
EasyChair Preprint

№ 662

Rewriting Environment for Arithmetic Circuit

Verification

Cunxi Yu, Atif Yasin, Tiankai Su, Alan Mishchenko and
Maciej Ciesielski

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 3, 2018

Rewriting Environment for Arithmetic Circuit Verification

Cunxi Yu1, Atif Yasin2, Tiankai Su2, Alan Mishchenko3, and Maciej Ciesielski2

1 École Polytechnique Fédérale de Lausanne, Switzerland; cunxi.yu@epfl.ch
2 University of Massachusetts, Amherst, MA, USA; {ayasin,tiankaisu,ciesiel}@umass.edu

3 University of California, Berkeley, CA, USA; alanmi@berkeley.edu

Abstract

The paper describes a practical, commercial-strength software tool for the verification
of integer arithmetic circuits. It covers different types of multipliers, fused add-multiply
circuits, and some dividers - the circuits whose computation can be represented as a poly-
nomial. The verification uses an algebraic model of the circuit and is accomplished by
rewriting the polynomial of the binary encoding of the primary outputs (output signa-
ture), using the polynomial models of the logic gates, into a polynomial over the primary
inputs (input signature). The resulting polynomial provides the arithmetic function of the
circuit and hence can be used to extract the functional specification from its gate-level
implementation. The rewriting uses an efficient And-Inverter Graph (AIG) representa-
tion to enable extraction of the essential arithmetic components of the circuit. The tool
is integrated with the popular ABC system. Its efficiency is illustrated with impressive
results for integer multipliers, fuse-multiply circuits, and divide by constant circuits. The
entire verification system is offered in an open source ABC environment together with an
extensive set of benchmarks.

1 Introduction

Verification of arithmetic circuits can be viewed as a special case of combinational equivalence
checking [12] in which the function implemented by the circuit is checked against its functional
specification. Boolean methods, such as various canonical decision diagrams and SAT, that have
been used extensively in logic synthesis and optimization, are computationally too expensive
for arithmetic functions as they require “bit blasting”, i.e., flattening the design to a bit-level
netlist. The SAT and SMT competition results confirm that the verification of even small
multipliers pose a real challenge to such solvers [10]. Similarly, the commercial tools cannot
fully automatically handle full-size multipliers [12]. In general, the complexity of checking
equivalence of large arithmetic circuits is too high for these methods [9][14].

The techniques that offer best solution for analyzing and verifying arithmetic circuits are
formal methods based on computer algebra [14][6][8][12]. In this approach, the circuit specifi-
cation and its implementation are represented as polynomials in binary signal variables. The
verification problem is formulated as a proof that the implementation satisfies the specification.
It is accomplished by reducing the specification modulo the implementation polynomials using
theory of Gröbner Basis, which transform the verification problem into membership testing of
the specification polynomial in the ideals [8][6][12][10]. Some of the authors [6][4] use Gaussian
elimination, rather than explicit polynomial division, to speed up the reduction process.

An alternative, and more effective approach to accomplish the verification proof for gate-
level arithmetic circuits is based on algebraic rewriting [14][15]. It transforms the polynomial
at the primary outputs (called the output signature) to a polynomial in terms of primary
inputs (the input signature) [14]. The resulting signature provides the functional specification
of the circuit that can be compared with the expected specification, hence the method can
also serve as function extraction. Although this approach has been successfully applied to

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

large-scale multipliers and other arithmetic circuits, it still suffers from a potential memory
explosion problem during rewriting due to the growing size of the intermediate polynomials.
In particular, the method is very sensitive to the order in which rewriting is done, strongly
affecting the verification performance.

The verification method and the tool presented in this paper offer an important step in
finding and efficient solution to the arithmetic verification problem. The method is based on
representing the circuit in a functional, rather than structural, gate-level domain, called the
And-Inverter Graph (AIG) [7], in which the algebraic rewriting is done on the AIG representa-
tion of the circuit.

