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SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS

ALEXEJ P. PYNKO

Abstract. We start from proving a general characterization of the self-ex-

tensionality of sentential logics implying the decidability of this problem as
for (possibly, multiple) finitely-valued logics. And what is more, in case of

finitely-/three-valued logics with “equality determinant as well as classical ei-

ther implication or both conjunction and disjunction”/“classical conjunction
and subclassical negation”, we then derive a characterization yielding a quite

effective algebraic criterion of checking their self-extensionality via analyzing

homomorphisms between (viz., in the unitary case, endomorphisms of) their
underlying algebras and equally being a quite useful heuristic tool, manual

applications of which are demonstrated within the framework of  Lukasiewicz’
finitely-valued logics, four-valued expansions of Belnap’s “useful” four-valued
logic, their non-unitary three-valued extensions, unitary inferentially consis-

tent non-classical ones being well-known to be non-self-extensional, as well as
unitary three-valued implicative/“[both] conjunctive [and disjunctive]” logics
with subclassical negation (including both paraconsistent and paracomplete

ones).

1. Introduction

Recall that a sentential logic (cf., e.g., [8]) is said to be self-extensional, whenever
its inter-derivability relation is a congruence of the formula algebra. Such feature
is typical of both two-valued (in particular, classical) and super-intuitionistic logics
as well as some interesting many-valued ones (like Belnap’s “useful” four-valued
one [3]). Here, we explore it laying a special emphasis onto the general framework
of finitely-valued logics and the decidability issue with reducing the complexity
of effective procedures of verifying it, when restricting our consideration by those
logics of such a kind which possess certain peculiarities — both classical either
implication or both conjunction and disjunction (in Tarski’s conventional sense)
and binary equality determinant in a sense extending [21] towards [22]. We then
exemplify our universal elaboration by discussing four (perhaps, most represen-
tative) generic classes of logics of the kind involved:  Lukasiewicz’ finitely-valued
logics [9], four-valued expansions of Belnap’s logic (cf. [19]), their non-unitary
three-valued extensions, unitary inferentially consistent non-classical ones being
well-known (due to [22]) to be non-self-extensional, as well as unitary three-valued
implicative/“[both] conjunctive [and disjunctive]” logics with subclassical negation
(including both paraconsistent and paracomplete ones).

The rest of the paper is as follows. The exposition of the material of the paper
is entirely self-contained (of course, modulo very basic issues concerning Set and
Lattice Theory, Universal Algebra and Logic to be found, if necessary, in standard
mathematical handbooks like [2, 5, 12]). Section 2 is a concise summary of par-
ticular basic issues underlying the paper, most of which, though having become
a part of algebraic and logical folklore, are still recalled just for the exposition to
be properly self-contained. In Section 3, we then develop/recall certain advanced
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generic issues concerning false-singular consistent weakly conjunctive matrices, dis-
junctivity, implicativity and equality determinants as well as classical matrices and
logics. Section 5 is a collection of main general results of the paper that are then
exemplified in Section 6 (aside from  Lukasiewicz’ finitely-valued logics, whose non-
self-extensionality has actually been due [22], as we briefly discuss within Example
5.16 — this equally concerns certain particular instances discussed in Section 6 and
summarized in Example 5.17). Finally, Section 7 is a brief summary of principal
contributions of the paper.

2. Basic issues

Notations like img, dom, ker, hom, πi and Con and related notions are supposed
to be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention, according to which natural numbers (including 0) are treated as finite
ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted
by ω. Then, given any (N ∪ {n}) ⊆ ω, set (N ÷ n) , {m

n | m ∈ N}. The proper
class of all ordinals is denoted by ∞. Also, functions are viewed as binary relations,
while singletons are identified with their unique elements, unless any confusion is
possible. A function f is said to be singular, provided | img f | ∈ 2.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] (including a
set T ) is denoted by ℘[K]((T, )S), respectively. Then, an enumeration of S is any
bijection from |S| onto S. As usual, given any equivalence relation θ on S, by νθ we
denote the function with domain S defined by νθ(a) , θ[{a}], for all a ∈ S, whereas
we set (T/θ) , νθ[T ], for every T ⊆ S. Next, S-tuples (viz., functions with domain
S) are often written in the either sequence t̄ or vector ~t form, its s-th component
(viz., the value under argument s), where s ∈ S, being written as either ts or ts,
respectively. Given two more sets A and B, any relation R ⊆ (A×B) (in particular,
a mapping R : A → B) determines the equally-denoted relation R ⊆ (AS × BS)
(resp., mapping R : AS → BS) point-wise. Likewise, given a set A, an S-tuple B
of sets and any f̄ ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A → (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case

