
EasyChair Preprint
№ 8799

MARVer: a Tool for Verification of Robotic
System’s Safety

Zekeriyya Demirci, Metin Özkan, Muhammed Talha Şahin,
Hüseyin Can Ergün and Ahmet Yazi̇ci̇

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 6, 2022

MARVer: Robotik Sistemlerin Emniyetini Doğrulama Aracı

MARVer: A Tool for Verification of Robotic System’s Safety

Zekeriyya Demirci1, Metin Ozkan2, M. Talha Sahin2, H. Can Ergun2, Ahmet Yazici2

1Yazılım Mühendisliği Bölümü

Eskisehir Osmangazi Üniversitesi, Eskişehir
zekeriyya.demirci@ogu.edu.tr

2Bilgisayar Mühendisliği Bölümü

Eskisehir Osmangazi Üniversitesi, Eskişehir
meozkan@ogu.edu.tr

Özetçe

Robotik sistem geliştiricileri genellikle geliştirilen sistemlerin

emniyet doğrulamasını deneyimlerine dayalı olarak test

yöntemleri ile gerçekleştirmektedir. Ancak robotik sistemler

üretim süreçlerini daha esnek hale getirme ihtiyacından dolayı

daha otonom ve karmaşık hale geldi. Bu durumda robotik

sistemlerin emniyet doğrulamasını daha güvenilir, insan

faktörüne en az bağımlı ve daha az iş yüküne sahip hale

getirmek için resmi ve otomatik doğrulama araçlarına ihtiyaç

duyulmaktadır. Bu motivasyonla bu çalışmada robotik

sistemler için emniyet doğrulaması için geliştirilmiş bir

yazılım aracı sunmaktadır. Model Destekli Çalışma Anı

Doğrulama Aracı (MARVer), model doğrulama ve çalışma

anı doğrulama yöntemlerini bir arada kullanarak doğrulama

sürecini daha resmi, öngörülebilir ve tekrarlanabilir hale

getirmenin yanı sıra doğrulama kapsamını artırır. (ROKOS)

kalite kontrolü için otomatik robotik denetim hücresi üzerinde

bir deney yapıldı.

Abstract

Robotic system developers generally perform the safety

verification of the developed systems with testing methods

based on their experience. However, robotic systems have

become more autonomous and complex, with the need to

make production processes more flexible. In this case, there is

a need for formal and automated verification tools to make the

safety verification of the robotic systems more reliable, least

dependent on the human factor, and less workload. With this

motivation, this paper presents a tool developed for safety

verification for robotic systems. The Model Aided Runtime

Verification Tool (MARVer) employs model-checking and

runtime verification methods combinatory making the

verification process more formal, predictable, and repeatable

manner as well as increasing the scope of verification. An

experiment was conducted on an automated robotic inspection

cell for the quality control of automotive body-in-white

(ROKOS).

1. Introduction

The increasingly widespread use of robotic systems causes us

to encounter these systems more often at different points, such

as medical services, unmanned vehicles, and especially

industrial production [1], [2]. In particular, these systems,

which are equipped with sensors and have autonomous

features, have the ability to perceive their environment, make

decision and implement it. Having all these capabilities makes

robotic systems more complex than ever before. Furthermore,

robotic systems share their workspace with mobile entities

such as humans or other autonomous systems. Therefore, an

error that may occur for any reason can cause irreversible and

even fatal accidents. For this reason, very intensive testing

processes take place in transforming safety-critical systems

into products. For a system to be highly safe, all possible

scenarios must be considered in the verification and validation

(V&V) processes. However, traditional test methods are not

efficient in the verification processes of complex systems such

as robotics. Instead, V&V methods such as formal verification

should be implemented, which ensures that properties will be

provided as long as the system is properly modeled.

