ﬁ EasyChair Preprint

Ne 15742

Comparison Between in-Core Hardware IDS,
off-Core Hardware IDS and Software IDS

Tianxu Li, Mohamed El Bouazzati, Camille Moniére,
Philippe Tanguy and Guy Gogniat

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 20, 2025

Comparison Between In-core Hardware 1DS,
Off-core Hardware IDS and Software IDS

1[0000—0002—0677—6999 :1[0000—0001—5830—6756
[I, Mohamed El-Bouazzati'! I

0000—0002—4934—4969}7 Philippe Tanguyl [0000—0003—4686—6435],

tl [0000—0002—9528—5277]

Tianxu Li
Camille Moniere![
and Guy Gognia

Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France

Keywords: Embedded System Security, Intrusion Detection System, Internet
of Things, Wireless Security

Abstract Wireless attacks targeting the Internet of Things (IoT) pose
challenges to its security. To counter this threat, in-depth security mech-
anisms such as Intrusion Detection Systems (IDSs) are used. The im-
plementation of IDSs in edge devices is challenging, considering the in-
herent constrained nature of IoT devices. In this paper, three Intrusion
Detection System (IDS) implementation approaches, software, in-core
hardware, and off-core hardware are defined and compared, using an
ToT-context representative case study. Advantages and disadvantages of
each approach are assessed and discussed, comparing design time, ease
of maintenance, detection performance and SoC resource consumption.
Our results, relative to the SoC baseline, show that the software ap-
proach used 17.92% more energy consumption per packet (+0.19m.J/p)
than the hardware approach. Conversely, the hardware approach incurs
a higher FPGA resource overhead, requiring up to 12.06% more LUT
and 7.75% more FF.

1 Introduction

The Internet of Things (IoT) refers to a network of connected physical devices
gathering and sharing data to ease everyday tasks and increase productivity.
However, as the number of devices continuously grows, security matters become
more pressing, especially in wireless communication. Threats like jamming, re-
play attacks, and memory corruption threaten communication confidentiality,
device security and data integrity. Therefore, protecting IoT devices from these
threats is crucial to ensure the reliability of the IoT [16].

Detecting threats or attacks is a task commonly assured by an Intrusion De-
tection System (IDS). It is a security mechanism designed to monitor networks or
systems for malicious activities. It analyses data using techniques like signature-
matching and anomaly-based detection, gathering information at various levels
of the IoT device: hardware, software and network. When a potential threat is
detected, the IDS sends an alert to network administrators, or to automated
systems (Security Operations Center), enabling a rapid response to mitigate or
even prevent the attacks [18].

2 T. Li et al.

Detection " Detection ™.
Models .. Rules .~

oo Voo
Extraction Features C Alert L iResponse

Data ——> / N Pre—_ Dete(_:tlon ; Demslon '
Selection processing Engine + Engine Report

Figure 1: Functional Model of an IoT-targeting IDS

This paper aims to compare several implementation variations of an on-edge
IDS targeting resource-constrained IoT devices, which can detect various types
of wireless attacks on low-rate wireless communication protocols. We evaluate
the IDS performances in the context of the LoRa physical layer, using a system
composed of COTS devices and a RISC-V soft-core processor. The IDS can be
implemented in software or in hardware. Each variant has its strengths and lim-
itations, suitable for different network environments and security requirements.
To better understand how these implementations perform, this paper quantit-
ively compares several key performance indicators such as detection performance,
SoC resource consumption and energy-efficiency. This comparison will help in
evaluating the efficiency and practicality of the different implementations in real-
world situations, thereby providing a scientific basis for designing more efficient
embedded IDSs and thus, more reliable and secure IoT systems.

In Section 2, the context and current studies on IDS architecture and imple-
mentation are reviewed. In Section 3, the threat model, the IoT-targeting IDS
chosen as a case study are summarized, and the three implementation approaches
explored are detailed. Section 4 presents the experimental setup and the results,
and discusses the design choices based on key performance indicators. Finally,
Section 5 provides conclusions and future perspectives.

2 Background and Related Works

Securing network communications, particularly through IDSs, is addressed in the
literature [9] indeed. Figure 1 describes the flowchart and the main components
of an IDS.

