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Abstract—For improving the efficiency and reducing the pro-

cessing load of a single tool, as novel equipment that have multi-

ple processing routes, twin-cluster tools are widely used in wafer 

manufacturing. Periodic schedule has an important role in con-

trolling wafers quality. It is meaningful to schedule a twin-clus-

ter tool such that, processing routes in the tool work periodically. 

To achieve this goal, the workload of each module is carefully 

analyzed, leading to that the optimal cycle time of the system can 

be obtained. Then, a mathematical programming model is pre-

sented to make sure twin-cluster tools achieve the minimal cycle 

time. Further, a novel algorithm is established so as to obtain the 

robot waiting time. Furthermore, several sufficient conditions 

are proposed to guarantee that twin-cluster tools achieve the op-

timal cycle time. Finally, numerous experiments are conducted 

to verify the accuracy of the conclusion with different conditions. 

Keywords—twin-cluster tool, semiconductor manufacturing, 

periodic scheduling, mathematical programming model 

I. INTRODUCTION 

Cluster tools are widely used in semiconductor manufac-
turing for wafer fabrication. A cluster tool contains several 
processing chambers (PCs), a transport module, and two load-
locks (LLs). As shown in Fig. 1, with one or two arms, tools 
can be classified as single-arm cluster tools and dual-arm clus-
ter tools. From a LL, the raw wafer enters to the tool and is 
transported to each PC for processing through the transport 
module. Many studies are conducted in scheduling cluster 

tools [1]−[6]. For a cluster tool, if the cycle time equals to the 
robot task time, the tool is transport-bound, otherwise, it is 
process-bound. For a process-bound tool, a backward strategy 
is proved that is optimal for single-arm cluster tools [7], and a 
swap strategy is better for dual-arm cluster tools [8]. 

In recent years, the time needed for wafer processing in a 
PC is increasing to satisfy the complex processing require-
ment. More and more PCs are installed on the tool to reduce 
the workload, until the maximum number of PCs in a tool is 
reached. To further reduce the workload and improve the tool 
space utilization efficiency, two or more individual cluster 
tools are connected through Buffer Module (BM) to form a 

semiconductor tool. Such a tool is called multi-cluster tool and 
widely used in recent years [10].  

Many studies have been made for the multi-cluster tool 
scheduling. Based on the event graph and network models, 
Ding et al. [10] find a feasible robot sequence and calculate 
the corresponding cycle time. Yi et al. [11] suggest to disas-
semble a multi-cluster tool into several individual cluster tools, 
and an existed individual cluster tool scheduling method is ap-
plied to each one. Chan et al. [12] present a resource-based 
model to analyze the minimal cycle time of twin-cluster tools 
and propose an algorithm to find the optimal schedule. Zhu et 

al. [13]−[15] point out that, the stability and simplicity of a 
system operation are guaranteed in the one-wafer schedule. 
With one-wafer schedule, based on the petri net, they analyze 
the schedulability of single- and dual-arm multi-cluster tools 
and obtain the cycle time by scheduling robot waiting times. 

A twin-cluster tool is a kind of two-cluster tool. Different 
from typical multi-cluster tools, twin-cluster tools feature two 
cluster tool units possessing identical processing technolo-
gies such that, wafers can choose one unit to complete all pro-
cesses without the need that must be transported to all units. 
It is also allowed that one wafer is processed in both tool units 
for different processes. However, since the robot cooperation 
between two units becomes more frequent in this mode, there 
are more risks to deadlock. As a result, the processing mode 
that wafers are processed in both units for partial processes is 
rarely implemented in practical production. Meanwhile, peri-
odic schedule has an important role in controlling wafers This work was funded by Distinguished Professor Program of Jing 

gang Scholars in institutions of higher learning, Jiangxi Province. 
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Figure 1. Cluster tools: (a) A single-arm tool; (b) A dual-arm tool 

 



quality. Therefore, this paper aims to find a feasible schedule 
method for process-bound twin-cluster tools such that both 
tool units can periodically complete wafers efficiently. 