I = 2, f0 × f1 stands for (
∏
f̄).) Further, set ∆S , {〈a, a〉 | a ∈ S}, functions

of such a kind being referred to as diagonal, and S+ ,
⋃

i∈(ω\1) S
i, elements of

S∗ , (S0 ∪ S+) being identified with ordinary finite tuples/sequences, the binary
concatenation operation on which being denoted by ∗, as usual. Then, any binary
operation � on S determines the equally-denoted mapping � : S+ → S as follows:
by induction on the length l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

In particular, given any f : S → S and any n ∈ ω, set fn , (◦〈n × {f},∆S〉) :
S → S. Likewise, given a one more set T , any � : (S × T ) → T determines the
equally-denoted mapping � : (S∗ × T ) → T as follows: by induction on the length
(viz., domain) l of any ā ∈ S∗, for all b ∈ T , put:

(ā � b) ,

{
b if l = 0,
a0 � (((ā�(l \ 1)) ◦ ((+1)�(l − 1))) � b) otherwise.

Finally, given any T ⊆ S, we have the characteristic function χT
S , ((T × {1}) ∪

((S \ T )× {0})) of T in S.
Let A be a set. Then, an X ∈ S ⊆ ℘(A) is said to be meet-irreducible in/of S,

provided, for each T ∈ ℘(S), X ∈ T , whenever T = (A ∩
⋂
T ), the set of all them
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being denoted by MI(S). Next, a U ⊆ ℘(A) is said to be upward-directed, provided,
for every S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T , in which case

U 6= ∅, when taking S = ∅. Next, a subset of ℘(A) is said to be inductive, whenever
it is closed under unions of upward-directed subsets. Further, a closure system over
A is any C ⊆ ℘(A) such that, for every S ⊆ C, it holds that (A ∩

⋂
S) ∈ C. In

that case, any B ⊆ C is called a (closure) basis of C, provided C = {A ∩
⋂
S|S ⊆

B}. Furthermore, an operator over A is any unary operation O on ℘(A). This
is said to be (monotonic) [idempotent] {transitive} 〈inductive/finitary/compact〉,
provided, for all (B, )D ∈ ℘(A) 〈resp., any upward-directed U ⊆ ℘(A)〉, it holds
that (O(B))[D]{O(O(D)} ⊆ O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉. Finally, a closure operator

over A is any monotonic idempotent transitive operator over A, in which case
imgC is a closure system over A, determining C uniquely, because, for every closure
basis B of imgC (including imgC itself) and each X ⊆ A, it holds that C(X) =
(A ∩

⋂
{Y ∈ B|X ⊆ Y }), called dual to C and vice versa. (Clearly, C is inductive

iff imgC is so.)

Remark 2.1. By Zorn Lemma, due to which any non-empty inductive subset of
℘(A) has a maximal element, MI(C) is a basis of any inductive closure system C

over A. �

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by Fraktur letters [possibly, with indices], their carriers (viz., underlying sets)
being denoted by corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language/signature is any algebraic (viz., functional)
signature Σ (to be dealt with throughout the paper by default) constituted by
function (viz., operation) symbols of finite arity to be treated as (propositional/se-
ntential) connectives.