This work focuses on the design choices for implementing three key func-
tions: Extraction/Selection (E/S), Preprocessing (PPC) and the Detection En-
gine (DE). Indeed, most studies focus on optimizing detection models and al-
gorithms implemented in the detection engine or selecting the best features to
enhance performance [12,7]. In addition to this, resource-constrained IoT devices
often lack the processing power for efficient IDS implementation, necessitating
hybrid strategies that offload computations to the cloud [15,13]. This approach
can degrade throughput and network performance, especially in systems that
prioritize flexibility to support various IoT protocols, as well as widening the at-
tack surface. IDS implementations can be broadly separated into two categories,
software and hardware.

Comparison Between IDS implementations 3

Software implemented IDSs process the monitored data and make decisions
in software executed by programmable circuits, leveraging the flexibility of mi-
croprocessors. They are widely adopted due to their configurability, short imple-
mentation time, and lack of need for specialized hardware [3]. However, they can
put pressure on the CPU and consume more memory resources than hardware
implementations, especially with heavy data traffic or complex attacks, which
is challenging for resource-constrained IoT nodes. Nevertheless, Cayre et al. [1]
proposed OASIS, a framework to implement an IDS for Bluetooth Low Energy
(BLE) devices. The firmware of the BLE controller is instrumented to get fea-
tures and detection modules are implemented to detect five low-level attacks. It
is also extensible to support other attacks. However, the detection modules are
based on heuristics, with each module targeting a specific attack. Therefore, it
requires more resources to detect additional attacks.

In this paper, the term “hardware implemented IDSs” is used to describe two
distinct types of design: (a) a standalone unit that integrates all the functional-
ities of an IDS, and (b) a unit that performs some tasks of an IDS. Considering
this definition, a hardware unit commonly comes in two forms described there-
after, depending on where it is implemented in a System-on-chip (SoC). One is
implemented outside the CPU core as an independent peripheral (therefore re-
ferred to as “Off-core”), connected to the SoC via Direct Memory Access (DMA)
or through the on-chip interconnect bus. It can operate either autonomously or
as an accelerator assisting the processor. For instance, hardware accelerators for
neural networks assist processors in calculations [11], while IDSs such as [14]
enforce security policies independently. Another approach consists in integrat-
ing IDSs directly into the processor [5] (therefore referred to as “In-core”). Since
they process and analyse data directly at the hardware level, hardware IDSs offer
faster response time, lower latency, and minimal utilization of the IoT system
computing resources. Thus, existing hardware implementations are designed to
allow high-speed network connections without compromising energy efficiency.
However, hardware IDSs have higher implementation costs, longer development
time, and are harder to modify or upgrade compared to software solutions. Za-
reen et al. [20] proposed an in-core solution for botnet detection that uses static
and unique feature selection and extraction. They evaluated it for both classific-
ation accuracy and hardware implementation. El-Bouazzati et al. [2] proposed
an IDS for LoRa devices that can detect ongoing remote attacks in real time,
and that can be embedded in resource-constrained devices. It uses Hardware
Performance Counters (HPCs) to collect data at the processor level and can
detect memory corruption attacks. The feature extraction and selection mod-
ule supports only one data source, i.e., the HPCs, but they can count different
events. The implementation has been deployed on an FPGA and evaluated for
detection performances and resource usage on a RISC-V-based SoC. However,
the implementation supports only one attack type and lacks extensive evaluation
in execution time and energy consumption.

There is currently a lack of research on the comparison of the different IDS im-
plementation approaches, especially for detecting wireless attacks in constrained

4 T. Li et al.

devices. To the best of our knowledge, no studies specifically discuss hardware,
software and hybrid implementations of IDS in this context. Therefore, a quant-
itative analysis is highly needed to highlight challenges like energy consumption,
computation, and memory usage. Additionally, the ability to update the IDS to
counter new attacks is an important metric. Regarding IDS selection, we revis-
ited a previously mentioned work [2]. This IDS employs a hybrid signature- and
anomaly-based algorithm using a decision tree, a method also utilized in other
IDSs. Therefore, this research holds significant representativeness, while being
open-source and not complex to re-use. For a fair comparison, we reimplemen-
ted and extended the in-core IDS from [2] and applied the same algorithm using
software and off-core methods. Our main evaluation criteria include resource
consumption, response time, flexibility, energy consumption, and adaptability,
with a particular focus on comparing in-core and off-core approaches.

