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Abstract. Machine learning techniques, regardless of being supervised or unsu-
pervised, have attracted extensive research attention in handling data classifica-
tion. Typically, among supervised machine learning algorithms, Support Vector
Machine (SVM) and its extensions have been widely used in various areas due
to their great prediction capability. These learning algorithms basically treat fea-
tures of the instances independently when using them to do classification. How-
ever, in applications, features are commonly correlated with complex network
structures. Ignoring such a characteristic and naively implementing the SVM al-
gorithm may yield erroneous classification results. To address the limitation of
the SVM algorithm, we propose new learning algorithms which accommodate
network structures in the features of the instances. Our algorithms capitalize on
graphical model theory and make use of the available R software package for
SVM. The implementation of the proposed learning algorithms is computation-
ally straightforward. We apply the new algorithms to analyze the data arising
from a gene expression study.

Keywords: Classification · Graphical model · Network structure · Support vector
machine.

1 Introduction

In supervised learning, the support vector machine (SVM) classifier has been popularly
used. Initially proposed for binary classification, the SVM has a number of merits in-
cluding accuracy and robustness for prediction (e.g., [2]), [3], [23]. The SVM has been
successfully applied to different areas, including genomic studies in medical science
[8], text classification [11], and image retrieval [22].

Various extensions of the SVM have been available. For instance, the least squares
support vector machine (LS-SVM) and its variant, the weighted LS-SVM, were devel-
oped. These methods work with (weighted) least squared cost functions and impose
equality constraints instead of inequality constraints required by the standard SVM
method ([19], [20]). Other useful variants of the SVM include the bagging and boosting
methods which ensemble individual classifiers to further enhance the accuracy of the
classification procedures (e.g., [12], [16]).
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Although different extensions of the SVM have been proposed, research gaps still
remain. Notably, almost all available methods treat the features of the instances in-
dependently and ignore possible dependence structures among them. In applications,
however, data are often correlated in various forms. For example, in genomic stud-
ies some genes may be associated since they come from the same pathway, and they
may function together in the development of diseases. Ignoring the complex associa-
tion structures of the features in instances and blindly using the SVM or its variants
for classification can yield misleading or erroneous results. Driven by this, in this paper
we develop new SVM-based classification methods with association network structures
among the features incorporated. Our methods utilize the graphical model theory and
allow the features to follow an exponential family distribution. Our algorithms facili-
tate informative features with complex network structures into classification learning
procedures, and they are computationally easy to implement.

Our research is partially motivated by tackling the challenges arising from a gene
expression study [7]. The study targets to identify gene signature for the distinction be-
tween acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The
primary objectives are to identify possible pathways of genes that are expressed to-
gether, and to classify future patients into the AML or ALL group for the effective
treatment by using the identified gene signature. To this end, it is important to under-
stand the association structures among the genes to effectively classify the classes of
AML and ALL for prediction.

The remainder of this article is organized as follows. In Section 2, we introduce
the framework and review the SVM method. Discussion on identifying the network
structures of the features is given in Section 3. In Section 4, we propose new learn-
ing algorithms which generalize the scope of the support vector machine classifiers.
In Section 5, we apply the proposed algorithms to analyze the gene expression dataset
from the motivating microarray study [7]. A general discussion is presented in the last
section.

2 Background and Review of Support Vector Machine

Consider a binary classification problem with a training sample {(xi,yi) : i = 1, . . . ,n},
where xi represents a p-dimensional column vector of the features for instance i, and yi
is the corresponding class label for instance i, taking a value from {-1, 1} which stands
for two different classes. Given the training data, the standard SVM finds a hyperplane

{x ∈ Rp : β
′x+b0 = 0} (1)

that separates the two classes with a maximized margin defined by y(β
′
x+b0)

‖β ‖2
, where β

is a p-dimensional column parameter vector determining the direction of the separating
hyperplane, b0 is a scalar which measures the shift of the plane from the origin, (x,y)
is an observation with instance features x and label y, and ‖ ·‖2 represents the L2 norm.

Equivalently, using the training sample {(xi,yi) : i = 1, . . . ,n} to find (1) with the
maximal margin can be carried out by minimizing ‖β‖2 under certain constraints [9],
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i.e.,

min
β ,b0

{
1
2

β
′
β

}
(2)

subject to
yi{β ′xi +b0} ≥ 1 for i = 1, . . . ,n.