Given a Σ-algebra A, Con(A) is an inductive closure system over A2 forming a
bounded lattice with meet θ ∩ ϑ of any θ, θ ∈ Con(A), their join θ q ϑ, being the
transitive closure of θ ∪ ϑ, zero ∆A and unit A2, the dual closure operator being
denoted by CgA. Then, A is said to be simple, provided the lattice involved is
two-element, in which case |A| > 1. Next, a [partial] endomorphism of A is any
homomorphism from [a subalgebra of] A to A. Further, a B ⊆ A is said to “form
a subalgebra of A”/“be A-closed”, whenever it is closed under operations of A.
Furthermore, given a class K of Σ-algebras, set hom(A,K) , (

⋃
{hom(A,B) | B ∈

K}), in which case ker[hom(A,K)] ⊆ Con(A), and so (A2 ∩
⋂

ker[hom(A,K)]) ∈
Con(A).

Given any α ∈ ℘(ω), put x̄α , 〈xβ〉β∈α, Vα , (img x̄α), elements of which being
viewed as (propositional/sentential) variables of rank α, and ((∀|∃)α) , ((∀|∃)x̄α).
Then, providing either α 6= ∅ or Σ has a nullary symbol, we have the absolutely-
free Σ-algebra Fmα

Σ freely-generated by the set Vα, its endomorphisms/elements of
its carrier Fmα

Σ being called (propositional/sentential) Σ-substitutions/-formulas of
rank α. A θ ∈ Con(Fmα

Σ) is said to be fully invariant, if, for every Σ-substitution
σ of rank α, it holds that σ[θ] ⊆ θ. Recall that

∀h ∈ hom(A,B) : [(img h) = B) ⇒]

(hom(Fmα
Σ,B) ⊇ [=]{h ◦ g | g ∈ hom(Fmα

Σ,A)}), (2.1)

where A and B are Σ-algebras. Any 〈φ, ψ〉 ∈ Eqα
Σ , (Fmα

Σ)2 is referred to as a
Σ-equation/-indentity of rank α and normally written in the standard equational
form φ ≈ ψ. (In general, any mention of α is normally omitted, whenever α = ω.)
In this way, given any h ∈ hom(Fmα

Σ,A), kerh is the set of all Σ-identities of
rank α true/satisfied in A under h. Likewise, given a class K of Σ-algebras, θα

K ,
(Eqα

Σ ∩
⋂

ker[hom(Fmα
Σ,K)]) ∈ Con(Fmα

Σ), being fully invariant, in view of (2.1),
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is the set of all all Σ-identities of rank α true/satisfied in K, in which case we set
Fα

K , (Fmα
Σ/θ

α
K). (In case both α as well as both K and all members of it are finite,

the set I , {〈h,A〉 | h ∈ hom(Fmα
Σ,A),A ∈ K} is finite — more precisely, |I| =∑

A∈K |A|α, in which case g , (
∏

i∈I π0(i)) ∈ hom(Fmα
Σ,

∏
i∈I(π1(i)� img π0(i)))

with (ker g) = θ , θα
K, and so, by the Homomorphism Theorem, e , (g ◦ ν−1

θ ) is an
isomorphism from Fα

K onto the subdirect product (
∏

i∈I(π1(i)� img π0(i)))�(img g)
of 〈π1(i)� img π0(i)〉i∈I . In this way, the former is finite, for the latter is so — more
precisely, |Fα

K | 6 (maxA∈K |A|)|I|.)
A “congruence-permutation term”/discriminator for K is any τ ∈ Fm3

Σ such
that, for each A and all ā ∈ A2/3, it holds that [τA(a0, a1, a1/2) =]a0 = τA(a1, a1, a0)
[unless a0 = a1], in which case it is so for any homomorphic image of any subalgebra
of A /as well as a congruence-permutation term for A (when taking a2 = a1), while,
for any θ ∈ Con(A), any 〈a, b〉 ∈ (θ \∆A) and any c ∈ A, we have a = τA(a, b, c) θ
τA(a, a, c) = c, in which case we get θ = A2, and so A is simple, unless it is
one-element. By [10] and Lemma 2.10 of [24], we have:

Lemma 2.2. Let n ∈ (ω[\1]), A an n-tuple of simple Σ-algebras and τ a congru-
ence-permutation term for img A. Then, any subdirect product of A is isomorphic
to the direct product of some [non-empty] subset of A.

The class of all Σ-algebras satisfying every element of an E ⊆ Eqω
Σ is called the

variety axiomatized by E. Then, the variety V(K) axiomatized by θω
K is the least

variety including K and is said to be generated by K, in which case θα
V(K) = θα

K, and
so Fα

V(K) = Fα
K.

