
Dili has the wet season basically from November to May, and 
the dry season lasting from June to October. 

Missing values: Due to some reasons, e.g. testing machine 
malfunction or lack of human resources, there are missing 
values in the dataset: pH (0.54%), TDS (1.09%), turbidity 
(0.54%), hardness (0.82%), NO3-N (2.45%), iron (2.99%), 
fluoride (0.27%), and total coliform (0.82%). Since the 
amount of missing data has a considerable impact, we need 
to investigate imputation schemes to fill in missing features. 
Among several imputation approaches, the preliminary 
experiment showed that the k-nearest neighbor method 
achieved the best performance to resolve the imputation for 
water quality.  

Normalization: Standardization is applied so that the 
transformed data would have a distribution of a mean of 0 and 
a standard deviation of 1. This step is conducted as an initial 
stage to prepare water quality data for ML. In the following 
formula, a standardized value 𝑍𝑖 is obtained as: 

𝑍𝑖 =
𝑋𝑖 − �̅�

𝑆
 (1) 

where 𝑋𝑖  is an input value, �̅� and 𝑆 are mean and standard 
deviation of the original distribution, respectively. 

Features selection: Feature selection is a prevalent technique 
aimed at mitigating the issue of irrelevant features. In this 
study, feature selection is conducted in two parts. The first 
part involves utilizing person correlation, and the second part 
is based on RF for selecting features. The RF algorithm 
consistently outperforms the other ML methods in selecting 
crucial features for data classification, demonstrating 
superior performance across all experimental groups [8]. 
Conversely, the enhanced feature simplification RF 
algorithm adeptly identifies features closely associated with 
wind turbine operating conditions, thereby enhancing models 
for monitoring wind turbine conditions [9]. The selected 
features are used for the binary classification; each water 
sample is categorized into suitable and unsuitable.  

B. Water Quality Index Calculation  

The WQI plays a crucial role in estimating the quality of 
water [10], which is a flexible, unbiased, and time-saving tool 
for evaluating drinking water suitability, aiding in prioritizing 
and maintaining water quality [11]. WQI can be calculated 
using the weighted arithmetic index method, consisting of the 
following three steps. First, we choose water quality 
parameters based on local regulations [12], shown in Table 2. 
Second, we apply standardization to the selected parameters, 
converting a measured value of each parameter to a common 
scale, typically from 0 to 1000. Simulnateously, each 
parameter value is checked using the standard threshold value. 
Finally, weights are assigned to the parameters based on their 
relative importance to overall water quality, under the 
restriction that the sum of all the weights should be one. 
Finally, the WQI can be calculated as: 

𝑊𝑄𝐼 =
∑ 𝑄𝑖𝑊𝑖

∑ 𝑊𝑖

 (2) 

where 𝑄𝑖  is a water quality rating of 𝑖-th parameter, and 𝑊𝑖 is 
a corresponding weight factor. The rating 𝑄𝑖  is denoted as: 

𝑄𝑖 = 100 [
𝑉𝑖

𝑆𝑖

] (3) 

Data
collection

Data 
preprocessing

WQI calculation

Classification

LR, SVM,
RF and GNB

Metric

accuracy, 
precision, 
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where 𝑉𝑖 is a monitored value in water quality data, and 𝑆𝑖 a 
recommended standard for each parameter. The weight 𝑊𝑖 is 
computed as follows: 

𝑊𝑖 =
𝑤𝑖

∑ 𝑤𝑗𝑗

 , where 𝑤𝑖 =
𝑘

𝑆𝑖

 and 𝑘 =
1

∑ (
1
𝑆𝑖

)
 (4) 

C. Machine Learning Model  

We employ four ML-based classification algorithms to 
classify each groundwater sample data into the pre-defined 
categories. The classification algorithms used in this study are 
as follows: 

Logistic Regression: The logistic function, or the sigmoid 
function, is a mathematical function used in the logistic 
regression. The LR maps any value to the range (0,1) and is 
the most common algorithm used for binary classification 
[13].  

Support Vector Machine: The SVM is a supervised learning 
model used for classification tasks. It finds the optimal 
hyperplane that separates the classes in the feature space so as 
to maximize the distance between any two classes [14].  