Formal verification is a technique in which the system is

modeled mathematically and checks whether the given

properties are met [3, 4]. [5] offers state of art in formal

verification for autonomous robotic systems by analyzing the

challenges. They categorize formal verification under three

main titles: model checking, theorem proving, and runtime

verification. Model-checking is a widely used formal

verification method [6]. Using formalism methods such as

timed automata or Petri nets, systems with distinct

characteristics such as concurrent, probabilistic, or timed

systems can be modeled by verifying whether it meets the

desired properties by utilizing the model-checking method

[5]. The desired properties are expressed as logical formulas

such as temporal logic and verified on the model by

considering all possible system traces [6]. On the other hand,

runtime verification is a lightweight dynamic analysis method

that observes whether the systems meet the given

specifications [7, 8]. While runtime verification verifies

systems at runtime, model checking verifies systems before

deployment [1].

The software development life cycle (SDLC) consists of many

steps where different V&V methods are applied. Static

verification methods such as model checking are applied at the

early stage of SDLC, while dynamic verification methods such

as runtime verification (RV) are applied at runtime when the

system is operational. Performing more than one verification

method together on a system can increase the scope of

verification as well as add a more formal structure to the

process. Using different verification methods in combination,

especially in developing quite complex systems such as

robotics, can make the system more reliable against possible

errors.

This study aims to perform a comprehensive verification

process for robotic systems that bring multiple V&V methods

together. For this purpose, a Model Aided Runtime

Verification Tool (MARVer) is proposed for ROS-compatible

robotic systems that utilize model checking and runtime

verification methods. MARVer is constructed on

ROSMonitoring [9], an open-source runtime verification tool

for ROS-compliant systems, and the UPPAAL [10], a well-

known model-checking tool for real-time systems. MARVer

can process an UPPAAL model file, convert queries to a

suitable temporal logic (TL) format that the verifier can

manage, and perform a runtime verification on the system.

MARVer allows the entire verification process to be easily

managed through an interface. Thus, it acts as a bridge

between users and the complex verification process while

making it easier to manage. Moreover, applying a

transformation prevents the rewriting of the properties to be

verified for each method. In addition, the safety of robotic

systems is not approved just by inspecting the robotic system's

software. For instance, a collision is the most critical safety

issue in robotic systems. Generally, the software of the robotic

system does not provide data about the distances between the

robot and obstacles. MARVer includes add-ons to get data like

distances not provided by the system software by supporting

additional data sources. Thus, it reduces the need for domain-

specific knowledge to build and execute the verification

process.

The rest of the paper is organized as follows. First, the

architecture of the MARVer tool is presented in Section 2.

Then, the application is conducted, and the results are given in

Section 3. Finally, the conclusion of the study is given in

Section 4.

2. Verification Tools for Robotic Systems

Although various approaches have been published for

verifying and validating robotic systems, most have focused

on a specific system. Instead, there is a need for more

comprehensive methods and tools that can be used for most

robotic systems. While there is an intention to combine

different methods and tools to achieve more automated,

flexible, and repeatable approaches, formal solutions with a

wide range of uses are needed. With the combination of two

verification techniques, model checking with UPPAAL and

CoFI model-based testing with ConData, [11] present

ConTEA, a software tool for automatically connecting

UPPAAL to ConData, and discuss their contribution to

industrial software development. [12] offer a model-based

approach including modeling, verification, and automatic code

generation for ROS systems. UPPAAL, a model checker, is

used as a verifier and generates C++ code from timed

automata. They carry out a case study to verify the process of

grasping and moving a cup by a robot. In order to achieve an

automated model-based testing process for multi-robot

systems, [13] propose a testing tool, namely TestIt. It is

designed to work with many tools used in the test

development process. They present a use case using the

UPPAAL family tool. To advance the safety and security of

ROS-compliment robotics systems, [14] offers ROSRV, a

lightweight runtime verification framework. It is based on

ideas that track the system execution by capturing messages,

modifying them if necessary, and performing user-defined

actions. [15] offer an approach to testing real-time systems,

integrating model-based testing with ROS-based systems.

They model the system in UPPAAL and develop an adapter

and interface between DTRON and ROS. They demonstrate

the feasibility of the studied approach by applying a case study

navigating an autonomous platform simulation in a limited

space to reach the target point.

