
EasyChair Preprint
№ 11690

General Intelligent Network (GIN) and Generalized
Machine Learning Operating System (GML) for
Brain-Like Intelligence

Budee U Zaman

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 4, 2024



General Intelligent Network (GIN) and

Generalized Machine Learning Operating System

(GML) for Brain-Like Intelligence

Budee U Zaman

December 2023

Abstract

This paper introduces a preliminary concept aimed at achieving Ar-
tificial General Intelligence (AGI) by leveraging a novel approach rooted
in two key aspects. Firstly, we present the General Intelligent Network
(GIN) paradigm, which integrates information entropy principles with
a generative network, reminiscent of Generative Adversarial Networks
(GANs). Within the GIN network, original multimodal information is
encoded as low information entropy hidden state representations (HPPs).
These HPPs serve as efficient carriers of contextual information, enabling
reverse parsing by contextually relevant generative networks to recon-
struct observable information.

Secondly, we propose a Generalized Machine Learning Operating Sys-
tem (GML System) to facilitate the seamless integration of the GIN
paradigm into the AGI framework. The GML system comprises three
fundamental components: an Observable Processor (AOP) responsible
for real-time processing of observable information, an HPP Storage Sys-
tem for the efficient retention of low entropy hidden state representations,
and a Multimodal Implicit Sensing/Execution Network designed to handle
diverse sensory inputs and execute corresponding actions.

By combining the GIN paradigm and GML system, our approach aims
to create a holistic AGI system capable of encoding, processing, and re-
constructing information in a manner akin to human-like intelligence. The
synergy of information entropy principles and generative networks, along
with the orchestrated functioning of the GML system, presents a promis-
ing avenue towards achieving advanced cognitive capabilities in artificial
systems. This preliminary concept lays the groundwork for further ex-
ploration and refinement in the pursuit of true brain-like intelligence in
machines.

1 Introduction

In the ever-evolving landscape of artificial intelligence, the pursuit of General
Artificial Intelligence (AGI) stands as a formidable challenge. One of the pivotal
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benchmarks of human intelligence lies in the capacity to learn from limited data
and engage in intricate reasoning, a capability that existing machine learning
models often struggle to emulate. The prevailing paradigm in machine learning
tends to be task-specific, rendering models ineffective when confronted with
challenges beyond their pre-defined scopes.

In response to this profound dilemma, drawn from years of hands-on ex-
perience and insights in AI applications, a groundbreaking approach emerges.
This paradigmatic shift revolves around two interconnected pillars: the General
Intelligent Network (GIN) and the Generalized Machine Learning Operating
System (GML System). These concepts collectively strive to overcome the lim-
itations associated with traditional machine learning, particularly in terms of
adaptability to diverse tasks and the ability to reason from sparse datasets.

The GIN paradigm pioneers a fusion of information entropy principles and
generative network models, reminiscent of the innovative Generative Adver-
sarial Networks (GANs). Within the GIN framework, original multimodal in-
formation undergoes transformation into low information entropy hidden state
representations (HPPs). This transformation allows for the encoding of contex-
tual information efficiently. Remarkably, these low entropy HPPs become the
foundation for reverse parsing, executed by contextually relevant generative net-
works, to reconstruct observable high entropy original information. In essence,
GIN aims to tackle the challenges associated with small data learning, ushering
in advancements in spatial, temporal, and logical/causal reasoning within AI
systems.

Complementing the GIN paradigm, the GML System introduces a compre-
hensive infrastructure designed to seamlessly integrate the capabilities of GIN
into the broader AGI framework. This system consists of three integral com-
ponents: the Observable Processor (AOP), responsible for real-time processing
of observable information; the HPP Storage System, ensuring efficient retention
of low entropy hidden state representations; and the Multimodal Implicit Sens-
ing/Execution Network, adept at handling diverse sensory inputs and executing
corresponding actions.