3 Case Study Description

In this section, we introduce our case study by defining the threat model. Then,
we succinctly present the selected IDS, its analysing and detection methods,
and how it responds to the threat model. Finally, we detail the three considered
implementation approaches.

3.1 Threat Model

In this study, the attacker is assumed capable of conducting wireless attacks on
embedded devices participating in a LoRa Wide Area Network (LoRaWAN®).
The attacker can use dedicated COTS devices to launch attacks remotely, but
also have access to versatile Software-defined Radio (SAR) devices. We assume
the attacker cannot have physical access to the target device. However, the at-
tacker can manipulate any layer of a communication stack, from the physical
layer to the application layer.

Hessel et al.[6] provided an extensive review of LoRaWAN® vulnerabilities
and the attacks exploiting them. They found that jamming attacks are com-
mon, either disrupting wireless signals directly or enabling more complex attacks
like device impersonation. Such attacks can lead to man-in-the-middle scenarios,
data leakage, or even complete network takeover. In their paper, the authors cat-
egorize jamming attacks based on the attacker’s network knowledge and ability
to gather nodes information. “Triggered jamming”, where the jammer activates
only when a preamble is detected, is particularly complex and stealthy. Due to
the long transmission time of LoRaWAN® packets, attackers have ample oppor-
tunity to detect specific preambles and emit jamming signals during a single
transmission. This type of attack is the focus of our study.

Given the increasing number of vulnerabilities in IoT protocol implement-
ations [17], we also consider memory corruption attacks [4] for completeness.
These attacks target the implementation of network protocol stacks. They con-
sist in exploiting a memory weakness or vulnerability (such as a buffer overflow
on a memory location) to erase a function’s return address. This can destabil-
ize programs, leading to denial of service or even to a Remote Code Execution

Comparison Between IDS implementations 5

(RCE). In our case, we consider two types of memory corruption attacks, those
involving stack overflow and those involving heap overflow.
The IDS takling those threats is described thereafter.

3.2 IDS Architecture and Detection methods

The IDS considered in this work integrates the one developed in [2], which can
be assimilated to a Machine-Learning (ML)-based hybrid signature-based and
anomaly-based IDS, leveraging HPCs as data source. It has been proven capable
of detecting memory corruption attacks, and distinguishing between stack and
heap overflow. In the generic model in Figure 1, the data would be the events
generated by the core. Event selection is done offline, and extraction is performed
by storing and retrieving data from HPCs. The decision engine is a decision tree.
This approach may be less efficient with a context-switching software platform,
like a real-time OS, but is sufficient for bare-metal software running on limited-
resource devices.

A HPC is intended to enable developers to monitor processor events, offering
insights into the system’s performances during runtime. However, several studies
have taken advantage of HPCs capabilities to develop robust security mechan-
isms, particularly for intrusion detection. The processor used in this study in-
cludes a clock cycle counter, a “instruction retired” counter, and 29 configurable
counters capable of monitoring various events. Previous studies tested ten met-
rics under memory corruption attacks using a machine learning classifier and
identified two key metrics: BRANCH-TAKEN, which counts branch instructions,
and LD-STALL, which counts delayed load instructions. A decision tree model
has been built for these two metrics, for detection and classification purposes. In
our re-implementation, we built a new dataset and retrained the model to get
decision tree parameters that fit our research environment.

The IDS can be reduced to two main components: the metric collection mod-
ule and the decision-making module. The metric collection module configures the
HPCs to monitor the two selected events, activating them during the processing
of LoRaWAN® data packets and stopping them afterward. The decision-making
module receives data from the HPCs and uses a decision tree to detect anom-
alies. In our upcoming comparative studies, these two modules will be deployed in
various ways depending on the IDS implementation, described in Subsection 3.3.