3. MARVer Architecture

MARVer is a model-aided runtime verification tool developed

to verify ROS-compatible systems, offering an extended

verification process utilizing ROSMonitoring [9] and

UPPAAL [10] tools. Essentially it imports an UPPAAL model

file, extracts the queries used for verifying the model-by-

model checking, and utilizes them in the runtime verification

process. MARVer automatically converts the specifications

written in UPPAAL query language into a suitable format that

ROSMonitoring accepts. Thus, it saves users the hassle of

rewriting queries and does not require expert knowledge.

Thanks to the flexible structure of MARVer, users can easily

integrate their systems into MARVer through ROS, along with

the services they have written.

MARVer provides a graphical user interface (GUI) with

which you can manage the entire verification process. This

interface makes it possible to view the UPPAAL model of the

system, prepare the necessary configuration file for the

verification process, specify the properties to be verified, and

monitor the runtime verification process. The overall

architecture of MARVer is shown in Figure 1. The

components indicated by the demo arrow were used in the

experiment.

3.1. Toolchain

MARVer utilizes many tools as a toolchain: ROS,

ROSMonitoring, Gazebo, SRVT, and UPPAAL. ROS is an

open-source, meta-robot operating system that provides

structured communication on top of operating systems[16].

Communication is mainly based on the publisher/subscriber

structure, and messages are announced through topics.

ROSMonitoring [9] is an open-source runtime verification tool

for ROS-compatible systems. It subscribes to topics published

over ROS and verifies the system by checking incoming

messages for violations against formally specified properties.

As a result, it broadcasts a message over ROS indicating

whether the violation has occurred. UPPAAL is a model

checker in which the system is modeled as a network of timed

automata, and properties are expressed as a timed computation

tree logic (TCTL) [17]. It is capable of modeling, simulating,

and verifying systems. It uses queries written in UPPAAL

query language to verify systems. Gazebo [18] brings a fresh

approach to simulation with a complete toolbox of

development libraries and cloud services to make 3D realistic

simulation easy. Iterate fast on new physical designs in

realistic environments with high-fidelity sensor streams.

ROS Framework

SUT (ROS-compliant system)

N1 N2 Nn

Adapters (ROS-compliant system)

N1 N2 Nk

SUT (non-ROS-compliant system)

P1 P2 Pm

Services (ROS-compliant system)

N1 N2 Ni

Runtime verification Tool

ROSMonitoring

MAR er
System modeling and model checking

Tool

MAR er

UPPAAL

topic topic
topic

UC11 ROKOS by OTOKAR GAZEBO (SRVT)

SRVT by IMTGD

ONLINE DISTANCE
TRACKER

ODT by ESOGU

SECURITY ANOMALY
DEDECTOR

STANDARDS
 CHECKER

FAULT INJECTOR

by
IMTGD

MAR er

MAR er

MAR er

model

Figure 1 MARVer architecture

SRVT [19] is the simulation-based robot verification

testing tool (SRVT). SRVT transfers ROKOS to the GAZEBO

simulation environment for the V&V of the system.

Simulation environment using Gazebo, trajectory planning

using Moveit [20], and task management using ROS Smach

[21] package are built in a single ROS package.

3.2. Architecture

MARVer is mainly composed of three components: MARVer-

M, MARVer-R, and MARVer-S. The belief explanations of

these components are given below.

3.2.1. MARVer-M

MARVER-M supports the modeling phase for the verification

of the system. This component has already been under

development, and the main focus is to facilitate the modeling

of the systems. Model checker tools generally save the model

specifications into a structured file. Similarly, UPPAAL

produces an XML file including all entities in the model as

well as queries used to be verified. MARVer-M is where the

UPPAAL model is previewed, and database actions (import or

export) are realized. It can similarly display an UPPAAL

model from a local repository or database on the interface.

Thus, it is aimed for users to get a more straightforward idea

about the system. On the other hand, MARVer-M allows the

designed models to be stored in the database.

3.2.2. MARVer-R

MARVer-R is utilized to manage the whole runtime

verification process. It facilitates the configuration,

instrumentation, specification, monitoring, and verification.