2 Algebraic Rewriting

Arithmetic circuit considered in this work is a circuit that computes polynomial expressed in
the input variables. The circuit is modeled as a network of interconnected bit-level components
(logic gates), each with a finite set of binary inputs and a single binary output. Each gate
is modeled as a polynomial fi[X] with binary variables X = {x1, ..., xn} and coefficients in
Z2. Such a polynomial is also referred to as a pseudo-Boolean polynomial. Table 1 summarizes
algebraic models of some of the basic Boolean operators:

Table 1: Boolean and algebraic models of basic logic functions.

Operation Boolean model Algebraic model
INV (a) ¬a 1− a

AND(a,b) a ∧ b ab
OR(a,b) a ∨ b a + b− ab
XOR(a,b) a⊕ b a + b− 2ab

XOR3(a,b,c) a⊕ b⊕ c a + b + c− 2ab− 2ac− 2bc + 4abc
MAJ3(a,b,c) a ∧ (b ∨ c) ∨ b ∧ c ab + ac + bc− 2abc

By construction, each expression evaluates to a binary value (0,1) and correctly models the
logic function of a Boolean logic gate. Models for more complex AOI (And-Or-Invert) gates,
used in standard cell technology, are readily obtained from these basic logic expressions. For
example, algebraic model for logic gate g = a ∨ (b ∧ c) can be derived as g = a + bc− abc, etc.

Algebraic rewriting relies on relating two pseudo-Boolean polynomials, called an out-
put signature and an input signature. The output signature, Sigout, is the the polyno-
mial that represents the result stored as the binary encoding of the primary outputs. For
example, an output signature of a signed 2’s complement arithmetic circuit with n bits,
Sigout = −2n−1zn−1 +

∑n−2
i=0 2izi. By construction, such a polynomial is unique. The input sig-

nature, Sigin, is the polynomial over the primary input variables that represents the arithmetic
function performed by the circuit, i.e., its functional specification. For example, for an n-bit
binary adder with inputs {a0, · · · , an−1, b0, · · · , bn−1}, it is Sigin =

∑n−1
i=0 2iai +

∑n−1
i=0 2ibi. In

our approach, the input specification need not be known; it will be derived from the circuit
implementation by algebraic rewriting.

Algebraic rewriting is the process of transforming Sigout into Sigin using algebraic models
of the internal components (logic gates) of the circuit, such as those specified by Table 1. By
definition, it is done in the reverse topological order: from the primary outputs (PO) to the
primary inputs (PI); for this reason it is also referred to as a backward rewriting [14]. Interme-
diate expression obtained during rewriting is also represented as a polynomial, referred to as as
signature, over the variables representing the internal signals of the circuit. By construction,
each variable in a given signature polynomial (starting with Sigout) represents an output of

2

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

some logic gate. The rewriting transformation simply replaces that variable with the algebraic
expression of the corresponding logic gate.

It has been shown that such a backward rewriting is unique [14]. However, its performance
strongly depends on the order in which the individual variables are rewritten. Two basic rules
are used in determining the rewriting order: (1) Rewriting follows reverse topological order; and
(2) Signals that depend common signals (fanins) are rewritten together (i.e., one immediately
after the other). The first rule is obvious because of the direction in which the signature is
propagated. As a result, the final signature will be expressed in the PI inputs only. The second
rule is dictated by the fact that rewriting together the nodes with common fanins maximizes
the chance for potential term cancellation.

To illustrate the rewriting process consider the following example of a gate-level arithmetic
circuit with inputs a, b, c0, shown in Figure 1(a). The output signature of the circuit is Sigin =
2C + S, determined by the weights of the two output signals dictated by the binary encoding.
The goal is to determine the arithmetic function implemented by this circuit (or, equivalently
to verify if it is a full adder) by rewriting Sigout into an input signature (specification), Sigin.

C S

10 12

9

6

11

8

c0

7

a b

X
O
R
2

X
O
R
2

S
1

C
1

g2

a) b)

Figure 1: Gate-level arithmetic circuit (FA): a) circuit diagram; b) AIG representation

According to the rewriting algorithm [14] the optimum rewriting order is {(S,C), (p2, g2),
(S1, C1), (p1, g1)}. The signals shown in brackets are the ones that depend on common inputs;
they are to be rewritten together, i.e., one immediately after the other. The detailed steps
of the algebraic rewriting are shown in the Appendix. During the rewriting two types of
simplifications can be observed:

• Simplification by adding or subtracting terms with the same monomials. For example in Step 1:
2g2 − g2 = g2; and

• Simplification by lowering xk with degree k > 1 to x. This is based on the fact that all variables
in the circuit are binary, such that xk = x. For example, in Step 3 of the rewriting, shown there
in bold face: (p1g1 − p1g

2
1) = p1g1 − p1g1 = 0. Similar simplifications appear in steps 2 and 4.