Together, the GIN paradigm and GML System aspire to forge a holistic AGI
system, mirroring the intricate processes of human intelligence. The strategic
amalgamation of information entropy principles and generative networks, cou-
pled with the orchestrated functionality of the GML System, charts a promising
trajectory towards the realization of advanced cognitive capabilities in artificial
systems. This preliminary concept serves as a foundation for ongoing explo-
ration and refinement, propelling us closer to the elusive goal of instilling true
brain-like intelligence in machines.[5][1][2][3][4]
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2 Hypothesis 1: Unraveling the Potential of a
Hierarchical Structured Generative Network
Paradigm for Human-Level Cognitive Mastery

1. General Intelligent Network (GIN)
Upon receiving external information X, both living organisms and computers

undergo a multi-layer calculation process. This involves multiple encoders with
a lamellar structure, leading to the generation of a highly generalized abstract
implicit expression result. Additionally, a generative network transforms these
implicit expressions into visualized explicit results, forming what we term a
General Intelligent Network (GIN). The fundamental processing information
results, denoted as Hidden Point Patch (HPP), serve as the building blocks of
knowledge within the GIN.

2. HPP as Cognitive Fragments
When recalling individuals or objects, our mental images often lack details,

colors, or focus on specific fragments. This cognitive simplification, observed
even in deep learning models, is attributed to millions of years of evolutionary
adaptation. In the GIN framework, HPP itself constitutes the acquired ”Knowl-
edge” from the external world. During active thinking, HPPs can reverse-
generate explicit images. Analyzing these images unveils correlations between
different HPPs, facilitating the creation of hyper-connected HPPs. This new
HPP, formed through these connections, is then stored and utilized as novel
”Knowledge” in the GIN.

3. Neural Knowledge Compression (NKC)
Within GIN, Neural Knowledge Compression (NKC) is a continuous process

that operates as long as computational resources permit. Series of HPPs undergo
continuous encoding as implicitly expressed information, resulting in a decrease
in information entropy. This NKC process not only frees up storage space but
also yields more generalized HPPs, enabling deeper reasoning. The autonomous
nature of NKC distinguishes GIN from other networks.

4. Network Evolution in 3D Space
The GIN’s network topology is a vast, complex, hyper-connected structure

in three-dimensional space. Prior structures play a crucial role in the network’s
evolutionary process. Most neurons in GIN function genetically, and when a new
structure is needed, a new neuron branches out while attempting to maintain
the stability of existing neurons. This ongoing evolutionary process contributes
to the adaptability and dynamic nature of the GIN.

Whether it is a living organism or a computer, after receiving a series of
external information X, it completes a multi-layer calculation with decreas-
ing information entropy through multiple encoders with a lamellar structure,
and finally outputs a highly generalized abstract implicit expression result; at
the same time, these implicit expression results can also be native to a se-
ries of visualized explicit results H through a generative network (Figure 1).
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We call this whole network structure a General Intelligent Network (GIN),
and the basic processing information results(the results of the hidden state ex-
pressions) are called Hiden Point Patch (HPP).

3 Hypothesis 2: Positioning Deep Learning as
a Special Instance within the GIN Network
Framework Proposed in Hypothesis 1

In the ever-evolving landscape of machine learning, Graph Isomorphism Net-
works (GIN) stand out for their intricate topology, characterized by a web of
interconnected computational units. This complexity contrasts sharply with the
streamlined structure of current deep learning models, where layers are singular
and non-sub dividable, akin to a 2D projection of the GIN topology.

GIN: A Complex Topology Unveiled The GIN network structure is
a marvel of complexity, featuring a sophisticated interplay of multiple compu-
tational units. These units, intricately connected, form a topology that defies
simplicity, offering a nuanced representation of relationships within data. GIN’s
intricacies challenge the reductionist approach adopted by contemporary deep
learning models.

Contemporary Deep Learning Models ,Simplified Structures In con-
trast, modern deep learning models present a simplified architecture, with each
layer resembling a basic structural unit. This reductionist design, while effi-
cient, entails a loss of the rich, multifaceted relationships embedded in the GIN
topology. The layers are not subdividable, creating a 2D plane projection of the
original intricate structure.

Random Dynamics vs Dedicated Design A notable distinction arises
in the association relationships between intermediate layers of computational
units. In GIN, these associations are initially random and dynamic, evolving
organically within the vast expanse of large datasets. This dynamic nature con-
trasts sharply with the dedicated design inherent in contemporary deep learning
models, underscoring the domain specificity of the latter.

Domain Specificity and Dataset Exploration The dynamism within
GIN’s association relationships emerges as a consequence of extensive explo-
ration within large datasets. The random and dynamic nature of these associa-
tions speaks to the adaptability and versatility of GIN across diverse domains.
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On the other hand, contemporary deep learning models, with their pre-defined
associations, exhibit a higher degree of domain specificity.