This paper is organized as follows. In Section Ⅱ, we de-
scribe the configuration and manufacturing requirement of 
twin-cluster tools, and analyze the workload of each compo-
nent. In Section Ⅲ, we present an efficient mathematical pro-
gramming model and the corresponding algorithm. In Section 
Ⅳ, experiments are conducted to verify the accuracy of the 
conclusion. Finally, we summarize our findings in Section Ⅴ. 

II. SCHEDULING ANALYSIS 

A. Configuration of a Twin-Cluster Tool and Manufactur-

ing Requirements 

A twin-cluster tool studied in this paper (see Fig. 3) con-
sists of two cluster tool units through a BM. The cluster tool 
unit connected with LLs and the BM is called cluster tool 1 
(CT1), and the other is called cluster tool 2 (CT2). For a clus-
ter tool unit, there are several PCs serving for Step 1 or Step 

2. Let Nn = {0, 1, 2, ..., n}, and Nn
+ = Nn / 0. m = [(m11, m12), 

(m21, m22)] is used to denote the wafer flow patten (WFP) of 
a twin-cluster tool, where mij denotes the number of PCs at 

Step i in CTj, i, jN2
+. CT1 and CT2 both have a dual-arm 

robot, which are denoted by R1 and R2, respectively. A row 
wafer in the twin-cluster tool must be processed once in both 
Step 1 and Step 2, respectively. 

For CTj, let Ui−j denote the unloading task that robot un-

loads a wafer from a PM of Step i, Li−j denote the loading task 

that robot loads a wafer into a PM of Step i, Ti−j denote the 

rotating task that robot rotates at Step i with a wafer, and Mil−j 

is used to denote the moving task that Rj moves form Step i 

to Step l, i, lN2, jN2
+. Note that Step 0 and b represent LLs 

and the BM. Robot tasks take time. Let 
i
 denote the time re-

quired for Step i to process, and j and vj denote the time re-

quired for Rj to unload/load and rotate, respectively, i, jN2
+. 

Let  ij denote the workload of a PC at Step i in CTj, i, jN2
+. 

B. Workload Analysis 

For a process-bound dual-arm cluster tool, a swap strategy 
is optimal in terms of the cycle time. As shown in Fig. 2, for 

Step i, with the swap strategy, until a wafer in the PC is com-
pleted, the robot comes to the PC and unload the wafer, then 
rotate and load another raw wafer into there. Above-men-

tioned task sequence can be denoted by Ui → Ti → Li. For a 
processing route, after the robot performs the sequence for 
every step, the modules of each step in the route return to the 
initial state. This is called a robot task cycle. Notice that, in a 

robot task cycle, after the robot performs Ui → Ti → Li, a 
wafer starts to be processed in a PC at Step i. Until the robot 

performs Ui → Ti  → Li again, the processed wafer is un-
loaded and another raw wafer is loaded for processing. It im-
plies that there is a wafer completion cycle at the PC including 

Ui → Ti  → Li, and a processing activity. This consumes 

times ρi + 4α + 3v that is called the workload of the PC. Since 
there are mij PC serving for Step i in CTj, then we have 

 ij = (i + 2  αj + vj) / mij, i, jN2
+

 (1) 

With the assumption that each wafer needs to be com-
pleted in CT1 or CT2, there are two wafer processing routes 
in a twin-cluster tool, such as 

• Route 1: LL → Step 1 (CT1) → Step 2 (CT1) → LL 

• Route 2: LL → BM → Step 1 (CT2) → Step 2 (CT2)  

→ BM → LL 

TABLE I.  ROBOT TASK SEQUENCE IN ONE CYCLE 

 R1 R2 

Route 1 

M01-1 → U1-1 → T1-1 → L1-1 → 

M12-1 → U2-1 → T2-1 → L2-1 → 

M20-1 → U0-1 → T0-1 → L0-1 

 