The resulting input signature is Sigin = a + b + c0, indicating that this is a full adder.

3 AIG Rewriting

In contrast to the algebraic rewriting applied directly to a gate level circuit, as in Figure 1(a), the
rewriting employed in our tool operates on the functional AIG representation of the circuit [15].
AIG (And-Inverter Graph) is a combinational Boolean network composed of two-input AND
gates and inverters [7]. Each internal node of the AIG represents a two-input AND function;

3

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

the graph edges are labeled to indicate a possible inversion of the signal. We use the cut-
enumeration approach of ABC to detect XOR and Majority (MAJ) functions with a common
set of variables. Those nodes are essential in identifying half-adders (HA) and full-adders (FA),
the basic components of an arithmetic circuit [15]. AIG rewriting then skips over the large
portions of the circuitry, from the inputs to the outputs of the adders, significantly speeding
up the rewriting process, as shown in Figure 1(b). The algorithm is outlined in Algorithm 1.

Algorithm 1 Algebraic Rewriting in AIG
Input: Gate-level netlist N ; Output signature Sigout

Output: Pseudo-Boolean expression extracted by rewriting

1: G(V, E) ← structural hashing of N into AIG.
2: Detect all XOR3 and MAJ3 nodes in G(V, E).
3: P ← Pair (XOR3, MAJ3) nodes with common signals.
4: Topological sort G(V,E) considering each element in P as one node.
5: i = 0; Fi = Sigout

6: while there remain elements in V do
7: Rewrite: Fi+1 ← Fi by variable substitution;
8: i = i + 1
9: end while

10: return F = Fi (to be compared with Sigin)

The inputs to the algorithm are the gate-level netlist N and the output signature Sigout and
includes four basic steps: 1) converting the gate-level implementation into AIG; 2) detecting all
pairs of (XOR3, MAJ3) functions with common AIG inputs1; 3) performing topological sorting
of AIG nodes while treating the detected XOR and MAJ functions as a single element; and
4) applying algebraic rewriting from POs to PIs following the reverse topological order. As
soon as the matching (XOR3, MAJ3) pairs are detected, a hybrid graph G is constructed, in
which each XOR3 and MAJ3 function is considered as a single node. In the absence of XOR3,
MAJ3 nodes, the two-input XOR2 and MAJ2(AND) functions are similarly detected. Algebraic
rewriting is then applied to the modified graph G in a reverse topological order. The algorithm
returns the extracted input signature Sigin.

In the example of Figure 1(b), the groups of nodes (6,7,8) and (9,11,12) are identified as
XOR2, and nodes 6 and 9 as the matching MAJ2(AND) functions. Subsequently, the functions
at node 12 (S) and node 10 (C) are identified as XOR3 and MAJ3, respectively, sharing the
same inputs, a, b, c0. At this point the entire graph G reduces to just two nodes, representing
XOR3(a, b, c) and MAJ3(a, b, c). The rewriting of Sigout = 2C+S over the two nodes is trivial,
with the nonlinear monomials cancelled as follows (refer to Table 1):

2C + S = 2(ab + ac0 + bc0 − 2abc0) + (a + b + co − 2ab− 2ac0 − 2bc0 + 4abc0) = a + b + co

As illustrated with this example, the AIG rewriting requires considerably fewer terms than
the standard algebraic rewriting.