Bridging the Gap As we navigate the realm of machine learning, the di-
chotomy between the complexity of GIN and the simplicity of current deep
learning models becomes apparent. The challenge lies in striking a balance be-
tween intricacy and efficiency, as researchers seek to unravel the optimal design
that harmonizes the dynamic exploration of associations with the domain speci-
ficity required for effective learning. The journey towards a unified model that
encapsulates the best of both worlds continues, fueled by a quest for a more
holistic understanding of the intricate relationships within data.

4 Hypothesis 3 within the Framework of Hy-
pothesis 1 : Exploring the Relationship Be-
tween Human Neural Networks and Graph
Isomorphism Networks

In the ever-evolving field of artificial intelligence, researchers continually seek
inspiration from the intricacies of the human and animal brain to develop more
efficient neural networks. One fascinating aspect is the remarkable real-time
and processing efficiency observed in neural networks constructed based on bi-
ological neurons, setting them apart from conventional deep learning models in
computers.

Efficiency and Simplicity Unlike their computer-based counterparts, neu-
ral networks inspired by the human and animal brain exhibit a remarkable lack
of details and temporal discontinuities. This unique characteristic allows for
streamlined processing and heightened efficiency, mimicking the brain’s ability
to swiftly handle complex tasks with minimal computational resources.

Unlocking Deeper Knowledge during Rest A noteworthy phenomenon
arises when individuals enter states of rest such as sleep or meditation. During
these periods, the entire neural system undergoes a fascinating process known
as Neural Knowledge Consolidation (NKC). This process involves the release
of computing resources within the neural network, enabling continuous and
uninterrupted computation. As a result, the individual experiences a profound
enhancement in the acquisition of deeper knowledge and wisdom.

Harnessing the Power of NKC Understanding and harnessing the power
of NKC during periods of rest have significant implications for the development
of advanced neural networks. This natural cognitive process not only contributes
to the efficiency of information processing but also facilitates the integration
of new insights, paving the way for more sophisticated artificial intelligence
systems.

Exploring neural network construction inspired by the efficiency of human
and animal neurons, coupled with the insights gained from NKC during rest-
ful states, holds promise for advancing the field of artificial intelligence. As
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researchers delve deeper into these phenomena, the potential for creating more
effective and wisdom-driven neural networks becomes increasingly apparent,
opening new avenues for the future of AI research and development.

5 Hypothesis 4: Decoding Information Dynam-
ics, Exploring the Principle of Information En-
tropy Reduction in GIN Networks

In the exploration of information processing in both humans and animals, the
astounding real-time capabilities of sensory perception raise questions about the
efficiency of current deep learning models. This article delves into the concept
of Contextually Diverse Generative Networks (CDGN) and the dynamics of
information entropy reduction, drawing inspiration from observations of human
consciousness and computer deep learning models.

Sensory Information Processing Examining the vast and disorganized
data received through vision, hearing, touch, and smell, the article posits that
animals exhibit strong neuronal coding abilities. The discussion centers on the
rapid real-time responses to external stimuli, contrasting with the perceived
limitations of existing deep learning models.

The GIN Network Structure The complexity of the Generative Informa-
tion Network (GIN) is highlighted, consisting of hundreds of millions of neurons.
Emphasis is placed on the need for universal dynamics to facilitate efficient in-
formation flow and processing within this intricate network.

Information Entropy Reduction Principle A key proposition is intro-
duced—information flow and processing adhere to the principle of information
entropy reduction. Analogous to water flowing from high to low, the article ar-
gues that as long as information entropy is reduced, computations can proceed
downward or establish associations between computational units.

Multi modal Information Processing The GIN network’s ability to han-
dle multi modal external information is discussed. The process of entropy reduc-
tion involves splitting information into uni modal forms, further decomposing
them into images, and encoding these images into abstract representations with
lower entropy, such as symbols, functions, and key points.

Contextually Diverse Generative Network The article introduces the
concept of a Contextually Diverse Generative Network (CDGN), emphasizing
the generation of diverse output results based on contextual backgrounds. The
validity of computations is tied to the condition that the entropy reduction
should be reversible, ensuring meaningful output.