Route 2 

M0b-1 → Ub-1 → Tb-1 → Lb-1 → 

Mb0-1 → U0-1 → T0-1 → L0-1 

Mb1-2 → U1-2 → T1-2 → 

L1-2 → M12-2 → U2-2 → 

T2-2 → L2-1 → M2b-2 → 

Ub-2 → Tb-2 → Lb-2 

As shown in Table , when R1 serves for Route 1, based 
on the swap strategy, it sequentially comes to Step 1, 2, and 0 
to perform swap sequences. In Route 2, R1 sequentially comes 
to Step b and 0 to perform swap sequences such that a raw 
wafer is loaded into the BM and the completed wafer is un-
loaded, then sent to LL. Meanwhile, R2 sequentially comes to 
the PCs of Step 1 and 2 in CT2, and Step b to perform a swap 
sequence. Let r−j denote the workload of Rj for Route r in 

one cycle, j, rN2
+. Then, we have 

 θ1-1 = 6v1 + 6α1 (2) 

 θ2-1 = 4v1 + 4α1 (3) 

 θ2-2 = 6v2 + 6α2 (4) 

The workload is the longest time needed for all activities. 
Based on the above analysis, the workload of Route 1 is max 

(i1 | iN2
+, θ1-1), and the workload of Route 2 is max (i2 | 

iN2
+ , θ2-1, θ2-2). Let  r  denote the workload of Route r, 

rN2
+ , with the assumption that Route r is process-bound, 

jN2
+. Then, we have 

 r = max (ir | iN2
+), rN2

+
 (5) 
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Figure 2. A swap strategy 
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Figure 3. A twin-cluster tool 



To ensure that R1 and R2 serve for Route 1 and 2 without 
deadlock, we make robots wait after they complete the se-
quence for Route 1 and 2. Let wr−j denote the robot waiting 

time of Rj from the time point that robot completes the task 

sequence for Route r to the time point that robot starts to per-

form the identical task sequence again, j, rN2
+. Let  r−j de-

note the one-wafer cycle time of Rj for Route r, j, rN2
+. Then, 

we have 

 1-1 = 6v1 + 6α1 + w1−1 (6) 

 2-1 = 4v1 + 4α1 + w2−1 (7) 

 2-2 = 6v2 + 6α2 + w2−2 (8) 

Notice that, the steady-state process of a processing route 
is a series process, the production rate is the same to all steps, 
then, we have 

 2-1 = 2-2 (9) 

C. Mathematical Programming Model 

For a processing route, its workload is the optimal cycle 
time to complete a wafer. Then, we have the following lemma. 

Lemma 1: Suppose that there is a process-bound twin-clus-
ter tool. To ensure the tool achieve the optimal throughput 
when two wafer processing routes work periodically, (10) and 
(11) should be satisfied. 

 1-1 = 1 (10) 

 2-1 = 2 (11) 

Proof: According to (5), r is the optimal cycle time of 
Route r in a process-bound twin-cluster tool. Then, if (10) and 
(11) are both satisfied, it means that the throughput of each 
route reaches the maximum value such that, the tool is opti-
mally scheduled. Therefore, the lemma holds.                      █ 

When two processing routes both are scheduled periodi-
cally, the system enters to the steady-state. In this time, Route 

1 and 2 may have a different cycle time. Let (1, 2) denote 

the sets of the route cycle number, where r indicates the num-
ber of Route r cycle required for the system to return to the 

initial state, rN2
+. Then, we have 

 1  1-1 = 2  2-1 (12) 

According to Table , R1 is scheduled for both Route 1 and 
2, respectively. Thus, we should properly schedule R1 to per-
form the tasks of Route 1 and 2 on time, leading to that Route 
1 and 2 periodically work. Let T1−k and t1−K denote the time 
point that R1 starts to perform the task sequence of Route 1 
and 2 in kth and Kth cycle, kNλ1

+ , KNλ2

+ , respectively. Then, 

we have 

Lemma 2: Suppose that there is a process-bound twin-clus-
ter tool. To ensure that Route 1 and 2 both are periodically 
scheduled in respective cycle time, the following condition 
should be met. 