The solution of the optimization (2) gives a band of 2× 1
‖β ‖2

unit between the two

classes, called the margin area, with the hyperplane β
′x+ b0 = 0 being in the middle

of the band. Such a determined hyperplane separates the two classes perfectly with a
minimal distance of 2× 1

‖β ‖2
between the two classes, and does not allow any instance

to fall into the interior of the margin area. In applications, however, such a hyperplane
may not exist to perfectly separate the instances into each side according to their classes.

One remedy is to relax the requirement of perfectly separating the instances in the
two classes and allow some instances to fall into the margin area associated with a
hyperplane or even across to the wrong side of the hyperplane. To the end, we introduce
the so-called slack variable, say ξi, for i = 1, . . . ,n, to indicate the margin error for each
instance. Then the optimization problem (2) is relaxed as

min
β ,b0,ξ

{
1
2

β
′
β + B

n

∑
i=1

ξi

}
(3)

subject to
yi{β ′xi +b0} ≥ 1−ξi and ξi ≥ 0 for i = 1, . . . ,n,

where ξ = (ξ1, . . . , ξn)
′
, B is a cost parameter controlling the balance between maxi-

mizing the margin and minimizing the training error caused by allowing some instances
to fall into the margin or cross the separating boundary. This procedure is termed the
soft margin SVM.

Using the Lagrangian multiplier method, the minimization problem (3) can be rewrit-
ten as

min
β ,b0, ξ

(
1
2

β
′
β + B

n

∑
i=1

ξi−
n

∑
i=1

αi

[
yi{β ′xi +b0}−1+ξi

]
−

n

∑
i=1

µiξi

)
, (4)

where for i = 1, . . . ,n, αi and µi, satisfying 0 ≤ αi ≤ B and µi ≥ 0, are the Lagrangian
multipliers corresponding to the inequality constraints in (3), and ξi ≥ 0.

The procedure (4) is a standard convex optimization problem which can be equiva-
lently implemented using its dual formulation:

max
α

{ n

∑
i=1

αi −
1
2 ∑

i, j
αiα jyiy j < xi,x j >

}
(5)

subject to
n

∑
i=1

αiyi = 0 and 0≤ αi ≤ B for i = 1, . . . ,n,
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where < ·, ·> represents the inner product of two vectors, and α= (α1, . . . ,αn)
′

is the
vector of constants (e.g., [1], Section 13.2).

Due to the linearity of the function β
′x+b0 in (1), the learning algorithm (4) is easy

to implement. But there is an important drawback. In many situations, even with some
instances allowed to be misclassified, one cannot obtain a hyperplane of the form (1) to
reasonably separate the classes. That is, a linear hyperplane is not adequate to separate
the majority of data. To handle this problem, we enlarge the framework of classification
by embedding the data with p-dimensional features into a new space (denoted F ) with
a higher dimension q, say, so that a hyperplane can be constructed in the new space to
separate the classes [3].

To be precise, let Φ(x) denote a projection function which maps the original feature
x (in the p-dimensional feature space, say X ) into the q-dimensional projected space
F . Then we repeat the preceding SVM procedures to find a hyperplane in the projected
space F :

w′Φ(x)+b = 0

which separates the two classes with a maximum margin in the projected space F ,
where w is a q-dimensional column vector determining the direction of the separating
hyperplane in the projected space F , and b is a scalar which measures the shift of the
plane from the origin. The corresponding Lagrangian formulation can be obtained in
the same manner as (4) with xi replaced by Φ(xi).

Such a procedure requires an explicit form of the projection function Φ(·) which is
basically unavailable. An improper specification of Φ(·) may seriously deteriorate the
performance of the support vector machine [9]. Moreover, the projection function Φ(·)
is often nonlinear, and the number of its evaluation for the observations increases with
the size n of the training data.

To overcome these issues, instead of finding a suitable function Φ(·), a viable strat-
egy is to introduce the kernel function and then reformulate (5) as

max
α

{ n

∑
i=1

αi −
1
2 ∑

i, j
αiα jyiy jK(xi,x j)

}
(6)

subject to
n

∑
i=1

αiyi = 0 and 0≤ αi ≤ B for i = 1, . . . ,n,

where K(·, ·) is a kernel function whose value depends only on the inner product of the
transformations of xi and x j in the projected space F [13], B is the cost parameter, and
α= (α1, . . . ,αn)

′
is the vector of constants (e.g., [1], Section 13.2).