There are three steps to implement verification:

(i) Configuration

ROSMonitoring automatically generates monitors through a

configuration file shown in Table 1. MARVer facilitates the

construction of the configuration file by using the model

description of the system. In fact, a configuration file is a

YAML file that contains detailed arrangements for the ROS-

compatible system including the number of monitors to be

generated. Besides, for each monitor the following

information is required: the topics to be intercepted and their

details such as the name of the topic, the message type and the

type of actions, node-related information such as the name of

the node and the path of the launch file to be remapped.

Table 1 Configuration file example

nodes: # list of nodes to monitor

 - node:

 name:

 package:

 path:

monitors: # list of monitors to generate

 - monitor:

 id:

 log:

 silent:

 warning:

 oracle:

 port:

 url:

 action

 topics: # list of topics monitor will intercept

 - name:

 type:

 action:

 publishers:

 - (node name)

Monitors establish the communication via ROS with the

system and send the content of ROS messages to the verifier.

MARVer-R enables the specification of whole configurations

via the interface. It's also possible to save a config file or

import an existing config file. Once a config file is imported,

the content can be updated.

(ii) Property Specifications

Properties are sentences formally written in temporal logic to

indicate the system's expected behavior. MARVer verifies the

systems against whether the properties are violated or not.

These properties must be determined in Reelay format [22]

before starting the verification process. To do this, MARVer

offers two ways. First, properties can be manually specified

via the interface. It requires expertise in the process of

expressing the properties in Reelay format. In a second way,

the properties already expressed in the modeling are used.

MARVer is capable of converting UPPAAL queries to Reelay

format that the verifier can understand. To do this, MARVer

asks for a verified UPPAAL model file including the queries.

After the property is specified, it can be saved into a JSON file

for later use.

(iii) Runtime verification

Before the runtime verification process a configuration file, a

property file, and your ROS workspace path have to be

specified. Then MARVer generates monitors and relocates

them into the ROS workspace. Once everything is ready, the

runtime verification process can be started. MARVer

automatically runs the monitor and starts to track the system

over ROS topics. The monitor gets the message and transmits

the content to the verifier. The verifier checks for any

violations and emits a verdict. MARVer provides an interface

to observe the verification results at runtime. Moreover, it logs

the results into a log file for further analysis.

3.2.3. MARVer-S

The safety of robotic systems is not verified just by inspecting

the system's software. The most critical safety issue in robotic

systems is collision. Generally, the software of the robotic

system does not provide data about the distances between the

robot and obstacles. MARVer includes add-ons to get data like

distances not provided by the system software. MARVer-S

represents the add-ons that provide the data needed to verify

the robotic systems. MARVer is an open-source, extensible

tool to add your services to MARVer-S. In this study, an

online distance tracker (ODT) included in MARVer-S is

employed to verify the robotic systems.

4. Applications

An experiment was conducted to verify ROKOS, an

automated robotic inspection cell for quality control of

automotive body-in-white. The experiments are implemented

by using the Simulation-Based Robot Verification Tool

(SRVT) [19]. This tool simulates a robot and a bus skeleton in

the Gazebo simulation environment as shown in Figure 2. It is

constructed on ROS architecture and communicates with other

system components over topics by publishing messages

including the current task ID.

Experimental verification was realized to verify whether a

given safety distance threshold is exceeded while the robot

performs its task. The safety distance threshold refers to the

Figure 2 Gazebo simulation environment of SRVT

the distance that must be maintained between the links of the

robot and the bus skeleton. There are six distances between the

links of the robot and the bus skeleton, but the violation is

checked by looking at the minimum value among them. In this

experiment, the value of the safety distance threshold is used

as 0.2 meters. In order to get distance values during the robot

is operating, an additional service is employed: Online

Distance Tracker (ODT). It is responsible for publishing a

message over ROS, including the minimum distance between

the robot and the bus skeleton.