 {
T1−k  t1−K − ϑ1-1, T1−k  t1−K

t1−K  T1−k − ϑ2-2,t1−K  T1−k
, kNλ1

+ , KNλ2

+  (13) 

Proof: According to (6), R1 performs the sequence of 

Route 1 every 1-1. Thus, if the activity starts at T1−k, it fin-

ishes at T1−k + 1-1. Therefore, when T1−k < t1−K, if t1−K  T1−k 

+ 1-1 holds, R1 would be entangled with the task of Route 1 
at t1−K  such that R1 cannot start to perform the sequence of 

Route 2 on time. Therefore, if T1−k  t1−K holds, T1−k  t1−K − 

1-1 should be satisfied. By (7), R1 performs the sequence of 

Route 2 every 2-1. If R1 starts performing the sequence of 

Route 2 at t1−K, the activity finishes at t1−K+2-1. Therefore, 

when t1−K  < T1−k , if T1−k   t1−K  + 1-1 holds, R1 cannot start 
performing the sequence of Route 1 on time. Therefore, if t1−K 

 T1−k holds, t1−K  T1−k – 2-1 should be satisfied. Then, the 
lemma holds.                                                                           █ 

Comparing with the schedule of Route 1, Route 2 works 
in relation to R1 and R2. Notice that, for Route 2, after a raw 
wafer is loaded into the BM by R1, it is unloaded by R2 soon. 
Meanwhile, by the swap strategy, a completed wafer is 
loaded into the BM by R2 and unloaded from there by R1. 
There is a strict order in the process. Therefore, it is important 
to schedule R1 and R2 at the BM so as to ensure Route 2 peri-
odically work. Let t2−K and t3−K denote the time points that R1 
starts to perform Ub-1 and completes Lb-1 in Kth cycle for 
Route 2, respectively, and t4−K and t5−K are used to denote the 
time points that R2 starts to perform Ub-2 and completes Lb-2 
in Kth cycle for Route 2, KNλ2

+ . Then, we have 

Lemma 3: Suppose that there is a process-bound twin-clus-
ter tool. To ensure that Route 1 and 2 both are periodically 
scheduled in respective cycle time, the following conditions 
should be met. 

 t5−K  t2−K, KNλ2

+  (14) 

 t3−K  t4−K, KNλ2

+  (15) 

Proof: Notice that for the BM of a twin-cluster tool, the 
wafer in it is raw or completed. After R1 completes the swap 
sequence at the BM, a completed wafer is unloaded and a raw 
wafer is loaded into there. Therefore, before R1 starts to per-
form Ub-1, R2 should have loaded a processed wafer into BM, 
i.e., (14) holds. After R2 completes the swap sequence at BM, 
a raw wafer is unloaded and a completed wafer is loaded into 
there. Therefore, before R2 starts to perform Ub-2, R1 should 
have loaded a raw wafer into BM, i.e., (15) holds.                █ 

Based on the above analysis, we propose a Mathematical 
Programming Model (MPM) to obtain a feasible periodic 
schedule by setting the robot waiting time. The objective of 
the MPM is to minimize the robot waiting time, and (16) rep-
resents the objective function. The MPM is as following. 

 max (w1−1 + w2−1 + w2−2) (16) 

                 S. t. 

      (11) – (14) 

 T1−1 = 0 (17) 

 t1−1 = T1−1 +  (18) 

 T1−1 + θ1-1    T1−2 − θ2-1 (19) 