Given a fully invariant θ ∈ Con(Fmω
Σ), by (2.1), Fmω

Σ/θ belongs to the variety V
axiomatized by θ, in which case any Σ-identity satisfied in V belongs to θ, and so
θω
V = θ. In particular, given a variety V of Σ-algebras, we have Fα

V ∈ V. And what
is more, given any A ∈ V and any h ∈ hom(Fmα

Σ,A), as θ , θα
V ⊆ (kerh), by the

Homomorphism Theorem, g , (h ◦ ν−1
θ ) ∈ hom(Fα

V,A), in which case h = (g ◦ νθ),
and so Fα

V is a free algebra of V with |α| free generators, whenever V contains a non-
one-element member, in which case νθ�Vα is injective, and so |α| is the cardinality
of the set Vα/θ generating Fα

V, for Vα generates Fmα
Σ.

The mapping Var : Fmω
Σ → ℘ω(Vω) assigning the set of all actually occur-

ring variables is defined in the standard recursive manner by induction on con-
struction of Σ-formulas. Given any (m, )n ∈ ω, the Σ-substitution extending
(∆Vm∪)[xi/xi+n]i∈(ω(\m)) is denoted by σ(m:)+n.

2.2.1. Equational disjunctive and implicative systems. According to [22, 24], a(n)
(equational) disjunctive/implicative system for a class K of Σ-algebras is any f ⊆
Eq4

Σ such that, for each A ∈ K and all ā ∈ A4, it holds that:

((a0 6= / = a1) ⇒ (a2 = a3)) ⇔ (A |= (
∧

f)[xi/ai]i∈4). (2.2)

2.2.2. Lattice-theoretic background.
2.2.2.1. Semi-lattices. Let � be a (possibly, secondary) binary connective of Σ.

A Σ-algebra A is called a �-semi-lattice, provided it satisfies semilattice (viz.,
idempotencity, commutativity and associativity) identities for �, in which case we
have the partial ordering ≤A

� on A, given by (a ≤A
� b) def⇐⇒ (a = (a �A b)), for

all a, b ∈ A. Then, in case the poset 〈A,≤A
� 〉 has the least element (viz., zero)

[in particular, when A is finite], this is denoted by [A� , while A is referred to as a
�-semi-lattice with zero (a) (whenever a = [A� ).

Lemma 2.3. Let A and B be �-semi-lattices with zero and h ∈ hom(A,B). Sup-
pose h[A] = B. Then, h([A� ) = [B� .
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Proof. Then, there is some a ∈ A such that h(a) = [B� , in which case (a�A [A� ) = [A� ,
and so h([A� ) = (h(a) �B h([A� )) = ([B� �B h([A� )) = [B� , as required. �

2.2.2.1.1. Implicative inner semilattices. Set (x0 ]� x1) , ((x0 � x1) � x1).
A Σ-algebra A is called an �-implicative inner semi-lattice, provided it is a ]�-

semilattice and satisfies the Σ-identities:

(x0 � x0) ≈ (x1 � x1), (2.3)
((x0 � x0) � x1) ≈ x1, (2.4)

in which case it is an ]�-semilattice with zero a �A a, for any a ∈ A.
2.2.2.2. Distributive lattices. Let Z and Y be (possibly, secondary) binary connec-
tives of Σ.

A Σ-algebra A is called a [distributive] (Z,Y)-lattice, provided it satisfies [dis-
tributive] lattice identities for Z and Y (viz., semilattice identities for both Z and
Y as well as mutual [both] absorption [and distributivity] identities for them), in
which case ≤A

Z and ≤A
Y are inverse to one another, and so, in case A is a Y-semi-

lattice with zero (in particular, when A is finite), [AY is the greatest element (viz.,
unit) of the poset 〈A,≤A

Z 〉. Then, in case A is a {distributive} (Z,Y)-lattice, it is
said to be that with zero/unit (a), whenever it is a (Z/Y)-semilattice with zero (a).