ROS Framework

SUT (ROS-compliant system)

N1 N2 Nn

Adapters (ROS-compliant system)

N1 N2 Nk

Services (ROS-compliant system)

N1 N2 Ni

MAR er

Node and topic info

Create config file
(config.yaml)

Generate monitor
(monitor.py)

Properties Create property
specifications

Run
monitor

Run
oracle

Run all
nodes

Verification
report

GAZEBO (SRVT)

Rviz (Just for
demonstration, no

need for verificaiton)

Figure 3 Demonstration For Experiment

Figure 3 shows some demonstrations of the tool during the

experiment with the experiment's overall architecture,

including the additional services. MARVer subscribes to

topics published by SRVT and ODT, tracks the system

execution at runtime, and emits a verdict on whether the

system violates the given properties. For this purpose, the

configuration file was filled with the information about SRVT

and ODT nodes which publishes task ID and distance values,

respectively. Then, the properties already verified by the

UPPAAL model checker on the system model were used.

The property R1 is expressed in the UPPAAL query language

as given below. MARVer-R converts it into Reelay format.

While the ODT generates the distance values, the threshold

value is also 0.2 meters.

R1:

Does an error occur while the robot is performing

the task with ID 2?

UPPAAL query language:

E<> distance<threshold && taskID == 2

Reelay format:

{distance < threshold and taskID == 2}

Once the experiment is started, MARVer generates the

monitor to intercept the topics specified in the configuration

file. Then the monitor begins to track the system through

topics and send messages to the verifier. The properties are

verified for each message individually and the verifier

produces a result.

Figure 4 Obtained distance values

The values published by the ODT for six minimum distances

of the robot's links during the experiment are visualized in

Figure 4. MARVer checks for violation by looking at the

smallest of these values at that moment. Values below the

threshold value cause a violation. If a violation occurs,

MARVer displays a warning with red color on the user screen.

Figure 5 Runtime verification screen of MARVer-R

Users can see the ROS-time that the violation occurred as well

as the content of the message that cause the violation via

MARVer interface as shown in Figure 5. MARVer saves each

message into a log file until the verification process is

completed. If necessary, more detailed information can be

obtained by looking at the log file where all the results are

recorded by matching ROS time.

5. Conclusion

The model-aided runtime verification tool (MARVer) for

ROS-compatible systems was proposed to eliminate the safety

concerns that arise especially in systems such as robotics,

which are becoming increasingly complex. MARVer offers a

verification process using two formal verification methods:

model checking, and runtime verification. In this way, besides

a more comprehensive verification process, it is aimed to

make the process a formal structure. Thanks to its flexible

structure, MARVer can be easily integrated into ROS-

compatible systems. In addition, MARVer, which has an

interface for users, makes the verification process easier,

especially compared to existing tools. An experiment was

conducted using the SRVT tool to verify ROKOS, an

approach to checking the quality of systems using robots. In

the experiment, it was verified whether the robots exceeded

the minimum distance during their movement and the results

were evaluated.

Acknowledgment

This work was supported by the VALU3S project that has

received funding from the ECSEL Joint Undertaking (JU)

under grant agreement No 876852. The JU receives support

from the European Union’s Horizon 2020 research and

innovation program and Austria, Czech Republic, Germany,

Ireland, Italy, Portugal, Spain, Sweden, Turkey.

The views expressed in this work are the sole responsibility of

the authors and do not necessarily reflect the views or position

of the European Commission. The authors, the VALU3S

Consortium, and the ECSEL JU are not responsible for the use

which might be made of the information contained in here.

This work is supported by the Scientific and Technical

Research Council of Turkey (TUBITAK), Contract No

120N800, project title: “Verification and Validation of

Automated Systems' Safety and Security ".

References

[1] C. Hu, W. Dong, Y. Yang, H. Shi, and G. Zhou,

“Runtime Verification on Hierarchical Properties of ROS-

Based Robot Swarms,” IEEE Transactions on Reliability, vol.

69, no. 2, pp. 674–689, 2020, doi: 10.1109/TR.2019.2923681.

[2] R. Wang et al., “From Offline Towards Real-Time

Verification for Robot Systems,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 4, pp. 1712–1721, 2018,

doi: 10.1109/TII.2017.2788901.

[3] E. Gjondrekaj et al., Towards a Formal Verification

Methodology for Collective Robotic Systems. 2012. doi:

10.1007/978-3-642-34281-3_7.

[4] F. Ingrand, “Recent Trends in Formal Validation

and Verification of Autonomous Robots Software,” in 2019

Third IEEE International Conference on Robotic Computing

(IRC), 2019, pp. 321–328. doi: 10.1109/IRC.2019.00059.