Evolutionary Analogy Drawing parallels with the evolutionary process of
species selection, the article suggests that in the massive random entropy reduc-
tion computations, diverse dimensions of knowledge and High-Level Abstracted
Patterns (HPP) collide and associate, leading to a network topology favorable
to meaningful results.

Generalization and Reasoning Highlighting the potential for human-like
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associative and inferential thinking, the article explores how a series of chained
computations with high generalization ability could mimic human reasoning.
The GIN network’s dynamics offer insights into achieving generalized reasoning,
including image reasoning, temporal reasoning, and logical reasoning.

TTherefore, we can infer that animals have strong neuronal coding ability
and each neuron processes very small data. Even so, the extraordinarily complex
structure of the GIN network, composed of hundreds of millions of neurons, can
complete the information flow and processing in a short time, and there must
be some universal dynamics to ensure that each information flow will have an
appropriate output result

By observing human con-
sciousness and computer deep learning models, we make the following kinetic
Hypothesis : information flow and information processing are subject to the
principle of information entropy reduction (Figure 2). Just like water flows
from high to low, no matter how complex the intermediate path is, as long as
the information entropy is reduced, then the computation of this computational
unit can proceed downward or the association between these several computa-
tional units can be established.

6 Hypothesis 5: HPP Dynamics -Leveraging
Affine and Projective Transformations for Ob-
ject Interaction Prediction

In the realm of deep learning models, the concept of Hidden State Image Patch
(HPP) plays a pivotal role in understanding and predicting transformations
within a given space. Drawing inspiration from the First Order Motion Model
(FOMM) introduced by Aliaksandr Siarohin et al. in 2019, the Graph Isomor-
phism Network (GIN) takes a step further by extending the application of affine
and projective transformations to HPP.

The core idea involves a sequence of transformations applied to the hidden
state image patch. This intricate process encompasses predicting object posi-
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tions, poses, relative scales, colors, and other contents within a specific spatial
context. The GIN network, borrowing from the FOMM model, accomplishes
various affine and transitive transformations by manipulating key points in an
image.

For instance, in a scenario where a camera observes a glass of water to deter-
mine the availability of other containers capable of holding it, the GIN network
engages in vectorized abstraction of the water within the glass. This involves
simplifying the representation to key points and subsequently comparing it with
the vector contours of potential containers such as bowls, water bottles, and la-
dles. This comparison takes place in the space of projection transformation.

Following these transformations, a logical map of the hidden state emerges,
capturing essential parameters like material permeability. These Hidden State
Image Patches (HPPs) are then associated with the projection results. The GIN
network employs sophisticated calculations to reason out which other containers
in the observed space can effectively accommodate the glass of water.

In GIN network showcases the power of spatial reasoning through the inte-
gration of affine and protective transformations into the hidden state represen-
tation. This approach enables the model to predict and reason about object
interactions within a given environment, opening up possibilities for advanced
applications in computer vision and artificial intelligence.

7 Hypothesis 6:Temporal Reasoning in Hetero-
geneous Parallel Processing (HPP): Adapting
to the Dynamic Speed of Change

In the realm of artificial intelligence, temporal reasoning plays a crucial role in
addressing the dynamic nature of the world. Heterogeneous Parallel Processing
(HPP) algorithms are at the forefront of this adaptation, particularly in their
ability to adjust to the varying speeds of motion in a given environment. These
algorithms excel in stealthily predicting the location of a hidden point in the
immediate future.

Diverging from the continuous and uniform perception of time in computers,
human temporal reasoning is characterized by its discontinuity, unevenness, and
imprecision. Evolving over tens of thousands of years, human temporal cognition
appears to be a composite of spatial reasoning over a time series. This distinction
underscores the need for AI systems to emulate and synchronize with human-like
temporal reasoning.

The World Model of Dreamver V2 provides a noteworthy approach to tem-
poral reasoning. Through extensive training, it captures the state and generates
images for the next time step. The inverse decoding process, which compares
the decoded result with the input image, rewards the decoder for achieving a
match. This methodology forms the foundation for GIN (Generic Inference Net-
work), which adopts and refines the temporal inference model from Dreamver
V2.
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Unlike conventional approaches that follow a uniformly fine-grained time-
line, GIN opts for simulating human temporal inference. This involves inferring
space at specific key points in time, enhancing timeliness significantly. GIN
dynamically links implicit expressions of spatial inference across various time
slices, creating associations that enable rapid temporal inference. This innova-
tive approach leverages the strengths of both spatial and temporal reasoning,
promising efficient adaptability in the ever-changing landscape of artificial in-
telligence.