Let Σ+[,01] , {∧,∨[,⊥,>]} be the [bounded] lattice signature with binary ∧
(conjunction) and ∨ (disjunction) [as well as nullary ⊥ and > (falsehood/zero and
truth/unit constants, respectively)]. Then, a Σ+[,01]-algebra A is called a [bounded]
(distributive) lattice, whenever it is a (distributive) (∧,∨)-lattice [with zero ⊥A and
unit >A] {cf., e.g., [2]}.

Given any n ∈ (ω \ 2), by Dn[,01] we denote the [bounded] distributive lattice
given by the chain n÷ (n− 1) ordered by 6.
2.2.2.2.1. De Morgan lattices. Let Σ+,∼[,01] , (Σ+[,01] ∪ {∼}) with unary ∼ (nega-
tion). Then, a [bounded] De Morgan lattice [19] is any Σ+,∼[,01]-algebra, whose
Σ+[,01]-reduct is a [bounded] distributive lattice and that satisfies the following
Σ+,∼-identities:

∼∼x0 ≈ x0, (2.5)
∼(x0 ∧ x1) ≈ (∼x0 ∨ ∼x1), (2.6)
∼(x0 ∨ x1) ≈ (∼x0 ∧ ∼x1), (2.7)

By DM4[,01] we denote the [bounded] De Morgan lattice with (DM4[,01]�Σ+[,01])
, D2

2[,01] and ∼DM4[,01]〈i, j〉 , 〈1− j, 1− i〉, for all i, j ∈ 2.
Likewise, given any n ∈ (ω \ 2), by Kn[,01] we denote the [bounded] De Morgan

lattice with (Kn[,01]�Σ+[,01]) , Dn[,01] and ∼Kn[,01]k , (1−k), for all k ∈ n, in which
case K2[,01] is a subalgebra of Kn[,01]. Then, given any m ∈ (4 \ 2), the mapping
em : (m ÷ (m − 1)) → 22, a 7→ 〈[a], (2 · a)− [a]〉 is an embedding of Km[,01] into
DM4[,01].

2.3. Propositional logics and matrices. A [finitary/unary/axiomatic] Σ-rule
is any couple 〈Γ, ϕ〉, where Γ ∈ ℘[ω/(2\1)/1](Fmω

Σ) and ϕ ∈ Fmω
Σ, normally written

in the standard sequent form Γ ` ϕ, ϕ|(ψ ∈ Γ) being referred to as the|a conclu-
sion|premise of it. A (substitutional) Σ-instance of it is then any Σ-rule of the form
σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution, in this way determining the
equally-denoted unary operation on ℘[ω/(2\1)/1](Fmω

Σ)×Fm1
Σ. As usual, axiomatic

Σ-rules are called Σ-axioms and are identified with their conclusions. A[n] [ax-
iomatic/finitary/unary] Σ-calculus is then any set C of [axiomatic/finitary/unary]
Σ-rules, the set of all Σ-instances of its elements being denoted by SIΣ(C).
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A (propositional/sentential) Σ-logic (cf., e.g., [8]) is any closure operator C over
Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for all X ⊆ Fmω
Σ and

all σ ∈ hom(Fmω
Σ,Fmω

Σ), that is, imgC is closed under inverse Σ-substitutions, in
which case we have the equivalence relation ≡α

C , {〈φ, ψ〉 ∈ Eqα
Σ | C(φ) = C(ψ)},

where α ∈ ℘∞\1(ω), called the inter-derivablity relation of C, when α = ω. In this
way, given any set S of [finitary] Σ-logics, ℘(Fmω

Σ)∩
⋂

C′∈S(imgC ′) is a[n inductive]
closure system over Fmω

Σ, closed under inverse Σ-substitutions, in which case the
dual closure operator is a [finitary] Σ-logic, and so this is the complete lattice join
of S. A congruence of C is any θ ∈ Con(Fmω

Σ) such that θ ⊆ ≡ω
C , the set of

all them being denoted by Con(C). Then, given any θ, ϑ ∈ Con(C), the transitive
closure θqϑ of θ∪ϑ, being a congruence of Fmω