 T1−(k + 1) = T1−k + ϑ1-1, kNλ1

+  (20) 

 t1−(K + 1) = t1−K + ϑ2-2, KNλ2

+  (21) 

 t2−K = t1−K + v1, KNλ2

+  (22) 

 t3−K = t2−K + v1 + α1, KNλ2

+  (23) 

 t4−(K + 1) = t4−K + ϑ2-2, KNλ2

+  (24) 

 t5−K =t4−K + v2 + α2, KNλ2

+  (25) 



In (17), we assume that T1−k serves as the reference time 

point for the subsequent time nodes. In (18),  represents the 
time interval between the T1−1  and t1−1 . Further, (19) de-

scribes the value range of . Then, (20), (21), and (24) de-
scribe that the workings of Route 1 and 2 is periodic. Finally, 
(22), (23), and (25) describe the relationship of t1−K, t2−K, t3−K, 
t4−K, and t5−K. 

Based on the above analysis, Algorithm 1 is presented to 
find the best periodic schedule by calculating the minimal ro-
bot waiting time. 

D. Sufficient Conditions of the Optimal Scheduling 

We now analyze how a twin-cluster tool can be optimally 

scheduled. As shown in Fig. 4 (a), assume that 1 = 2 is sat-
isfied, R2 completes the swap sequence with the BM at time 
point t1, R2 starts to perform the swap sequence with BM again 
at time point t2, and R1 completes the task for Route 1 at time 
point t3. Then, within the range [t3, t2], R1 should load a raw 
wafer into the BM. Then, we have the following lemma. 

Lemma 4: Suppose that there is a process-bound twin-clus-

ter tool. If (26)−(28) are satisfied, Route 1 and 2 can both be 
optimally and periodically scheduled. 

 1 = 2 (26) 

 1  θ1-1 + θ2-1 (27) 

 2 − 22 − v2  θ2-1 (28) 

Proof: Notice that if 
1
 = 

2
 = 1-1 = 2-1 is satisfied, it 

means that in the cycle time 1-1 (2-2), R1 just need to perform 
the task for Route 1 and the task for Route 2 once, respectively. 
Correspondingly, R2 need to perform the task for Route 2 once. 
Then, (27) enables that R1 can perform the needed tasks in 
time, and (28) ensures that it is achievable for R1 to perform 
the swap sequence at the BM during that BM contains a com-

pleted wafer, i.e., 1-1 = 1 and 2-1 = 2 can be satisfied. 
Therefore, the lemma holds.                                                        █ 

As shown in Fig. 4 (b), assume that p  1 = 2 is satis-

fied, p  2, R2 completes the swap sequence at the BM at time 
point t1, and R2 starts to perform the swap sequence with BM 
again at time point t2. Within the range [t1, t2], R1 should load 
a raw wafer into the BM. Then, we have the following lemma. 

Lemma 5: Suppose that there is a process-bound twin-clus-
ter tool. If (29) and (30) are satisfied, Route 1 and 2 can both 
be optimally and periodically scheduled. 

 p  1 = 2, p  2 (29) 

 1  θ1-1 + θ2-1 (30) 

Proof: Notice that if p  
1
 = 

2
 = p  1-1 = 2-2 is satis-

fied, it means that in the cycle time p  
1
 (

2
), R1 just need 

to perform the task for Route 1 p times and the task for Route 
2 one time, respectively, and R2 need to perform the task for 
Route 2 one time. Then, (30) ensures that it is achievable for 

R1 to load a raw wafer into the BM in time, i.e., 1-1 = 1 and 

2-1 = 2 can be satisfied. Therefore, the lemma holds.         █ 

As shown in Fig. 4 (c), assume that 1 = p  2 is satis-

fied, p  2, R2 completes the swap sequence at the BM at time 
point t1, R2 starts to perform the swap sequence at the BM 
again at time point t2, and R1 completes the task for Route 1 
at time point t3. For the tasks of Route 2, within the range [t3, 
t2], R1 should load a raw wafer into the BM. Then, we have 
the following lemma. 