8 Hypothesis 7:Image-Based Logical Reasoning
in Dreaver V2’s World Model

In the realm of natural language processing (NLP) cognition, a novel approach
inspired by Horn clauses has been introduced. This innovative method involves
the transformation of logical reasoning into tangible images, subsequently fa-
cilitating the translation of these images into causal reasoning through spatial
and temporal considerations. In the intricate world model of Dreaver V2, logi-
cal reasoning within the context of the game is achieved through a harmonious
interplay of spatial and temporal reasoning

9 Hypothesis 8: Deconstructing Logical Rela-
tions in GIN Networks: HPPs and Generative
Networks

Within GIN (Generative Image Network) networks, logical relations undergo
disassembly into a series of High-Level Pictorial Representations (HPPs) ex-
pressed through implicit states. These implicit states can then undergo reverse
encoding, transitioning into abstract images through the aid of generative net-
works. The convergence of causal and logical inference is subsequently realized
through spatial inference and temporal inference applied to these abstract im-
ages. This innovative methodology offers a unique perspective on logical reason-
ing, blending image-based representations with advanced network architectures
for nuanced cognitive processing.

10 Hypothesis 9:Architectural Blueprint for a
Next-Generation Generic Machine Learning
Operating System (GML System)

Generalized Machine Learning System (GML System) Overview
In our quest to conceptualize the structure of GIN networks, we draw par-

allels between human learning behavior and software programming processes.
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Traditional software engineering operates within a proprietary structure, akin
to a pre-coded machine production line. Each stage, from state 1 to state N, is
rigidly defined, resembling a fixed pipeline. While effective for specific problem-
solving scenarios, this paradigm falls short in addressing generalized problems.

Recognizing the limitations of the existing software paradigm, we propose a
transformative approach. Leveraging the capabilities of the GIN network, we
introduce a Generalized Machine Learning operating system (GML system). At
its core, the GIN network facilitates a multimodal input, primarily designed for
dynamically solving cross-domain, non-fixed structured, and non-specific tasks.

10.1 GML System Architecture

The GML system comprises three integral components:
Observable Processor (AOP)
The AOP acts as the first processing stage, receiving multimodal informa-

tion such as images, sounds, numbers, and texts. The initial GIN network,
denoted as GIN1, processes this input, generating a series of multimodal HPP
implicit representations. These representations are then fed into the Explicit
Representation Processor AOP.

HPP Storage System
The system includes a dedicated storage component for Hierarchical Plan-

ning Process (HPP) repositories. These repositories, combined with the output
from GIN1, are processed by GIN3. This processor generates visible images, de-
picting potential relationships among the HPPs, facilitating spatial, temporal,
and causal inference.

Multi modal Implicit Sensing/Execution Network
The final component incorporates the Implicit Execution Network GIN2. It

executes the results from GIN3 and feeds the computed HPPs back to the AOP
for further processing. If the AOP identifies a reduction in information entropy
through the combination of HPP repositories, it proceeds to the next level of
computation.

Predicting and Training in GML System
In the GML system, information is both input and output in parallel. Em-

ploying probabilistic inference, we systematically quantify uncertainty, catego-
rizing it as Known Unknowns. Monte Carlo Tree Search (MCTS)-based prob-
abilistic inference is employed for predicting Known Unknowns. Additionally,
GIN, Neural Systems, and modern Deep Learning possess the potential to iden-
tify and predict unknown patterns and behaviors, termed Unknown Unknowns.

This predictive process aligns with the concept of Unknown Unknowns,
where inner information sets lack awareness of their specific nodes. The GIN or
Deep Learning optimization process essentially mirrors a variant of counterfac-
tual regret minimization (CFR).

Continuous Operation and Multimodal Implicit Sensing/Execution
Network

The GML system ensures continuous operation, seamlessly parsing Un-
known Unknowns information into Known Unknowns abstract images. These
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abstract images, in turn, facilitate the calculation of possible task topologies,
paving the way for effective task planning and execution (refer to Figure 4).