Σ, is then that of C, for θω
C , being an

equivalence relation, is transitive. In particular, any maximal congruence of C (that
exists, by Zorn Lemma, because Con(C) 3 ∆Fmω

Σ
is both non-empty and inductive,

for Con(Fmω
Σ) is so) is the greatest one to be denoted by a(C), the variety IV(C)

axiomatized by it being called the intrinsic variety of C (cf. [18]). Then, C is said
to be self-extensional, whenever ≡ω

C ∈ Con(Fmω
Σ), in which case a(C) = ≡ω

C . Next,
C is said to be [inferentially] (in)consistent, if x1 6∈ (∈)C(∅[∪{x0}]) [(in which case
≡ω

C = Eqω
Σ ∈ Con(Fmω

Σ), and so C is self-extensional)], the only inconsistent Σ-logic
being denoted by IC. Further, a Σ-rule Γ → Φ is said to be satisfied/derivable in
C, provided Φ ∈ C(Γ), Σ-axioms satisfied in C being referred to as theorems of
C. Next, a Σ-logic C ′ is said to be a (proper) [K-]extension of C [where K ⊆ ∞],
whenever (C[�℘K(Fmω

Σ)]) ⊆ (()(C ′[�℘K(Fmω
Σ)]), in which case C is said to be a

(proper) [K-]sublogic of C ′. In that case, C ′ and C are said to be [K-]equivalent
(C ′ ≡[K] C, in symbols), provided they are [K-]extensions of one another. (In
this connection, axiomatically/finitely stands for 1/ω, respectively.) Then, a[n
axiomatic] Σ-calculus C is said to axiomatize C ′ (relatively to C), if C ′ is the least
Σ-logic (being an extension of C and) satisfying every rule in C [(in which case it is
called an axiomatic extension of C)]. Further, a Σ-rule R is said to be admissible
in C, provided the extension of C relatively axiomatized by R is axiomatically-
equivalent to C. Clearly, R is admissible in C, whenever it is derivable in C. Then,
C is said to be structurally/deductively/inferentially complete|maximal, whenever
every Σ-rule, being admissible in C, is derivable in C. Clearly, C is structurally
complete iff it has no proper axiomatically-equivalent extension. Then, as the
join of the non-empty set of all Σ-logics axiomatically-equivalent to C is so, C
has a unique structurally complete axiomatically-equivalent extension, called the
structural completion of C. Furthermore, we have the finitary sublogic C` of C,
defined by C`(X) , (

⋃
C[℘ω(X)]), for all X ⊆ Fmω

Σ, called the finitarization of
C. Then, the extension of any finitary (in particular, diagonal) Σ-logic relatively
axiomatized by a finitary Σ-calculus is a sublogic of its own finitarization, in which
case it is equal to this, and so is finitary (in particular, the Σ-logic axiomatized by
a finitary Σ-calculus is finitary; conversely, any [finitary] Σ-logic is axiomatized by
the [finitary] Σ-calculus consisting of all those [finitary] Σ-rules, which are satisfied
in C). Further, C is said to be [weakly] Z-conjunctive, where Z is a (possibly,
secondary) binary connective of Σ (tacitly fixed throughout the paper), provided
C(φ Z ψ)[⊇] = C({φ, ψ}), for all φ, ψ ∈ Fmω

Σ, in which case any extension of C
is so. Likewise, C is said to be [weakly] Y-disjunctive, where Y is a (possibly,
secondary) binary connective of Σ (tacitly fixed throughout the paper), provided
C(X ∪ {φ Y ψ})[⊆] = (C(X ∪ {φ}) ∩ C(X ∪ {ψ})), where (X ∪ {φ, ψ}) ⊆ Fmω

Σ, in
which case [any extension of C is so, while the first two (viz., (2.8) with i ∈ 2) of]
the following rules:

xi ` (x0 Y x1), (2.8)
(x0 Y x1) ` (x1 Y x0), (2.9)
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(x0 Y x0) ` x0, (2.10)

where i ∈ 2, are satisfied in C, and so in its extensions. Furthermore, C is said
to have Deduction Theorem (DT) with respect to a (possibly, secondary) binary
connective A of Σ (tacitly fixed throughout the paper), provided, for all φ ∈ X ⊆
Fmω