To improve the representativeness of the IDS, a jamming detector based
on statistical analysis of Received Signal Strength Indicator (RSSI) of received
LoRaWAN® packets has been added. This extension allows detecting jamming
attacks [19]. In the generic model in Figure 1, the data are the LoRa packets.
Extraction consists in retrieving the RSSI from the COTS device, and the value
is preprocessed through an Exponentially-Weighted Moving Average (EWMA)
filter. The decision engine checks that the resulting value is between upper and
lower thresholds. The EWMA filter allows reducing spurious values impact, fol-
lowing the formula: y,, = ixn — %yn,l, with y, the EWMA value for the nth re-
ceived packet, and x,, the RSSI value of the nth received packet. The thresholds
are obtained by statistical analysis of the values for legitimate packets over a
trustworthy channel. Similar to the IDS designed for memory corruption at-

6 T. Li et al.

FPGA

RISC-V Soft-core CPU

Software

: Tricm specific v | ooy specific

' S/E

,,,,,,,,,,,, [sE] sE |
LoRa Pm—mm - T ! :
Protocol || Lsw specific s PPC o PPC |
PPC o DE AN DE !
DE B I e

| SoC BUS

Figure 2: Selection / extraction (S/E), preprocessing (PPC), and decision
engine (DE) function implementation sites (software, CPU logic and peripheral
logic) depending on the implementation variant.

tacks, this extended IDS for jamming attacks also consists of three key modules:
RSSI collection, EWMA preprocessing, and a threshold-based decision module.
As previously, these modules will be implemented differently based on IDS im-
plementation variants, described in Subsection 3.3

The IDS described in this section, thereafter simply referred to as “the IDS”,
should have low power and low compute resource requirements, while still ad-
dressing the challenges of the considered threat model. The next section is ded-
icated to the description of the three implementation variants of the IDS.

3.3 Considered Implementation Approaches

In this paper, we propose to study three kinds of implementations, (1) a software
implementation Zgw, (2) an in-core hardware one Z;cp, and (3) an off-core
hardware implementation Zpc g . This section describes how the focused blocks
in Figure 1 are dispatched between the software, the CPU circuit, and eventual
peripherals as shown in Figure 2. Data are not represented to lighten the figure,
since all approaches use the same, i.e., RSSI values reported by LoRa COTS
devices retrieved in software, and HPC values retrieved directly from the CPU.

In the software approach Zgyy, the extraction (S/E), the preprocessing (PPC),
and the decision engine (DE) are run within a program executed by the CPU.
In our case, this is achieved using a bare-metal program written in C language.
As implied in Figure 2, it is the simplest approach from a design point-of-view,
since all components live in the same domain. However, latency and throughput
should be strongly impacted since any access to the hardware is constrained by
APT calls. Moreover, this approach is subject to common software weaknesses,

Comparison Between IDS implementations 7

whether they come from coding malpractice, or result from CPU vulnerabilit-
ies [10].

The Z;cy variant can be considered the conceptual opposite. All the IDS
functions are implemented as hardware components of the CPU itself, only S/E
is partially present in software, due to the requirement of the data source. This
requires intimate knowledge of the CPU ISA, and to have access to its hardware
description. However, this approach should have a low resource-access overhead,
since all components can be tightly coupled, as well as the highest performance
and energy efficiency.

In the same fashion, the Zpcpy variant is also completely implemented in
hardware, except for the software required by the data source. It takes the form of
a peripheral connected to the CPU using available SoC interconnections. While
still requiring hardware development, it is more independent of the core. It still
requires some components to be available in the core, like HPCs in our case, but
it is a common requirement of mainstream ISAs like RISC-V, ARM, or x86_ 64.
It should be less efficient than Z;o g due to extra latency introduced by the bus,
but still more than Zgy, as it is not overly reliant on API calls.

To quantify their respective strength, a test platform and protocol has been
defined and is described in the next section.

4 Results and Discussion

This section outlines the experimental setup, then it presents the results that
enabled us to compare each approach. Before concluding, we provide insights
into the advantages and disadvantages of each method.

4.1 Test bench

To fairly compare the three IDS implementations, we ensured identical experi-
mental conditions for each implementation, using the protocol shown in Figure 3.
Test data are replayed by the SAR through shielded cables to an IDS-enabled
device, with adjusted gain to ensure consistent Signal-to-Noise Ratio (SNR). The
IDS-enabled device is composed of a LoRa shield COTS device connected to an
Artix 7 Xilinx FPGA (xc7al00t) using SPI. In the FPGA, a RISC-V RV32IMC
processor (CV32E41P) is deployed. RISC-V allows modifying freely the core de-
scription. The hardware is described in System Verilog, and the complete SoC
is generated using LiteX [8], an open-source Python library that streamlines
hardware integration.