Lemma 6: Suppose that there is a process-bound twin-clus-
ter tool. If (31) and (32) are satisfied, Route 1 and 2 can both 
be optimally and periodically scheduled. 

 1 = p  2, p  2 (31) 

 2  θ1-1 + θ2-1 (32) 

Proof: Notice that if 1 = p  2 = 1-1 = p  2-2 is satis-

fied, p  2, it means that in the cycle time p  2 (1), R1 
should perform the task for Route 2 p times and the task for 
Route 1 one time, respectively, and R2 should perform the 
task for Route 2 p times. (32) ensures that it is achievable for 

Algorithm 1: Calculate the robot waiting time such that 

two routes are periodically scheduled 

Input:  
i
, 

j
, vj, m (iN2

+
) 

Output: w
1−1

, w
2−1

, w
2−2

,  

1. Initialization 

1.1 ij  (i + 2  j + vj) / mij, i, jN2

+
 

1.2 j   max (ij | iN2

+
), jN2

+
 

1.3 1-1  6v1 + 6α1 + w
1−1

 

1.4 2-1  4v1 + 4α1 + w
2−1

 

1.5 2-2  6v2 + 6α2 + w
2−2

 

2. Calculate the robot waiting time by MPM 

 

 

Figure 4. Gantt chart of robot task 



R1 to complete the task for Route 2 in time, i.e., 1-1 = 1 and 

2-1 = 2 both can be satisfied. Therefore, the lemma holds. █ 

III. EXPERIMENTS 

An example is used to show the application of Algorithm 
1 and the power it has. 

Example 1: For a twin-cluster tool, in CT1, PM1 and PM2 
are serving for Step 1 and Step 2, respectively; in CT2, PM3 
and PM4 are serving for Step 1, and PM5 and PM6 are serving 

for Step 2 (m = ([1,1], [2,2])). A raw wafer should be processed 

at Step 1 for 200s, then be processed at Step 2 for 200s (ρ1 = 

200, ρ2 = 200). For R1, robot moving takes 1s, loading and 

unloading take 3s (1 = 3, v1 = 1). For R2, robot moving takes 

1s, loading and unloading take 3s (2 = 3, v2 = 1). 

By (1), we can obtain that 11 = 12 = (ρ1 + 2α1 + v1)/m11 

= (200 + 2  3 + 1) = 207, 21 = 22 = (200 + 2  3 + 1)/2 = 

103.5. By (3) – (5), we have 1-1 = 6v1 + 6α1 = 24, 2-1 = 4v1 + 

4α1 = 18, and 2-2 = 6v2 + 6α2 = 24. Then, 1 = max(11, 21) 

= 207 and 2 = max(12, 22) = 207 can be obtained. By Al-
gorithm 1, the maximum throughput of tool is 1/69, and robot 

waiting times can be obtained: w1−1  = 183, w2−1  = 93, and 

w2−2 = 83. Therefore, in this situation, the system reaches the 
maximum throughput. As shown in Fig. 5, Route 1 and 2 are 
running periodically with Algorithm 1. 

Let GAPj describe the gap between j and the cycle time 

obtained by Algorithm 1 of CTj, jN2
+, then can be obtained 

by following equations. 

 GAP1 =
1-1 − 1 

1
 (33) 

 GAP2 =
2-2 − 2 

2
 (34) 

Fig. 6 and 7 display the variation of GAP1 and GAP2 as 
the processing time of each step increases. Assume that there 

is a twin-cluster tool with 1[60, 200], 2[60, 200], 1 = 3, 

v1 = 3, 2 = 3, v2 = 2, and m = ([1, 2], [2, 1]). Notice that, in 
most of cases, GAP1 and GAP2 tend to 0. Further, for some 
uncommon cases, GAP1 and GAP2 still are no more than 0.5. 