The solution of the quadratic optimization problem (6) is optimal if and only if
the kernel function K(·, ·) satisfies the Mercer’s condition and the Karush-Kuhn-Tucker
conditions [9]. Basically, only those instances xi with non-zero αi are useful in deter-
mining the hyperplane, and they are called the support vectors [4]. Geometrically, the
support vectors correspond to the instances on the edges, those entering into the margin
area, and those crossing the wrong side of the separating hyperplane in the projected
space F .
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Common choices of kernel functions include the polynomial kernel, K(xi,x j) =
(1+x′ix j)

d ; the Gaussian kernel,

K(xi,x j) = exp
{
−
(xi−x j)

′(xi−x j)

σ

}
;

and the sigmoidal kernel, K(xi,x j) = tanh(2x′ix j +1); where d is a positive integer and
σ is a positive scalar parameter (e.g., [1], Section 13.6).

The SVM is conceptually easy to understand and computationally manageable. Its
solution enjoys the sparsity in the sense that the number of support vectors is consider-
ably smaller than the size of the training data. The flexibility of the inclusion of kernel
functions allows us to use the SVM to classify nonlinearly separable data. Due to the
uniqueness of the solution, there is no need to invoke any iterative optimization pro-
cedure as commonly needed for other classification methods such as neural networks.
The SVM method is considered to be the best learning algorithm and is popularly used
in many areas (e.g., [1]).

3 Feature Network Structure

Although the SVM algorithm has been widely used, it has limitations. A notable weak-
ness of the SVM method is the ignorance of the structures of features. While using
different kernel functions gives the SVM classification flexibility in separating data,
this learning algorithm is restrictive in that the features of the instances are all equally
treated and there is no distinction between important and unimportant features; the rela-
tionship of the features is essentially ignored. When the features of the instances exhibit
complex network structures, the usual SVM algorithm with a direct use of kernel func-
tions may fail for proper classification.

To handle data with structures existing in the features, in this paper we develop
new classification learning algorithms which accommodate the usual SVM method as
a special case. Our learning algorithms consist of two steps where in the first step, we
explore the network structure of the features using the graphical theory, as described in
this section.

3.1 Basics of Graphical Models

We use an undirected graph, denoted as Gi =(Vi,Ei), to describe the relationship among
the features of the instance xi = (xi1, · · · ,xip)

′, where we let Vi denote the set of all the
indexes of the features in xi and let Ei denote the subset of Vi×Vi which contains the
index pairs for those features in Xi that are related, in the sense to be elaborated in the
sequel. We consider the case where the sets Vi and Ei are common for i = 1, · · · ,n, so
we let V and E denote them, respectively.

To characterize the distribution of the instance xi, we consider the exponential fam-
ily distribution

f (xi;β ,Θ) = exp

{
∑
r∈V

βrB(xir)+ ∑
(s,t)∈E

θstB(xis)B(xit) + ∑
r∈V

C(xir)−A(β ,Θ)

}
,(7)
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where β = (β1, · · ·βp)
′ is the p-dimensional vector of parameters, Θ = [θst ] is a p× p

symmetric matrix with diagonal elements zeros, B(·) and C(·) are given functions, and
A(β ,Θ) is the normalizing constant which makes (7) integrated as 1.

Formulation (7) gives a broad class of models which covers many useful distribu-
tions. For example, if B(u) = u

σ
and C(u) =− u2

2σ2 for a positive parameter σ , then (7)
yields the well-known Gaussian graphical model (e.g, [6], [10], [14]). If setting β = 0,
B(u) = u, and C(u) = 0 with u ∈ {0,1}, then (7) reduces to

exp

{
∑

(s,t)∈E
θstxisxit −A(Θ)

}
, (8)

which is the Ising model without the singletons [18].
To focus on featuring the pairwise association among the features of xi, similar to

the structure of (8), we consider the distribution

f (xi;Θ) = exp

{
∑

(s,t)∈E
θstxisxit + ∑

r∈V
C(xir)−A(Θ)

}
, (9)

where the function A(Θ) is the normalizing constant, and the θst and C(·) are defined as
for (7). Model (9) is a special case of (7) which constraints the main effects parameters
βr in (7) to be zero; a nonzero value of θst implies that the features Xis and Xit are
conditionally dependent given other features.