Exclusively used for evaluation, the test data consist of I/Q samples captured
by mimicking full-scale scenarios, insuring that the IDS’s behaviour closely mir-
rors actual deployment conditions. For each attack type considered, we recorded
400 packets using a SAR device and a LoRa Shield at a distance of 33 meters with
direct line-of-sight. This included 200 genuine packets and 200 packets attacked
by an independent LoRa COTS device.

This test bed allows us to verify the detection performances for each IDS im-
plementation. Since we used the same IDS model across all three architectures,
performance indicators like precision, accuracy, and F1 score are consistent. The
packet loss rate is approximately 2% for legitimate packets and memory corrup-

8 T. Li et al.

tion attack packets, and about 50% for jamming attack packets, thus resulting
in 26% in average. Only successfully decoded packets were accounted, since the
IDS cannot detect packets that are not received, as stated in Section 3.2. Never-
theless, for jamming attacks, the performance metrics of the three IDS architec-
tures are equivalent. For the memory corruption attack, the result also showed
an identical detection performance, with all attacks successfully detected and no
false positives. This outcome aligns with our expectations: IDSs using the same
model yield the same (or nearly identical) results across different architectures.

4.2 Results

This section compares the resource consumption of different IDS architectures to
provide quantitative reference results for selecting the appropriate deployment
strategy.

First, we focus on the hardware resource consumption required by the IDS,
reported in Table 1, and obtained after place-and-route and bitstream generation
using the synthesis tool (namely, Xilinx Vivado 2022). For the software variant
Zsw, the only additional hardware resources consumed compared to the basic
SoC correspond to the overhead induced by adding HPCs to the RISC-V core,
a common requirement of all IDS implementation approaches. Unsurprisingly,
hardware IDS variants consume significantly more hardware resources than the
software one. The Zpcy consumes slightly more hardware resources than the
Trcn because it requires extra logic links on the interconnect bus to transmit
monitored data. However, this increase is minimal - only 0.41% more FF and
2.00% more LUT compared to the Z;cg. This is because even though the Z;cqg
is integrated within the CPU core, it still requires additional connections to
transmit monitored indicators and receive results, consuming resources similar
to those used by a lightweight interconnect bus. The difference in hardware
resources is insignificant for the entire SoC. However, modifying the core to
add new IDS modules and new connections supposes access to the hardware
description, rarely provided with closed-source ISA like ARM.

We also consider the maximum operating frequency of the IDS. For Zgw,
its maximum frequency theoretically matches that of the CPU (CPU Maximum
Frequency, CMF). From the perspective of the overall system’s maximum oper-
ating frequency, there isn’t much difference. This is because the hardware IDS we
selected and built is lightweight and high-speed, with the Z;cy operating max-
imum at 218.05 MHz and the Zpc g maximum at 220.60 MHz. The SoC’s timing
constraints primarily stem from other components, like the core and peripherals.

The usage of software resources will also vary depending on the IDS ar-
chitecture. Even for hardware IDS, the in-core and off-core architectures will
have different resource consumption due to the varying software support needed

USRP-SDR LoRa Shield Digilent Arty-A7 Host

~ LoRa VN loT Node W
Datasets | > SDR > PHY <1 withIDS A A

Figure 3: Dataset replay setup to test the IDS

A4

Comparison Between IDS implementations 9

Table 1: Resource consumption and maximum achievable CPU frequency (CMF)
without IDS (Zpase) with the software IDS (Zgw), the in-core IDS (Z;cn), or
the off-core IDS (Zocm) on an Artix 7 FPGA (xc7al00t).