We also analyze the relationship of robot action time and 
tool optimal schedule with Algorithm 1. Assume that there is 

a twin-cluster tool with WFP = [(2, 2), (2, 2)], 1 = 2 = 160, 

(21 + v1)[6, 20] and (22 + v2)[6, 20]. According to Fig. 
8 and 9, as the times needed for swap sequence of R1 increase, 
GAP1 and GAP2 increase gradually. However, GAP1 and 
GAP2 also hold within an acceptable range. 

PM2

PM3

PM4

PM5

PM6

R1

R2

move unload load process

Route 1 Route 2

PM1

 

Figure 5. Gantt chart of Example 1 

 

Figure 6. Performance of Algorithm 1 for CT1 as processing time increases 

 

Figure 7. Performance of Algorithm 1 for CT2 as processing time increases 

 

Figure 8. Performance of Algorithm 1 for CT1 as time needed for swap 

increases 



As shown in Table Ⅱ, there are six cases displayed to 
show the power of Lemma 4, 5, and 6, respectively. Notice 
that, for Cases 1, 3, and 5, they all are satisfy the demands of 
Lemma 4, 5, and 6, such that respective GAP1 and GAP2 
both equal to 0. Further, for Cases 2, 4, and 6, they do not suit 
above sufficient conditions for optimal schedule such that, 
GAP1 or GAP2 is larger than 0. 

IV. CONCLUSION 

In recent years, twin-cluster tools have gained popularity 
due to their ability to reduce system load and improve space 
utilization efficiency through multiple processing routes. 
Meanwhile, periodic schedule is crucial for maintaining wa-
fer quality. This paper focus on scheduling a twin-cluster tool 
to make sure that processing routes in the tool work periodi-
cally. By doing so, the workload of each module in the twin-
cluster tool is analyzed to determine the optimal cycle time. 
Then, a mathematical programing model is presented to min-
imize the cycle time of the tool. An efficient algorithm is pro-
posed to obtain the accurate robot task time. Further, several 
sufficient conditions are presented to ensure that the twin-clus-
ter tool achieves the optimal cycle time. According to a num-
ber of effective examples, the effectiveness of presented 
method is confirmed. In practice, the wafer processing time of 
each chamber is a variable rather than a constant, which makes 
many existed studies unfeasible. In the future, we will analyze 
the system cycle time of twin-cluster tools with processing 
time variation. 
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Figure 9. Performance of Algorithm 1 for CT2 as time needed for swap 

increases 

TABLE Ⅱ.           PERFORMANCE OF SUFFICIENT CONDITIONS 

No. Parameters 1 2 
1-1

 
2-2

 GAP1 GAP2 

1 

1 = 120, 2 = 

80, 1 = 5, v1 = 

2, 2 = 5, v2 = 2, 

WFP = ([2, 2], 
[2, 2]) 

66 66 66 66 0% 0% 

2 

1 = 120, 2 = 

80, 1 = 3, v1 = 

2, 2 = 5, v2 = 2, 

WFP = ([2, 2], 
[2, 2]) 

64 66 66 66 3% 0% 

3 

1 = 120, 2 = 

80, 1 = 5, v1 = 

2, 2 = 5, v2 = 2, 

WFP = ([1, 1], 
[2, 1]) 

132 66 132 66 0% 0% 

4 

1 = 120, 2 = 

80, 1 = 3, v1 = 

2, 2 = 5, v2 = 2, 

WFP = ([1, 1], 
[2, 1]) 

128 66 132 66 3% 0% 

5 

1 = 120, 2 = 

80, 1 = 5, v1 = 

2, 2 = 5, v2 = 2, 

WFP = ([1, 2], 
[1, 1]) 

66 132 66 132 0% 0% 

6 

1 = 120, 2 = 

80, 1 = 5, v1 = 

2, 2 = 3, v2 = 2, 

WFP = ([2, 1], 
[1, 1]) 

66 128 66 132 0% 3% 

 