3.2 Learning Model Parameters

To learn the value of Θ , one may apply the likelihood method using the distribution
(9) directly. Alternatively, a simpler learning method can be carried out based on a
conditional distribution derived from (9) ( [10], [17]). For every s∈V , let xi,V\{s} denote
the (p− 1)-dimensional subvector of xi with its sth component deleted, i.e., xi,V\{s} =

(xi1, · · · ,xi,s−1,xi,s+1, · · · ,xip)
′. By some algebra, we have

f
(
xis|xi,V\{s};θs

)
= exp

{
xis

(
∑

t∈V\{s}
θstxit

)
+C (xis) − D

(
∑

t∈V\{s}
θstxit

)}
,(10)

where D(·) is the normalizing function ensuring the integration of (10) equal one, and
θs = (θs1, · · · ,θs,s−1,θs,s+1, · · · ,θsp)

′ is a (p−1)-dimensional vector of parameters in-
dicating the relationship of Xis with all other features Xir for r ∈ {1, · · · , p}\{s}.

Let `(θs) be the log likelihood for θs obtained from using (10) with the multiplica-
tion factor − 1

n included and the parameter-free terms omitted:

`(θs) = =
1
n

n

∑
i=1

{
−xis

(
∑

t∈V\{s}
θstxit

)
+D

(
∑

t∈V\{s}
θstxit

)}
. (11)

Then learn the value of θs by penalizing the log likelihood (11), given by

θ̂s = argmin
θs

{`(θs)+λ ‖θs‖1} ,
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where λ is a tuning parameter, and ‖·‖1 is the L1-norm, or the well-known LASSO
penalty [21]. The LASSO penalty is frequently considered when dealing with graphical
models; it has been implemented in R with the available packages “huge” and “XMRF”.

While the choice of the tuning parameter λ is not unique, we employ the BIC
approach here to select the tuning parameters λ , as suggested by [24]. BIC tends to
outperform other criteria in many situations, especially in the setting with a penalized
likelihood function.

The preceding procedure is repeated for all s ∈V and yields the learned value θ̂s for
all s ∈V . For (s, t) ∈ E, the learned θ̂st and θ̂ts are not necessarily identical although θst
and θts are constrained to be equal. To overcome this problem, we apply the AND rule
([10], [17]), which takes the final learned values of θ̂st and θ̂ts to be their maximum if
both θ̂st and θ̂ts are not equal to zero; θ̂st and θ̂ts are both set to be zero if one of them
is zero.

To determine a learned set of edges, we define

N̂ (s) =
{

t ∈V : θ̂st 6= 0
}

for s ∈V . Then
Ê =

{
(s, t) : s ∈ N̂ (t) and t ∈ N̂ (s)

}
is taken as the set of the edges that are learned to exist. The R package “huge” can be
implemented to display the graphic results.

Under regularity conditions, the learned set of edges Ê approximates the true net-
work structure E with a high probability. [17] showed that P

(
Ê = E

)
→ 1 as n→ ∞.

4 Support Vector Machine with Network Structured Features

In this section, we propose two new learning algorithms which generalize the support
vector machine classifier to incorporate network structured features. These algorithms
differ in the way of learning the network structures of the features in the space X .

4.1 SVM with Homogenous Network Structured Features

The first learning algorithm applies to the case where the feature space X contains
homogeneous structures for all the classes. In this case, we ignore the class label and
pool the instances when using the training data to learn the feature network.

To be precise, in the training data {(xi,yi) : i = 1, . . . ,n}, we use the measurements
{xi : i= 1, . . . ,n} for the p-dimensional features x= (x1, . . . ,xp)

′ to identify the network
structure among the features xk(k = 1, . . . , p). Using the learning algorithm described
in Section 3, we learn a network structure for the p features:

ÊP =
{
(s, t) : s ∈ N̂P(t) and t ∈ N̂P(s)

}
, (12)

where

N̂P(s) =
{

t ∈V : θ̂st 6= 0
}

(13)
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for s ∈V . We call the identified feature structure ÊP the homogenous network structure.
To reflect different association structures among the features xk (k = 1, . . . , p), we

divide the estimated graph ĜP = (V, ÊP) as a sequence of non-overlapped and inter-
connected subgraphs {Ĝs

P : s = 1, ...,K}, where K is a positive integer. That is, for s =
1, . . . ,K, Ĝs

P = (V̂ s, Ês) is a subgraph with the vertex subset V̂ s and the edge subset Ês;
the vertex sets V̂ s and V̂ t are disjoint if s 6= t; θ̂st is not zero only when s and t fall in
the same vertex subset, and for s and t which fall in different vertex subsets, θ̂st must be
zero; when the edge subset Ês is empty, the corresponding vertex subset V̂ s contains a
single element. In principle, the integer K can be as small as 1 and as large as p, but in
many practical problems, we often have that 1 < K < p and that K can be considerably
much smaller than p.