Soft-core CPU’s FPGA resources SoC (Freq: 50 MHz)
Implem. LUTs FFs CMF LUTSs FFs

Value Cost (%) Value Cost (%) MHz Value Cost (%) Value Cost (%)
Trase 4676 N/A 2136 N/A 65.69 4800 N/A 7887 N/A
Tsw 4777 2.16 2217 3.79 65.60 4883 1.72 8044 1.99
ZicuH 5345 14.30 2625 22.89 65.07 5283 10.06 8466 7.34
TocH 4777 2.16 2217 3.79 65.60 5379 12.06 8498 7.75

for collecting metrics, transmitting metrics, and obtaining results. Since we used
bare-metal programming without a Real-Time Operating System (RTOS) in the
resource-constrained IoT nodes, we measured software resource consumption by
the size of the compiled binary files. As shown in Table 2, the code size increases
significantly with the addition of the Zgw, resulting in a 7.64% increase for the
resource-constrained IoT node. However, the specific increase of 1566 bytes is
acceptable for our lightweight IDS, but may be more impactful with complex
IDS implementations. Z;cg has the smallest increase in code size, only 0.58%,
while Zoco g requires an additional link to interconnect bus, slightly increasing
the code size by 342 bytes. However, it still offers advantages in memory space
compared to Zgyy .

Next, we analysed the required clock cycles, including the IDS detection time
(the number of cycles from receiving metrics to deciding) and the complete time
(the total cycles from packet reception to processing completion). The number of
clock cycles for all complete times and Zgy processing times were obtained using
the core’s built-in cycle counter. This counter starts when a packet is received or
detection begins and stops at the end of processing. To ensure stability, we began
measurements after processing 10 packets, then recorded the complete times for
the next 30 packets and calculated the average. For the processing times of the
two hardware IDS architectures, we used Vivado simulation software, building
a test platform in System Verilog to obtain exact processing cycles through
simulation and waveform observation.

In terms of the clock cycles required for data processing, both hardware IDS
architectures are much faster than the software IDS. Regarding the complete
cycles, the total processing time does not significantly increase for hardware IDS
because they can handle metrics for jamming attacks and memory corruption
attacks in parallel. On the other hand, the software IDS needs to execute se-
quentially, and with the added overhead of CPU control, the number of cycles
of complete time increases significantly. Zycgy has an advantage over Zpcy in
terms of metric transmission time, but this does not significantly impact the
total time.

In practice, IoT nodes will not reach saturation due to the duty cycle regu-
lations. Even the slower software IDS can complete processing before the next

10 T. Li et al.

Table 2: IDS implementation effect on firmware size and CPU clock cycles

Cost Processing Cycles
IDS Implem. Size (bytes) Direct Relative Jamming Mem. Corr. Complete
(bytes) (%) Detection Detection
Toase 20,500 0 0 0 0 112,028
Isw 22,066 1,566 7.64 1,034 227 133,215
ZricH 20,618 118 0.58 3 1 112,457
TocH 20,842 342 1.67 4 1 113,099

packet arrives. However, it is important to note that, for some time-sensitive
applications, prolonged processing times may lead to response delays, causing
the response packets to either be missed or rejected.

4.3 Discussions

Considering the previous results, several conclusions can be drawn. Both Z;c gy
and Zpcp variants require, on average, around +7.54% (+4595) of FFs and
+11.06% (+531) of LUTs compared to the SoC baseline. Activating the HPCs
adds an extra overhead of +1.99% (+157) of FFs and +1.72% (+83) of LUT5,
consistent across all IDS versions. Despite this, hardware IDS implementation
eliminates the need for additional memory usage in an IoT device. In contrast,
the software IDS requires an additional +7.63% (1566 bytes) of memory com-
pared to the original firmware. It’s also important to note that hardware solutions
generally have longer design times than software ones.

The CPU Maximum Frequency (CMF) remains stable at around 65.60 MHz
across all versions, unaffected by the implementation approach. The in-core
and off-core can reach higher maximum frequencies (up to 218.05 MHz and
220.60 MHz) when operating independently. While the SoC reached 50.00 MHz
due to other timing constraints, the use of another clock domain would allow
benefiting from the in-core and off-core IDS maximum frequency. However, the
software IDS operates at the standard SoC frequency, which means it will be
slower, especially when handling more complex IDS tasks.

The processing time and, therefore, the response time, varies between ap-
proaches. The software IDS requires more time (+1261 clock cycles in total) to
detect memory corruption attacks and jamming attacks, compared to the others,
which require no more than 5 clock cycles to detect these attacks. In Table 2, the
last column includes the number of clock cycles required to completely process
a packet, which also accounts for the control required by each approach. We ob-
serve that this time is significantly higher in the software IDS, which is +18.91%
(421,187 clock cycles) relative to the baseline processing time, corresponding
to 423.74 us of response time. The response time reaches 21.42 us for the soft-
ware version, offering more opportunities for a successful attack compared to
hardware solutions.