4 Results

The algebraic rewriting environment was implemented in C and integrated with the ABC tool
[1], where it is available under command &polyn. Here we present an open source framework
of Algebraic RewriTing (ARTi) system for verifying arithmetic circuits using the most recent
version of ABC2. The results include some challenging nonlinear arithmetic circuits: large mul-
tipliers and divide-by-constant circuits. Comparisons are made w.r.t. the state-of-the art tools

1XOR2 and MAJ2(AND2) are special cases of XOR3 and MAJ3, with one of the inputs being constant zero.
2https://github.com/ycunxi/abc

4

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

in this domain, [10][11] and [12], which are all computer algebra based systems. The compar-
ison with SAT, SMT, and commercial systems are not provided here since computer algebraic
approach has already been proved to be orders of magnitude faster than those techniques [14].
Other sources also report inadequate quality of these tools for arithmetic verification [12][10].

4.1 Multipliers

The experiments were conducted on benchmarks released in [10][11]3. For fair comparison, we
recompiled their C code on our platform and evaluated it with the state-of-the-art computer
algebra system, Singular v4.1.1 [3]. The experiments were conducted on a PC with Intel(R)
Xeon CPU E5-2420 2.20 GHz x24 with 1 TB memory. The memory out (MO) limit is 100 GB
and timeout (TO) limit is 3600 seconds. Singular reports error state (ES) if the circuit contains
more than 32,767 ring variables (limit imposed by Singular). The verification results for pre-
synthesized multipliers are included in Table 2. The results in column ARTi are generated using
three sets of commands, for btor, sp-ar-rc, and abc multipliers as follows:

• read btorXX.aig; &get; &polyn -o -v; for the btor -XX multipliers;

• read sp-ar-rcXX.aig; &get; &atree; &polyn -o -v; for the sp-ar-rc-XX multipliers;

• gen -N XXX -m abcXXX.blif; &get; &polyn -o; for the abc-XXX multipliers.

The command &polyn includes various algebraic rewriting options, with -o flag indicating
the use of the older version of the rewriting algorithm [14]. Command &atree invokes extraction
of adder trees in the circuit.

Table 2: Verification time (sec) for pre-synthesized multipliers. ES = error reported by Singular.

Designs ARTi [10] [11] Designs ARTi [10] [11]
btor-16 0.01 0.5 0.01 sp-ar-rc16 0.01 1.1 0.01
btor-32 0.02 11.7 0.3 sp-ar-rc32 0.1 35.5 0.3
btor-64 0.1 725 4.0 sp-ar-rc64 0.4 1312 4.6
btor-128 0.5 ES ES sp-ar-rc128 1.6 ES ES
abc-256 1.0 ES ES abc-512 4.5 ES ES

Table 3 shows the results for for multipliers mapped onto standard cells with three different
libraries, including industrial libraries of 14 nm and 7 nm technology nodes. The results of
verifying the same set of benchmarks using the open source tools available from [10][11], are
included. The results of the first seven designs in the Table are generated using command-a
in Table 2. For the last two circuits, mapped onto industrial libraries, we executed several
iterations of dch and strash commands before ARTi to eliminate extra logic introduced for the
purpose of meeting the timing constraints.

4.2 Complex Arithmetic Circuits

Table 4 shows the results of extracting word-level specifications from gate-level complex arith-
metic circuits, constructed with multiplication and addition operations, and a three-operand
multiplier. The multiplications in these datapaths are implemented using ABC-generated mul-
tipliers. Our approach can efficiently identify the word-level operations in the gate-level dat-
apaths. In contrast, the approach of [13] could not detect the presence of multiplication or
addition in these circuits; and our approach is much faster than [14].

3http://fmv.jku.at/algeq/

5

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

Table 3: Verification time (sec) of synthesized, technology mapped multipliers using different
libraries. #GT = Number of gate types used. FI ≥5 = Number of gates with fanin ≥5.

Designs ARTi #GT FI≥5 [10] [11]
btor64-resyn3 0.1 - - 711 4.2
abc64-resyn3 0.1 - - 801 4.0
btor128-resyn3 0.3 - - ES ES
abc128-resyn3 0.1 - - ES ES
btor64-resyn3-map-simple 0.3 7 0 1073 418
abc64-resyn3-map-simple 0.1 7 0 1071 415
abc64-resyn3-map-14nm 35 15 17 TO TO
abc64-resyn3-map-7nm MO 24 9,791 TO TO
abc128-resyn3-map-simple 1.8 7 0 ES ES
abc128-resyn3-map-14nm 406 15 1,008 ES ES
abc128-resyn3-map-7nm MO 23 26,600 ES ES

Table 4: Results of extracting word-level specification from complex arithmetic circuits. TO
= TIME OUT (3600 s). Error = Unable to determine type of arithmetic operations. TO* :
finished in 23,760 s.