This perpetual process is en-
capsulated within the Multimodal Implicit Sensing/Execution Network, as il-
lustrated in Figure 3.

11 Hypothesis 10: GML Task Decomposition
and MCTS Task Tree Strategies

In GML (Generic Machine Learning) systems, the singular Allocation Optimiza-
tion Processor (AOP) plays a pivotal role in managing computational resources.
In a preemptive manner, various computational tasks vie for resources based on
a weighting algorithm, yielding favorable outcomes. While straightforward for
simple deep learning networks like face recognition and helmet detection models,
the scenario becomes more intricate for abstract and complex inference models.

To address the complexity, a strategic approach involves horizontally de-
composing tasks into multiple subtasks. Subsequently, each subtask undergoes
further decomposition, expanding the scope of computational tasks. To fa-
cilitate this intricate process, the introduction of a Monte Carlo Tree Search
(MCTS) state tree inference model becomes imperative. This model aids in
making judicious decisions regarding the most reasonable topology, solidifying
certain topological fragments as optimal through iterations.
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Figure 5 illustrates the integration of these optimal fragments as implicit out-
put Hierarchical Problem Patterns (HPPs). These HPPs, distinct from those
involved in raw information processing, serve a multifaceted role in task decom-
position, identification of topological relations, and resource allocation. Essen-
tially, they resemble the human problem analysis and problem-solving processes,
accumulating a unique ”knowledge structure” for the GML.

The implicit HPPs shaped by GIN (Graph Isomorphism Network) networks
form a dynamic foundation for GML. Unlike the fixed structure found in raw
information processing, these HPPs evolve with different input information,
varied problem-solving approaches, and diverse computation times. Therefore,
the accumulated ”knowledge structure” becomes a distinctive feature, reflecting
the adaptability and intelligence of the GML system tailored to its specific
context and objectives.

12 Hypothesis 11: Evolutionary Knowledge Pre-
cipitation in Collaborative Computation: The
GIN Network’s Dynamic HPP Paradigm

In the intricate landscape of collaborative computation, the GIN network orches-
trates a result-oriented dance through the Observation-Analysis-Recall-Experiment
(OARE) cycle, sculpting a dynamic tapestry of Highly Probable Pathways
(HPPs). This intricate process unfolds in distinct stages, as the network sifts
through a sea of dynamic, random, and invalid HPPs in the early computa-
tions, identifying only a select few that withstand the scrutiny of the Analysis
of Probability (AOP) test.

These resilient HPPs, deemed favorable to the desired results, become the
focal point for resource allocation, strengthening the associated topologies and
enhancing their computational prowess. As the computation progresses, the
GIN network evolves towards a topology most conducive to the intended out-
comes. The HPPs generated within this refined structure transform into a
repository of ”knowledge” that solidifies through repeated OARE cycles.
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The optimization journey of the GIN network involves the gradual fixation
of topologies suitable for specific results, forming a paradigmatic framework.
This fixed graph structure becomes ingrained knowledge, a product of the ma-
chine’s learning and adaptation over numerous problem-solving instances. The
HPP repository burgeons with a growing collection of a priori HPPs, amplifying
the comprehensive processing power of the GIN network with each problem it
encounters.

Once a HPP’s structure solidifies, it transcends into a fixed paradigm, liber-
ating associated HPPs from the need for repetitive computations. This libera-
tion enables them to engage in diverse tasks, contributing to the formation of a
streamlined, minimalist HPP topology. The culmination of this process unveils
an evolutionary knowledge precipitation within the collaborative computation
paradigm, illustrating the GIN network’s capacity to adapt, learn, and optimize
its problem-solving strategies over time.

13 Hypothesis 12:Emotional Computing in GIN
Networks: Fostering Self-Motivation and Per-
sonalized Development for Enhanced High-
Performance Patch Generation

In the realm of Graph Isomorphism Networks (GIN), addressing the challenge of
continuous self-motivation and effective self-evaluation is crucial for the devel-
opment of High-Performance Patches (HPPs). Conjecture 4 posits that, apart
from purposeful computations, the GIN network can leverage remaining com-
putational resources to connect various HPP patches. However, the assessment
of intermediate implicit states in these computations poses a unique challenge.
Inspired by the inexhaustible and consistently effective motivational system in
humans, this discussion explores the integration of Emotional Computing into
GIN networks as a solution.