Finally, energy consumption estimates using the Xilinx Vivado power es-
timation tool show an average power consumption of 470 mW for the SoC in

Comparison Between IDS implementations 11

all approaches. As a comparison point, we calculated the coarse-grained energy
consumption per packet (mJ/p) by multiplying the processing cycles of each
approach by the package power consumption and dividing by the SoC clock fre-
quency (50 MHz). The baseline energy consumption per packet is 1.06 mJ/p for
both hardware implementations. However, it reaches 1.25 mJ/p for the software
IDS due to additional CPU usage and processing cycles. Since the hardware
resources consumed by our hardware-based IDS are negligible compared to the
overall complexity of the SoC, which includes the processor and other peripher-
als, the primary factor influencing energy consumption is the number of clock
cycles utilized. Thus, the results highlight the higher energy efficiency of hard-
ware approaches compared to the software one, which can directly impact the
overall battery lifetime of an IoT device.

5 Conclusion and Perspectives

Through a detailed comparison of different implementation approaches for an
IoT IDS, in terms of hardware and software resource consumption, processing
time, detection performance, and estimation of energy efficiency, we have iden-
tified distinct advantages and disadvantages for each approach. Hardware ap-
proach (both in-core and off-core) indeed demonstrates significantly faster pro-
cessing speeds, thus reducing energy consumption and response time. Despite
their higher resource consumption, requiring more LUTs and FFs, for lightweight
IDSs, the benefits outweigh the costs. The in-core IDS has the lowest overall re-
source requirements, while the off-core IDS requires slightly more resources but
is way more portable, as it is not entangled with the CPU microarchitecture.
Software IDS, however, excels in flexibility and portability, allowing easy updates
and configurations to counter new threats.

Among hardware options, the off-core approach thus stands out compared to
in-core IDS due to its unique advantages. This dual capability to maintain effi-
cient performance while offering flexibility and scalability makes it the suitable
choice for the integration and expansion of current systems. Future work will
focus on the study of more complex IDS for advanced cores such as CVA6 with
embedded operating systems such as Zephyr RTOS. Portable IP-based IDS lib-
raries with partial reconfiguration support are also targeted, to help developers
improve security measures efficiently.

References

1. Cayre, R., Nicomette, V., Auriol, G., Kaaniche, M., Francillon, A.: OASIS: An
Intrusion Detection System Embedded in Bluetooth Low Energy Controllers. In:
Proceedings of the 19th ACM Asia Conference on Computer and Communications
Security (ASIA CCS). ACM. https://doi.org/10.1145/3634737.3645004

2. El Bouazzati, M., Tessier, R., Tanguy, P., Gogniat, G.: A Lightweight
Intrusion Detection System against IoT Memory Corruption Attacks.
In: Proceedings of the IEEE International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS). IEEE. ht-
tps://doi.org/10.1109/DDECS57882.2023.10139718

https://doi.org/10.1145/3634737.3645004
https://doi.org/10.1109/DDECS57882.2023.10139718
https://doi.org/10.1109/DDECS57882.2023.10139718

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Li et al.

Eskandari, M., Janjua, Z.H., Vecchio, M., Antonelli, F.: Passban IDS: An In-
telligent Anomaly-Based Intrusion Detection System for IoT Edge Devices . ht-
tps://doi.org/10.1109/JI0T.2020.2970501

Github, Inc.: NVD - CVE-2022-39274, https://nvd.nist.gov/vuln/detail/
CVE-2022-39274

Harris, A., Verma, T., Wei, S., Biernacki, L., Kisil, A., Aga, M.T., Bertacco, V.,
Kasikci, B., Tiwari, M., Austin, T.: Morpheus II: A RISC-V Security Extension
for Protecting Vulnerable Software and Hardware. In: Proceedings of the IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). ht-
tps://doi.org/10.1109/HOST49136.2021.9702275

Hessel, F., Almon, L., Hollick, M.: LoRaWAN Security: An Evolvable
Survey on Vulnerabilities, Attacks and their Systematic Mitigation . ht-
tps://doi.org/10.1145/3561973