256-bit [13] [14] Ours
F=A×B+C Error TO* 1×mult;1×add 44.7 s
F=A×(B+C) Error TO 2×mult 45.1 s
F=A×B×C Error TO 1×mult3 68.5 s

4.3 Dividers (Divide by Constant)

This section presents the results for a special class of dividers, namely divide-by-constant cir-
cuits. Their function can be expressed as X = Q ·D + R, where the divisor D is a constant.
First, we consider an architecture based on a standard restoring divider [5], in which the divisor
D has been hardwired to a particular constant. The restoring divider has been implemented
and synthesized using ABC, where the constants associated with the bits of D are propagated
through the circuit and used to optimize the circuit.

The first step is to create the output signature Sigout, specific for the constant divisor. It
is obtained by our program written in python as follows:

python verify constant divider abc.py -f div-test-3-3-3-3.blif -divisor 011 -divexp 1+0.
In the case of the divide-by-3 (with X,Q,C,R all being 3-bit words), the output signature for
the output Z = [Q2Q1Q0R2R1R0], is:
Sigout = 3(Q0 + 2Q1 + 4Q2) + R0 + 2R1 + 4R2 = (1 + 0) ∗ (0 ∗ Q0 + 1 ∗ Q1 + 2 ∗ Q2) +
(0 ∗ R0 + 1 ∗ R1 + 2 ∗ R2) This signature is coded in a compact way using only exponents k
of coefficients 2k, resulting in the string shown below after the switch −S. The following ABC
command is then used to generate Sigin:

read final-div-test-3-3-3-3.blif; sweep; strash; dch; &get;

&polyn –v –w –S 3*o0+4*o1+5*o2-1*o0-2*o1-3*o2+0*o3+1*o4+2*o5;

The resulting input signature (specification) obtained by ABC is 0 ∗ i0 + 1 ∗ i1 + 2 ∗ i2 =
1 ∗X0 + 2 ∗X1 + 4 ∗X2, which indicates that the circuit correctly implements the division by
3. Table 5 shows the solutions for different divisors for a 16-bit dividend X.

We also present an alternative, modular divider architecture, in which the divider is parti-
tioned into a number of blocks connected in series, each having a fixed number of bits for the
dividend X and quotient Q. A carry-in C into each block comes from the remainder R of the
previous block. The number of bits of C and R is fixed and determined by the number of bits of
the divisor D. Each basic block for a given divisor D is implemented as a lookup table (LUT).
The circuits were generated using an open-source hardware generator, FloPoCo [2], and synthe-

6

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

Table 5: Results of verifying the divide-by-constant restoring divider circuit for a 16-bit
dividend X. Time-out of 20 mins, Memory-out 24GB.

Divisor
Rem.

bits
Time (s)
(No bug)

Divisor
Rem.

bits
Time (s)
(No bug)

11 4 2.42 157 8 16.5
17 5 4.13 191 8 MO
31 5 10.7 223 8 317
43 6 9.22 241 8 125
53 6 3.83 251 8 2.20
61 6 9.22 257 9 16.9
73 7 5.96 263 9 223
89 7 11.0 277 9 30.7
101 7 2.14 283 9 22.3
131 8 15.1 311 9 326

sized using ABC tool [7] onto standard cell, gate-level circuits. The experiments include both

Table 6: Verification results of divide-by-constant divider circuits for a one-bit block architecture
and a 32-bit dividend X. Time-out of 20 minutes.