Random Forest: The RF is an ensemble learning method that 
combines multiple decision trees to improve predictive 
performance and control overfitting [15]. As mentioned, this 
model has been widely used in the related works.  

Gaussian Naïve Bayes: The Bayes approach employs 
probabilistic statistics to classify data, and estimate outcomes. 
The GNB model uses prior and posterior probabilities to 
prevent from overfitting and bias [16]. 

D. Evaluation Metric 

In this paper, the above four classifiers are evaluated 
using the test dataset and the following metrics. First, a 
confusion matrix is obtained. Secondly, accuracy, precision, 
recall, Area Under Curve (AUC), and F1 score are obtained, 
which are commonly used in the pertinent literature [17]:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
 (8) 

where TP means True Positive, TN indicates True Negative, 
FP is False Positive, and FN stands for False Negative. 

III. RESULT AND DISCUSSION  

A. Statistical Analysis 

 Given a new dataset, it is cricial to start from statistical 
analysis and visualization. Table 1 also indicates statistical 
properties of each parameter. Figure 2 depicts water quality 
status in each well in Dili. Red wells are unsuitable, while 
green ones are suitable. 

We found several wells had problems in some parameters. 
For example, in the Cooperativo well, we observed high levels 
of alkalinity, calcium, hardness, and TDS. Elevated levels of 
manganese and iron were also found in four wells. NH3, NO2, 
and NO3 remained under the acceptable ranges at all sites. 
However, some water samples were heavily contaminated 

with coliform bacteria, especially E.coli and T.coli. We also 
found that groundwater turbidity was high due to inadequate 
well protection during the rainy season, and levels of TDS, 
hardness, iron, fluoride, calcium, manganese, sulfate, T.coli 
and E.coli often exceeded desirable limits based on WHO and 
NDWQS guidelines. The TDS range was from 73.3 mg/L to 
2,321 mg/L, likely due to saline water from coastal sources, 
affected by agricultural activities and sewage disposal 
systems. 

Correlation analysis was subsequently conducted to 
measure the relationship between two features. Figure 3 
illustrates the result. A correlation between hardness and 
turbidity (0.60) means that increased mineral content leads to 
higher suspended solids. Sulfate is strongly correlated with 
both hardness (0.61) and turbidity (0.58), indicating that the 
presence of minerals affects these parameters. Note that T.coli 
and E.coli have higher correlations with WQI since water 
having any microbiology must be unsuitable. 

B. Water Quality Index Calculation 

The water supply must be determined according to 
whether water samples are suitable for human consumption, 
considering certain physical, chemical, and biological 
characteristics. In this study, in order to calculate WQI, we 
chose several parameters based on the national drinking water 
quality standard in Timor-Leste. The standard also refers to 
WHO guidelines [20], according to the ministry of health in 
Timor-Leste [19]. Microbiology parameters were fully 
selected because some research studies have shown that those 
parameters are crucial to estimate the contamination of the 
water [3], [5]. Consequently, we focused on 11 water quality 
parameters to compute WQI. Table 2 indicates the parameters 
and corresponding coefficients. 

 
Fig.2. A map of water quality status in each well in Dili. 

TABLE I.  STATISTICAL SUMMARY OF WATER-QUALITY FEATURES. 

 

TDS = Total Dissolved Solids, a WHO, b NDWQS [18], [19] 

Parameter Mean Std.dev. Min Max
WHO/Timor Leste

Guidelines

pH 7.49 0.46 6.4 8.9 6.5-8.5

Temperature 28.29 1.22 22.3 32 NS (oC)

Conductivity 575.87 505.07 163 6901 NS (μS/cm)

TDS 292.4 222.58 73.3 2321 1000 (mg/L)

Salinity 0.29 0.29 0.1 3.8 NS (‰)

Turbidity 1.17 5.84 0.1 105 5 (NTU)

Hardness 207.65 421.81 22 5550 200 (mg/L)

Calcium 160.33 314.47 60 3700 NS (mg/L)

Alkalinity 157.13 277.46 65 4220 NS (mg/L)

NH3-N 0.28 0.23 0.1 1 1.5 (mg/L)

NO3-N 0.33 0.34 0.002 2.1 10 (mg/L)

NO2-N 0.01 0.01 0 0.065 1 (mg/L) 

Iron 0.09 0.13 0 1.1 0.3 (mg/L)

Flouride 0.48 1.32 0 18 1.5 (mg/L)

Manganese 1.14 6.06 0 43 0.5 (mg/L)

Sulphate 39.36 64.64 2 1220 250 (mg/L)

T.Coli 20.29 47.62 0 150 0
a
/0.95

b
 CFU/100ml

E.Coli 3.38 18.55 0 150 0a/0.95b CFU/100ml



 
Fig.3. A correlation analysis result. 