The subgraph sequence {Ĝs
P : s = 1, ...,K} can not only display the network struc-

tures of the features xk (k= 1, . . . , p) but also offers us an effective way to summarize the
associated feature information, thus, achieving better classification learning outcomes.
Rather than using the original measurements of the training data {(xi,yi) : i = 1, . . . ,n}
to classify the class labels, we make use of the network structures to form a surrogate
training sample {(x∗i ,yi) : i = 1, . . . ,n} where x∗i = (x∗

′
i1, . . . ,x

∗′
iK)
′, called the surrogate

features, is a K-dimension vector, and x∗is is a summary subvector of the features deter-
mined by the subgraph Ĝs

P for s = 1, . . . ,K.
While multiple ways are possible to define the surrogate features x∗i for each in-

stance i, here we consider three useful formulations. The first formulation summarizes
the feature measurements using the vertex information in the subgraphs and defines x∗i
to be xV

i = (xV
i1, . . . ,x

V
iK)
′ with

xV
is =

1

|V̂ s| ∑
j∈V̂ s

xi j

for s = 1, . . . ,K, where |V̂ s| is the cardinality of the vertex subset V̂ s.
The second formulation uses the edge information in the subgraphs and defines x∗i

to be xE
i = (xE

i1, . . . ,x
E
iK)
′ with

xE
is =

1

|Ês| ∑
( j,k)∈Ês

xi jxik

for s = 1, . . . ,K, where |Ês| is the cardinality of the edge subset Ês; when Ês is empty,
we define xE

is to be the feature xis whose index falls in the corresponding vertex subset
V̂ s.

There is certain similarity of the formulation of xV
i to the k-nearest neighbors (k-

NN) algorithm, but the “neighborhood” in defining xV
i is not determined by a distance

of instances but determined by the association strength of the features. The surrogate
features xV

i basically are the average of original measurements of the features that are
determined by the vertex subsets of the network structures Ĝ, and each component in
the vertex subsets is treated equally. In contrast, the surrogate features xE

i accommodate
pairwise association among the features, and a feature which is more connected with
other features contributes differently from a feature less connected with others.
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Extensions of the formulation of xV
i or xE

i can also be employed for individual appli-
cations. For example, one may introduce weights in the formulation to reflect different
contributions of different features in conjunction of the feature network structure. In sit-
uations with outliers, rather than taking the average operation, one may use the median
of {xi j : j ∈ V̂ s} or {xi jxik : ( j,k) ∈ Ês} to define xV

is or xE
is.

A third method of constructing the surrogate feature x∗i = (x∗i1, ...,x
∗
ik)
′ is to let each

subvector x∗is be the vector (xi jxik : ( j,k) ∈ Ês)
′, which corresponds to the pairwise

product for those connected features in subgraph Ĝs, where s = 1, ...,K. we let xPW
i

denote such a surrogate feature vector.
Once a surrogate training sample {(x∗i ,yi) : i = 1, . . . ,n} is formed, in the next step

we apply the SVM algorithm (6) with modifications to perform classification. Namely,
for a chosen kernel function K∗(·, ·), solve the constrained optimization

max
α∗

{ n

∑
i=1

α
∗
i −

1
2 ∑

i, j
α
∗
i α
∗
j yiy jK∗(x∗i ,x

∗
j)

}
(14)

subject to
n

∑
i=1

α
∗
i yi = 0 and 0≤ α

∗
i ≤ B∗ for i = 1, . . . ,n,

where α∗ = (α∗1 , . . . ,α
∗
n )
′

is the vector of constants, and B∗ is a cost parameter.

4.2 SVM with Heterogeneous Network Structured Features

The second learning algorithm complements the algorithm described in Section 4.1.
This algorithm applies when the feature space X includes nonhomogeneous structures
for different classes. In such a circumstance, it is imperative to incorporate the class
labels into the process of learning the feature network structures.