Jan, S.U., Ahmed, S., Shakhov, V., Koo, I.. Toward a Lightweight Intru-
sion Detection System for the Internet of Things . https://doi.org/10.1109/AC-
CESS.2019.2907965

Kermarrec, F., Bourdeauducq, S., Lann, J.C.L., Badier, H.: LiteX: An
open-source SoC builder and library based on Migen Python DSL. ht-
tps://doi.org/10.48550/arXiv.2005.02506

Khraisat, A., Alazab, A.: A critical review of intrusion detection systems in the
internet of things: Techniques, deployment strategy, validation strategy, attacks,
public datasets and challenges . https://doi.org/10.1186/s42400-021-00077-7
Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks:
Exploiting speculative execution . https://doi.org/10.1145/3399742

Ngo, D.M., Temko, A., Murphy, C.C., Popovici, E.: FPGA Hardware Acceleration
Framework for Anomaly-based Intrusion Detection System in IoT. In: Proceedings
of the 31st International Conference on Field-Programmable Logic and Applica-
tions (FPL). https://doi.org/10.1109/FPL53798.2021.00020

Oh, D., Kim, D., Ro, W.W.: A Malicious Pattern Detection Engine for Embedded
Security Systems in the Internet of Things . https://doi.org/10.3390/s141224188
Pongle, P., Chavan, G.: Real Time Intrusion and Wormhole Attack Detection in
Internet of Things . https://doi.org/10.5120/21565-4589

Pontarelli, S., Bianchi, G., Teofili, S.: Traffic-Aware Design of a High-Speed FPGA
Network Intrusion Detection System . https://doi.org/10.1109/TC.2012.105
Raza, S., Wallgren, L., Voigt, T.: SVELTE: Real-time intrusion detection in the
Internet of Things . https://doi.org/10.1016/j.adhoc.2013.04.014

Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Zi6érjen, M., Stiller, B.: Landscape of
IoT security . https://doi.org/10.1016/j.cosrev.2022.100467

Siwakoti, Y.R., Bhurtel, M., Rawat, D.B., Oest, A., Johnson, R.C.: Advances in
IoT Security: Vulnerabilities, Enabled Criminal Services, Attacks, and Counter-
measures . https://doi.org/10.1109/JI0T.2023.3252594

Soniya, S.S., Vigila, S.M.C.: Intrusion detection system: Classification and tech-
niques. In: Proceedings of the International Conference on Circuit, Power and Com-
puting Technologies (ICCPCT). https://doi.org/10.1109/ICCPCT.2016.7530231
Zahra, F.T., Bostanci, Y.S., Soyturk, M.: Real-Time Jamming Detection in Wire-
less IoT Networks . https://doi.org/10.1109/ACCESS.2023.3293404

Zareen, F., Fernandes Amador, M.A., Karam, R.: Hardware Immune System for
Embedded IoT . https://doi.org/10.1109/TCSI1.2022.3187312

https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/JIOT.2020.2970501
https://nvd.nist.gov/vuln/detail/CVE-2022-39274
https://nvd.nist.gov/vuln/detail/CVE-2022-39274
https://doi.org/10.1109/HOST49136.2021.9702275
https://doi.org/10.1109/HOST49136.2021.9702275
https://doi.org/10.1145/3561973
https://doi.org/10.1145/3561973
https://doi.org/10.1109/ACCESS.2019.2907965
https://doi.org/10.1109/ACCESS.2019.2907965
https://doi.org/10.48550/arXiv.2005.02506
https://doi.org/10.48550/arXiv.2005.02506
https://doi.org/10.1186/s42400-021-00077-7
https://doi.org/10.1145/3399742
https://doi.org/10.1109/FPL53798.2021.00020
https://doi.org/10.3390/s141224188
https://doi.org/10.5120/21565-4589
https://doi.org/10.1109/TC.2012.105
https://doi.org/10.1016/j.adhoc.2013.04.014
https://doi.org/10.1016/j.cosrev.2022.100467
https://doi.org/10.1109/JIOT.2023.3252594
https://doi.org/10.1109/ICCPCT.2016.7530231
https://doi.org/10.1109/ACCESS.2023.3293404
https://doi.org/10.1109/TCSII.2022.3187312

	Comparison Between In-core Hardware IDS, Off-core Hardware IDS and Software IDS