Embracing Emotion as a Motivational Catalyst
Humans derive motivation from emotions and interests, influencing their

engagement and proficiency in various activities. This emotional connection
creates a positive feedback loop, driving individuals to invest time and effort
into activities they enjoy. Translating this concept into GIN networks involves
implementing emotional decision-making for tasks with ambiguous or interme-
diate states, promoting a continuous cycle of self-motivation.

Addressing the Challenge of Ambiguity in HPP Tasks
Many HPP tasks involve implicit states that defy easy evaluation of correct-

ness. Through Emotional Computing, GIN networks can make decisions based
on preferences, harnessing the benefits of accumulated emotional associations.
This approach allows the model to navigate tasks that lack clear right or wrong
answers, contributing to the development of strategies for evaluating results in
the absence of immediate validation.
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Personalized Development for Diverse GIN Networks
Emotional Computing introduces the concept of personalized development

for GIN networks. By instilling positive motivations unique to each network,
diverse preferences emerge. The aggregation of these personalized developments
creates a collective intelligence that fosters complementary and creative learning
networks, enhancing the overall adaptability and efficiency of GIN architectures.

Strengthening Implicit State Association for Deeper Reasoning: One of
the key advantages of Emotional Computing in GIN networks is its ability to
strengthen the computational pathway of more implicit state associations. By
fostering self-motivation, GIN networks delve into deeper reasoning, enabling
enhanced processing of complex tasks and facilitating a more nuanced under-
standing of intermediate states.

The integration of Emotional Computing into GIN networks introduces a
paradigm shift in the development of self-motivation and personalized learning.
By addressing the challenges posed by tasks with ambiguous or intermediate
states, Emotional Computing empowers GIN networks to navigate complexities,
fostering deeper reasoning and the generation of more effective and valuable
High-Performance Patches.

14 Hypothesis 13: Integrating Rational and Emo-
tional Computing for Personalized Inference
Tasks

In this innovative approach to cognitive computing, the title ”Harmonizing Hu-
man Cognition” emphasizes the synergy between rational and emotional ele-
ments in the human mindset. The proposal suggests that rational computation,
often the primary mode of reasoning, can benefit from the involvement of percep-
tual, emotional aspects when faced with challenges or bottlenecks. This fusion
of Rational Computing as the main reasoning line and Emotional Computing
as the auxiliary line is illustrated in Figure 6.

The Rational Computing pro-
cess, as outlined in hypothesis 9, involves breaking down a task into subtasks,
applying a topology based on Monte Carlo Tree Search (MCTS), resource allo-
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cation, and scoring based on the result. This constitutes the primary reasoning
pathway. Meanwhile, Emotional Computing serves as a secondary line by uti-
lizing a prior attitude as the judging heuristic, guiding the decomposition of
reasoning tasks, confirming topology, and influencing the weight of Rational
Computing’s reasoning process based on emotional responses. This approach
aims to provide a more personalized and holistic perspective on reasoning, tak-
ing into account both rational and emotional dimensions for a comprehensive
understanding of complex inference tasks.

15 Conclusion

In conclusion, this paper has introduced significant contributions to the field,
centered around the innovative concept of the General Intelligent Network (GIN)
based on information entropy and a generative network model. The integration
of Rational Computing and Emotional Computing in a brain-like General Ma-
chine Learning (GML) system represents a noteworthy advancement, providing
a comprehensive approach to artificial intelligence that mirrors the complexities
of human cognition.

Furthermore, the incorporation of the Knowledge (HPP) Learning and Rea-
soning mechanism enhances the adaptability and decision-making capabilities of
the proposed GIN model. By delving into the internal mathematical logic and
working mechanisms, this paper lays the foundation for a deeper understanding
of the GIN paradigm, offering valuable insights for future research endeavors in
this domain.

It is important to note that the presented conclusions are just the begin-
ning, as the commitment to ongoing updates of internal mathematical logic and
working mechanisms underscores the dynamic nature of this research. These
continuous developments aim to foster a collaborative and evolving environ-
ment, encouraging further exploration and refinement of the General Intelligent
Network paradigm. Ultimately, the contributions presented herein contribute
to the advancement of artificial intelligence, paving the way for future break-
throughs and innovations in this rapidly evolving field.
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