Let N+1 = {i ∈ {1, ...,n} : yi = 1} and N−1 = {i ∈ {1, ...,n} : yi = −1} denote the
index sets for the instances in the two classes. The algorithm consists three steps. First,
we examine the network structures for the p-dimensional features x = (x1, . . . ,xp)

′ sep-
arately according to the class label. Secondly, we use the two sets of surrogate samples
obtained from the first step to construct two hyperplanes separately, and finally, we
carry out prediction for future instances based on these two hyperplanes.

To be precise, we proceed with the following three steps:

Step 1: We identify network structures for instances.

For the training data subsample with instances {xi : i ∈ N+1}, we employ the same
learning algorithm described in Section 3 except for replacing i = 1, . . . ,n with i ∈ N+1,
and then we obtain a learned network structure for the p features that are associated
with the class label +1:

Ê+1 =
{
(s, t) : s ∈ N̂+1(t) and t ∈ N̂+1(s)

}
,

where
N̂+1(s) =

{
t ∈V : θ̂

+1
st 6= 0

}
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for s ∈V , and θ̂
+1
st is the learned value of θst using instances {xi : i ∈ N+1}.

Similarly, repeating the algorithm for the training data subsample with instances
{xi : i ∈ N−1}, we learn a network structure for the features associated with the class
label −1:

Ê−1 =
{
(s, t) : s ∈ N̂−1(t) and t ∈ N̂−1(s)

}
,

where
N̂−1(s) =

{
t ∈V−1 : θ̂

−1
st 6= 0

}
for s ∈V , and θ̂

−1
st is the learned value of θst based on instances {xi : i ∈ N−1}. We call

the identified feature structures Ê+1 and Ê−1 the label heterogeneous network struc-
tures.

Step 2: We determine two hyperplanes using the label heterogenous network struc-
tures Ê+1 and Ê−1.

For the learned graph Ĝ+1 = (V, Ê+1) corresponding to the class with label +1,
we divide it as a sequence of non-overlapped and inter-connected subgraphs {Ĝs

+1 :
s = 1, ...,K+1} following the discussion in Section 4.1. Based on them, we form a set
of surrogate features for all the instances, and let {(x∗i,+1,yi) : i = 1, ...,n} denote the
resulting surrogate sample, where x∗i,+1 can be determined similarly to xV

i , xE
i or xPW

i as
discussed in Section 4.1.

Then we apply the optimization (14) to the surrogate training data {(x∗i,+1,yi) : i =
1, ...,n}, and obtain the separating hyperplane

f+1(x∗+1) = 0

where

f+1(x∗+1) =
n

∑
i=1

α̂
+
i yiK+(x∗+1,x

∗
i,+1)+b+1, (15)

x∗+1 is obtained from applying the subgraph structure Ĝ+1 to a given feature vector x,
K+(·, ·) is a kernel function, and α̂

+
i and b+ are, respectively, the learned values of αi

and b using the surrogate training sample {(x∗i,+1,yi) : i = 1, ...,n}.
In an analogous way, for the estimated graph Ĝ−1 = (V, Ê−1) corresponding to the

class with label −1, we divide it as a sequence of non-overlapped and inter-connected
subgraphs {Ĝs

−1 : s = 1, ...,K−1}, and form a surrogate sample {(x∗i,−1,yi) : i = 1, ...,n},
where x∗i,−1 is obtained similarly to x∗i,+1.

Repeating the procedure for obtaining (15) to the surrogate training data {(x∗i,−1,yi) :
i = 1, ...,n}, we obtain the separating hyperplane

f−1(x∗−1) = 0

where

f−1(x∗−1) =
n

∑
i=1

α̂
−
i yiK−(x∗−1,x

∗
i )+b−1, (16)
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x∗−1 is obtained from applying the subgraph structure Ĝ−1 to the feature vector x,
K−(·, ·) is a kernel function, and α̂

−1
i and b− are, respectively, the learned values of

αi and b using the surrogate training sample {(x∗i,−1,yi) : i = 1, ...,n}.

Step 3: We perform prediction.