After WQI is calculated, it is classified based on [21]. 
Table 3 shows five groups used in the classification. We can 
categorize water samples of which WQI are less than 50 are 
suitable for human consumption, while the others above 50 
are unsuitable for drinking. We found the numbers of suitable 
and unsuitable samples were 237 and 131, respectively. 

Let us go back to Figure 2. The GIS map shows that the 
contamination of drinking water quality in Dili has become a 
major challenge for both the community and the government 
in developing countries. The mapping of WQI status shows 
that 26 boreholes were classified to water suitability classes, 
however, the other 14 boreholes were polluted and unsuitable 
for drinking. This information is useful for decision-making 
by the government to obtain suitable water much more. 

 

TABLE II.  FEATURES AND PARAMETERS FOR WQI. 

 

 *NDWQS [19]: Ministry of Health-WHO 

TABLE III.  WATER QUALITY CLASSIFICATION BASED ON WQI [22]. 

 

C. Machine Learning Model Comparison 

a) Accuracy comparison with different imputation strategies 

First of all, we applied the ML models to analyze the 
dataset comprising 336 water quality records, ensuring that 
no values were missing. As mentioned, we used split training 
and test datasets, while no k-fold validation was carried out. 
Table 4 summaries classification performance. It is found that 
RF and SVM obtained approximately 90% accuracy, 
followed by LR and GNB. 

In practical situation, unfortunately, missing values are 
sometimes observed due to some reasons. We subsequently 
evaluated the models by incorporating samples having 
missing values. Four imputation schemes were then tested, to 
clarify which strategy is the best for our data. The other 
experimental setup was the same as the previous experiment. 
Table 4 also includes the results. There is not a big difference 
among the imputation schemes, however, the experimental 
results demonstrated that the k-NN imputation achieved 
better accuracy than the others, particularly for RF; the 
accuracy of RF-based classification model with k-NN 
missing-value imputation,  was roughly 96%. Figure 4 also 
depicts confusion matrices. 

TABLE IV.  CLASSIFICATION ACCURACY IN EACH ML MODEL WITH 

DIFFRENT IMPUTATION METHODS. 

 
 

 
 

Fig.4. Confusion matrices in each ML model. 

b) Cross Validation 

The k-fold cross validation was conducted to check the 
performance of the ML model for developing high-accuracy 
classification. Three-fold cross validation was carried out in 
this paper. Classification was repeated three times with 
different subsets (A: data subset 1, B: data subset 2 and C: 
data subset 3). Then the average of the classification accuracy 
was obtained. Table 5 shows the results.  

TABLE V.   CROSS-VALIDATION RESULTS OF RF MODEL. 

 

We further checked the model and results. First, we tried 
to optimize model hyperparameters.  In the cross-validation, 
the RF model with default parameters achieved an accuracy 

Parameters Si 1/Si Wi= k/Si

pH 8.5 0.118 0.0131

TDS 1000 0.001 0.0001

Turbidity 5 0.200 0.0223

Hardness 200 0.005 0.0006

NO3-N 50 0.020 0.0022

Iron 0.3 3.333 0.3723

Fluoride 1.5 0.667 0.0745

Manganese 0.4 2.500 0.2792

Sulphate 250 0.004 0.0004

T.Coli 0/0.95* 1.053 0.1176

E.Coli 0/0.95* 1.053 0.1176

Σ 8.954 1.0000

k 0.112
11 features

WQI Water Quality Range

0-25 Excellent water quality 178

26-50 Good water quality 59

51-75 Poor water quality 18

76-100 Very poor water quality 7

100+ Unsuitable for drinking purposes 106

237

# samples

131

Removing Mean Median k-NN

LR 0.86 0.87 0.87 0.87 0.87

SVM 0.90 0.88 0.88 0.88 0.89

RF 0.91 0.92 0.92 0.92 0.96

GNB 0.85 0.89 0.89 0.89 0.85

Accuracy

w/ imputation (N=368)w/o imp.