Divisor
Rem.

bits
Gates

Time (s)
(No bugs)

Bugs
Time (s)

(With bugs)
17 5 1763 0.81 3 0.75
61 6 3715 3.50 8 3.56
113 7 3652 6.68 7 7.21
241 8 4891 21.7 7 30.42
251 8 6410 110.4 5 113.5
263 9 8114 29.3 8 39.1
277 9 8238 T/O - -
283 9 8951 643.8 9 638.4

correct (bug-free) and faulty circuits. The faults were emulated by randomly injecting multiple
faults in the truth table into the valid portion of the LUT. Table 6 icludes the verification
time for the divide-by-constant, one-bit (of X) block architecture. The results are shown for a
32-bit dividend X, divisors D value up to 283, and a 9-bit remainder R. The non-monotonic
behavior of the verification time as a function of the divisor size can be explained by examining
the content (on-set) of the truth table for the corresponding division and its dependence on the
value of the divisor.

4.4 Interactive Examples

The following example shows the script and the results of verifying (by deriving the specification
of) a 64-bit multiplier using ABC system with &polyn command. It can be obtained by the
following script:
./abc−c ”gen−N 64−mmult−abc−64.blif ; strash; print stats; &get; &ps; &polyn−w” > mult64.log

The results (on the right) are shown in two formats: implicitly, by listing the number of coeffi-
cients appeared in the computed polynomial; and explicitly by listing all the monomials (only
some are listed here for brevity).

abc 01> gen -N 64 -m mult64-abc.blif;st;strash;ps

Hierarchy reader flattened 8256 instances of logic boxes and left 0 black boxes.

Multi64 : i/o = 128/ 128 lat = 0 and = 32064 lev =501

abc 04> &get;&ps;

7

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

Multi64 : i/o = 128/ 128 and = 32064 lev = 501 (312.05) mem = 0.37 MB

Verbose option 1

abc 04> &polyn -w

Polynomial with 4096 monomials:

| +2^0 * i0 * i64

| +2^1 * i0 * i65

+2^1 * i1 * i64

| +2^2 * i0 * i66

...

Verbose option 2

abc 04> &polyn -v

Input signature with 4096 monomials:

+2^0 appears 1 times

+2^1 appears 2 times

+2^2 appears 3 times

+2^3 appears 4 times

...

The following log shows the usage of the tool by explicitly providing the output signature
Sigout in terms of the weights of the output bits. Sigout = 1z0 + 2z1 + 4z2 + 8z3 is coded
showing only exponents of the coefficients: 0*o0+1*o1+2*o2+3*o3, with symbol ok referring
to the kth output bit with coefficient 2k.
abc 01> gen -N 2 -m mult-abc-2.blif; strash; &get; &polyn -w -S 0*o0+1*o1+2*o2+3*o3

Hierarchy reader flattened 10 instances of logic boxes and left 0 black boxes.

HashC = 7. HashM = 25. Total = 40. Left = 4. Used = 4. Time = 0.00 sec

Input signature with 4 monomials:

+2^0 appears 1 times

+2^1 appears 2 times

+2^2 appears 1 times

Polynomial with 4 monomials:

| +2^0 * i0 * i2

| +2^1 * i0 * i3

+2^1 * i1 * i2

| +2^2 * i1 * i3

The computed input signature is Sigin = 1i0i2 +2i0i3 +2i1i2 +4i1i3, which clearly indicates
the signature (specification) of the 2-bit unsigned multiplier, (i0 + 2i1)(i2 + 2i3).

An example of gate-level backward rewriting is demonstrated with our tool petBoss[14]4.
This tool takes an equation file (one example inclulded in the source directory) and produces
the computed polynomial. The Sigout must be provided at the bottom of the equation file.
:~/abc/petBoss/petBoss-source: ./petBoss -b < ../mult4-syn.eqn

>>>>>>>>>>>>>>>a0*b0+2*a0*b1+2*a1*b0+4*a0*b2+...+32*a2*b3+32*a3*b2+64*a3*b3

>>>How’d I do?

5 Appendix

Rewriting steps for the gate-level circuit shown in Figure 1(a), using the algebraic models of
logic gates in Table 1. The terms shown in bold face are the ones that get reduced to 0 during
simplification. For brevity, the substitution is shown for each pair of variables at once. For

4https://github.com/ycunxi/abc/tree/master/petBoss

8

Rewriting Environment for Arithmetic Circuit Verification - Yu, Yasin, Su, Mishchenko and Ciesielski

example: (C,S) means rewriting using C and S variables.