To predict the class label for a new instance x, we first construct the surrogate feature
vectors x∗+1 and x∗−1, respectively, based on Ĝ+1 and Ĝ−1, and then calculate f+1(x∗+1)
and f−1(x∗−1) using (15) and (16), respectively. Finally, the class label for the instance
x is assigned as +1 if

| f+1(x∗+1)|> | f−1(x∗−1)| (17)

and −1 otherwise.

5 Real Data Application

Golub et al. [7] reported a gene expression microarray analysis expecting to identify
gene signature for the distinction between acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL), where gene expression levels were measured using
Affymetrix oligonucleotide arrays. The data contain 7128 genes and 72 specimens com-
ing from the two classes, with 47 specimens in class ALL and 25 specimens in class
AML. In particular, according to the study design, those 72 samples is composed of the
training data of 38 specimens (27 in class ALL and 11 in class AML) and the test data of
34 specimens (20 in class ALL and 14 in class AML). The primary objectives are (1) to
identify the genes that are expressed differentially between AML and ALL, (2) to find
possible pathways of genes that are expressed together, and (3) to classify the classes of
AML and ALL using the gene expressions. We apply the proposed SVM learning algo-
rithms to incorporate the network structures of the genes (as possible pathway effects)
to do prediction of the leukemia class.

Since the number of genes is large relative to the sample size, it is necessary to
do feature screening to remove non-informative features before applying a learning
algorithm. While various feature screening methods available in the literature (e.g., [5],
[10], [15], ), we choose the feature screening method in [15] because it is free of model
specification and is available in the R package energy. It turns out that 14 genes are
selected from the 38 training sample data, which are strongly correlated to the response
of different leukemia types, and we labeled them by 1,2, · · · ,14.

We now apply the proposed learning algorithms to these 14 selected genes. In the
first step, we use the package “XMRF” to determine the network structures of the 14
genes separately for class ALL and class AML. The learned network structures are dis-
played in Figure 1. In contrast, we also learn network structure by pooling the samples
for the two class, and the homogeneous network structure is displayed in Figure 2. We
apply the three methods described in Section 4 to construct surrogate features. Gaussian
radial kernel is used in the SVM classifiers. For comparison purposes, the conventional
SVM model is implemented using the R package “e1071”.
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We then apply all the classifiers learned from the training sample to the 34 test spec-
imens to examine their performance. The prediction results are shown in Table 1. All
the classifiers yield comparable results, and the proposed algorithms perform slightly
better than the conventional SVM algorithm. Furthermore, we evaluate the performance
of the classifiers using three widely used measures, precision, recall, and F-measure,
and report on the results in Table 2. It is evident that the proposed classifiers all outper-
form the standard SVM algorithm, regardless how we learn the network structures for
the features. Applying the new learning algorithms enable us to offer a better prediction
of the leukemia classes than the traditional SVM does. In addition, it gives us descrip-
tions of the association structures of the features, which is important to be incorporated
in the classification process.
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Fig. 1. Network structures of the features within each class.
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Fig. 2. Network structures of the features for pooled classes.
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Table 1. 2×2 contingency table for prediction

Heterogeneous-Network Homogeneous-Network SVM
vertex edge pair vertex edge pair

ALL ALM ALL ALM ALL ALM ALL ALM ALL ALM ALL ALM ALL ALM
ALL 14 1 13 0 13 0 14 1 13 0 13 0 13 1
ALM 0 19 1 20 1 20 0 19 1 20 1 20 1 19

Table 2. Performance of the new learning algorithms in comparison to SVM

Heterogeneous-Network Homogeneous-Network SVM
vertex edge pair vertex edge pair

Precision 0.933 1.000 1.000 0.993 1.000 1.000 0.928
Recall 1.000 0.928 0.928 1.000 0.928 0.928 0.928

F-measure 0.965 0.963 0.965 0.954 0.965 0.965 0.928

6 Discussion

Classification is of broad interest in many fields, and features used for prediction are
often correlated with network structures. Ignoring association structures of features may
produce unsatisfactory prediction outcomes. In this paper, we employ the graphical
model theory to identify network structures for the features, and then incorporate such
a characteristic into the classification learning process. The application of our proposed
algorithms demonstrates their better performance than the usual SVM algorithm.

As described in Section 4, construction of surrogate features is not unique. In our
application, we explore three ways of summarizing the information carried by the fea-
ture networks. Other methods such as weight mean statistics or weighted robust statis-
tics may also be considered, and it is worthwhile to examine how they affect learning
outcomes.
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