(N=336)

Model

RF Training Testing Accuracy Precision Recall F1 score

Fold 1 A + C B 0.96 0.95 0.95 0.95

Fold 2 B + C A 0.96 0.95 0.96 0.95

Fold 3 A + B C 0.95 0.95 0.95 0.95

0.957 0.952 0.951 0.950Average



of 96.5%. It is found that the model achieved 97.9% after the 
tuning. As well known, hyperparameter tuning improves 
model reliability and performance, avoiding overfitting. We 
also investigated the learning curve for training and 
validation datasets, according to training data size (see Figure 
5). The small gap between training and validation scores 
indicates good generalization and minimal overfitting. 
Overall the learning curve confirms the RF classifiers' 
robustness and strong performance on this dataset. 

 

 
Fig.5. Learning curve of our RF model. 

 
Fig.6. Visualisation of classification results. 

 
Fig.7. Feature importance in our RF classifier. 

c) Visualization and Feature Importance 

We conducted visualization to classification results. We 
obtained Figure 6 by applying t-SNE to visualize the map of 
the suitability of water quality and its misclassification. We 
can see some clusters of unsuitable water samples, while the 
other samples and suitable ones make one large cluster. 

An RF model provides feature importance information in 
addition to the classification results. Figure 7 illustrates the 
result. The predictor importance for the model shows that 

T.coli is the most important feature, followed by iron, E.Coli, 
Manganese, sulphate, and turbidity.   

D. Discussion 

The studies conducted in different regions, including 
India, Malaysia, Bangladesh, Algeria, Pakistan, and Timor-
Leste, highlight the effectiveness of different machine 
learning techniques for water quality prediction. 
Radhakrishnan and Pilla [23] in India achieved the highest 
accuracy of 98.5% using a decision tree algorithm on lake and 
river data. Malek et al. [24] in Malaysia used gradient 
boosting on river water and achieved an accuracy of 94.9%, 
while Gupta and Mishra [25] also used gradient boosting on 
river water and achieved perfect accuracy. In Bangladesh, 
Khan et al. [26] demonstrated the highest accuracies with 
gradient boosting (100%) and principal component 
regression (95%) for lake water. In Algeria, Derdour et al. 
[27] found SVM is highly effective for groundwater 
prediction with an accuracy of 95.4%. In Pakistan, Mohd et 
al. [23] applied RF to canal water with an accuracy of 91%.  
Our RF model in Timor-Leste for groundwater achieved an 
accuracy of 96%. These results suggest that gradient boosting 
and random forest are consistently high-performing models 
across water types and regions, on the other hand, the choice 
of the best model may depend on the specific characteristics 
of water, in addition to water, soil and climate environments. 
We need to investigate ML models carefully in order to find 
the best solution for new water data. 

IV. CONCLUSION 

This research involves monitoring water quality data from 26 
wells in Dili, Timor-Leste over two years, focusing on 11 
parameters. Groundwater samples exhibited considerable 
variation in turbidity, hardness, TDS, E.coli and T.coli 
concentrations, with values exceeding the desirable and 
permissible limits set by WHO and NDQWQ. The suitability 
in the map of water quality status indicates 64% of water 
samples are safe for human consumption. Regarding the 
imputation method of missing value, k-NN is the best method 
for the imputation of missing value for our dataset. In order 
to accomplish water suitability classification, we tested four 
machine learning classifiers. All the models performed well, 
in particular the RF has significantly better prediction 
performance with 96% accuracy than that of LR, GNB, and 
SVM. The model was validated using the cross-validation 
method. We also investigated feature importance and 
visualization results obtained from the RF model. 

In future work, we will apply the proposed model to 
predict the water quality to different datasets in Timor-Leste. 
We have a plan to incorporate the water data and the other 
data e.g. rainfall data, humidity data to further improve the 
performance. Apart from the engineering standpoints, to 
provide safe water to all the citizens in Timor-Leste, we 
continue long-term monitoring of environmental changes like 
sea-level rise, urbanisation, and any climate influences, as 
well as having discussions using the results. 
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