Sigout = 2C + S

1. (S, C) : = 2(C1 + g2 − C1g2) + (1− (p2 + g2 − p2g2))

= 2C1 + g2 − 2C1g2 − p2 + p2g2 + 1

2.(p2, g2) : = 2C1 + S1c0 − 2S1C1c0 − (1− (S1 + c0 − S1c0)) + (1− (S1 + c0 − S1c0))S1c0 + 1

= 2C1 + S1c0 − 2S1C1c0 + S1 + c0 − S1c0 + S1c0 − S
2
1c0 − S1c

2
0 + S

2
1c

2
0

= 2C1 − 2S1C1 + S1 + c0

3.(S1, C1) : = 2(1− g1)− 2(1− g1)(p1g1)c0 + p1g1 + c0

= 2− 2g1 − 2(p1g1 − p1g
2
1) + p1g1 + c0

= 2− 2g1 + p1g1 + c0

4.(p1, g1) : = 2− 2(1− ab) + (a + b− ab)(1− ab) + c0

= 2ab + a + b− ab− a
2
b− ab

2
+ a

2
b

2
= a + b + c0

(1)

References

[1] R. Brayton and A. Mishchenko. ABC: An Academic Industrial-Strength Verification Tool. In
Proc. Intl. Conf. on Computer-Aided Verification, pages 24–40, 2010.

[2] Florent De Dinechin and Bogdan Pasca. Designing custom arithmetic data paths with flopoco.
IEEE Design & Test of Computers, 28(4):18–27, 2011.

[3] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 A Computer Algebra
System for Polynomial Computations. Technical report, 2012. http://www.singular.uni-kl.de.

[4] Farimah Farahmandi and Bijan Alizadeh. Groebner basis based formal verification of large arith-
metic circuits using gaussian elimination and cone-based polynomial extraction. Microprocess.
Microsyst., 39(2):83–96, March 2015.

[5] Israel Koren. Computer Arithmetic Algorithms. Universities Press, 2002.

[6] J. Lv, P. Kalla, and F. Enescu. Efficient Grobner Basis Reductions for Formal Verification of
Galois Field Arithmatic Circuits. TCAD, 32(9):1409–1420, September 2013.

[7] A Mishchenko et al. Abc: A system for sequential synthesis and verification. URL http://www.
eecs. berkeley. edu/˜ alanmi/abc, 2007.

[8] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch, and G.M. Greuel. Stable: A
new qf-bv smt solver for hard verification problems combining boolean reasoning with computer
algebra. In DATE, pages 155–160, 2011.

[9] T. Pruss, P. Kalla, and F. Enescu. Efficient symbolic computation for word-level abstraction from
combinational circuits for verification over finite fields. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(7):1206–1218, July 2016.

[10] Daniela Ritirc, Armin Biere, and Manuel Kauers. Column-wise verification of multipliers using
computer algebra. In FMCAD’17, 2017.

[11] Daniela Ritirc, Armin Biere, and Manuel Kauers. Improving and extending the algebraic approach
for verifying gate-level multipliers. In DATE’18, 2018.

[12] Amr Sayed-Ahmed, Daniel Große, Ulrich Kühne, Mathias Soeken, and Rolf Drechsler. Formal
verification of integer multipliers by combining grobner basis with logic reduction. In DATE’16,
pages 1–6, 2016.

[13] Mathias Soeken, Baruch Sterin, Rolf Drechsler, and Robert Brayton. Simulation graphs for reverse
engineering. In Proceedings of the 15th Conference on Formal Methods in Computer-Aided Design,
pages 152–159. FMCAD Inc, 2015.

[14] Cunxi Yu, Walter Brown, Duo Liu, André Rossi, and Maciej J. Ciesielski. Formal verification of
arithmetic circuits using function extraction. TCAD, 35(12):2131–2142, 2016.

[15] Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. Fast algebraic rewriting based on and-inverter
graphs. TCAD’17.

9

	Introduction
	Algebraic Rewriting
	AIG Rewriting
	Results
	Multipliers
	Complex Arithmetic Circuits
	Dividers (Divide by Constant)
	Interactive Examples

	Appendix