[5] M. Luckcuck, M. Farrell, L. Dennis, C. Dixon, and

M. Fisher, “Formal Specification and Verification of

Autonomous Robotic Systems: A Survey,” ACM Computing

Surveys, vol. 52, pp. 1–41, 2019, doi: 10.1145/3342355.

[6] A. A. Tolga Ovatman Davut Polat, Ali Osman

Ünver, “An overview of model checking practices on

verification of PLC software,” Software & Systems Modeling,

vol. 15, pp. pages937–960, 2016.

[7] S. Pinisetty, T. Jéron, S. Tripakis, Y. Falcone, H.

Marchand, and V. Preoteasa, “Predictive runtime verification

of timed properties,” Journal of Systems and Software, vol.

132, pp. 353–365, 2017, doi:

https://doi.org/10.1016/j.jss.2017.06.060.

[8] C. Sánchez et al., “A survey of challenges for

runtime verification from advanced application domains

(beyond software),” vol. 54, no. 3, pp. 279–335, 2019.

[9] A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona,

L. Franceschini, and V. Mascardi, “ROSMonitoring: A

Runtime Verification Framework for ROS,” in Towards

Autonomous Robotic Systems, 2020, pp. 387–399.

[10] G. Behrmann, A. David, and K. G. Larsen, “A

Tutorial on Uppaal,” in Formal Methods for the Design of

Real-Time Systems, 2004, pp. 200–236. doi: 10.1007/978-3-

540-30080-9_7.

[11] E. Villani, R. P. Pontes, G. K. Coracini, and A. M.

Ambrósio, “Integrating model checking and model based

testing for industrial software development,” Computers in

Industry, vol. 104, pp. 88–102, 2019, doi:

https://doi.org/10.1016/j.compind.2018.08.003.

[12] R. Wang et al., “A Formal Model-Based Design

Method for Robotic Systems,” IEEE Systems Journal, vol. PP,

pp. 1–12, 2018, doi: 10.1109/JSYST.2018.2867285.

[13] G. Kanter and J. Vain, “Model-based testing of

autonomous robots using TestIt,” Journal of Reliable

Intelligent Environments, vol. 6, no. 1, pp. 15–30, 2020, doi:

10.1007/s40860-019-00095-w.

[14] C. E. Jeff Huang Yi Zhang, Brandon Moore,

Qingzhou Luo, Aravind Sundaresan, Grigore Rosu, “ROSRV:

Runtime Verification for Robots,” International Conference on

Runtime Verification, vol. 8734. Springer, pp. 247–254, 2014.

[15] Artur Gummel, “Model-Based Testing With TestIt:

The Robot Operating System Case Study,” TALLINN

UNIVERSITY OF TECHNOLOGY, Tallinn, 2018.

[16] M. Quigley et al., “ROS: an open-source Robot

Operating System,” in ICRA workshop on open source

software, 2009, vol. 3, no. 3.2, p. 5.

[17] M. Iftikhar and D. Weyns, “A Case Study on Formal

Verification of Self-Adaptive Behaviors in a Decentralized

System,” Electronic Proceedings in Theoretical Computer

Science, vol. 91, 2012, doi: 10.4204/EPTCS.91.4.

[18] “Gazebo,” Jul. 18, 2022. https://gazebosim.org/

(accessed Jul. 18, 2022).

[19] E. A. Yayan U., “Endüstriyel Robot Hareket

Planlama Algoritmaları Performans Karşılaştırması,” Journal

of Science, Technology and Engineering Research, pp. 31–45,

2021.

[20] “MoveIt,” Jul. 18, 2022. https://moveit.ros.org/

(accessed Jul. 18, 2022).

[21] “ROS Smach,” Jul. 18, 2022.

http://wiki.ros.org/smach (accessed Jul. 18, 2022).

[22] D. Ulus, “Online Monitoring of Metric Temporal

Logic using Sequential Networks,” Jan. 2019, Accessed: Jul.

01, 2022. [Online]. Available: http://arxiv.org/abs/1901.00175