Σ and all ψ ∈ C(X), it holds that (φ A ψ) ∈ C(X \ {φ}). Then, C is said to
be weakly A-implicative, if it has DT with respect to A and satisfies the Modus
Ponens rule:

{x0, x0 A x1} ` x1, (2.11)

in which case the following axioms:

x0 A x0, (2.12)

x0 A (x1 A x0), (2.13)

(x0 A (x1 A x2)) A ((x0 A x1) A (x0 A x2)) (2.14)

are satisfied in C. In general, by CMP we denote the extension of C relatively
axiomatized by (2.11). Likewise, C is said to be (strongly) A-implicative, whenever
it is weakly so as well as satisfies the Peirce Law axiom (cf. [13]):

(((x0 A x1) A x0) A x0). (2.15)

Next, C is said to have Property of Weak Contraposition (PWC) with respect to a
unary ∼ ∈ Σ (tacitly fixed throughout the paper), provided, for all φ ∈ Fmω

Σ and
all ψ ∈ C(φ), it holds that ∼φ ∈ C(∼ψ). Then, C is said to be [ {axiomatically}
(pre)maximally] ∼-paraconsistent, provided it does not satisfy the Ex Contradic-
tione Quodlibet rule:

{x0,∼x0} ` x1 (2.16)

[and has no (more than one) proper ∼-paraconsistent {axiomatic} extension]. Like-
wise, C is said to be A-implicatively ∼-paraconsistent, provided it does not satisfy
the Ex Contradictione Quodlibet axiom:

∼x0 A (x0 A x1). (2.17)

(Clearly, C is non-∼-paraconsistent if[f] it is A-implicatively so, whenever it sat-
isfies (2.11) [and has DT with respect to A].) In general, by C [I]NP we denote
the least [A-implicatively] non-∼-paraconsistent extension of C, that is, the ex-
tension relatively axiomatized by (2.16) [resp. by (2.17)]. Further, C is said to
be ( 〈pre〉maximally) {axiomatically} [inferentially] (Y,∼)-paracomplete, whenever
(x1Y∼x1) 6∈ C(∅[∪{x0}]) (and has no 〈more than one〉 proper {axiomatic} [inferen-
tially] (Y,∼)-paracomplete extension). In general, by CEM we denote the extension
of C relatively axiomatized by the Excluded Middle Law axiom:

x0 Y∼x0. (2.18)

Finally, C is said to be theorem-less/purely-inferential, whenever it has no theorem,
that is, ∅ ∈ (imgC). Likewise, C is said to be [non-]pseudo-axiomatic, provided⋂

k∈ω C(xk) * [⊆]C(∅) [in which case it is (Y,∼)-paracomplete/(in)consistent iff it
is inferentially so]. In general, (imgC)∪{∅} is closed under inverse Σ-substitutions,
for imgC is so, in which case the dual closure operator C+0 is the greatest purely-
inferential sublogic of C, called the purely-inferential/theorem-less version of C,
while:

(C+0�℘∞\1(Fmω
Σ)) = (C�℘∞\1(Fmω

Σ)), (2.19)

in particular:
≡ω

C = ≡ω
C+0

, (2.20)
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and so C+0 is self-extensional iff C is so. Likewise, C−0 , ((C�℘∞\1(Fmω
Σ)) ∪

{〈∅,
⋂

k∈ω C(xk)〉} is the least non-pseudo-axiomatic extension of C called the non-
pseudo-axiomatic version of C, in which case, by (2.19), we have:

(C+/−0)−/+0 = C, (2.21)

whenever C is non-pseudo-axiomatic/purely-inferential, respectively, and so this
provides an isomorphism between the posets of all non-pseudo-axiomatic and pu-
rely-inferential Σ-logics ordered by ⊆.

Remark 2.4. By (2.21), the purely-inferential version of the axiomatic extension of a
non-pseudo-axiomatic Σ-logic, relatively-axiomatized by an A ⊆ Fmω

Σ, is relatively
axiomatized by {x0 ` σ+1(ϕ) | ϕ ∈ A}; �

Remark 2.5. Any purely-inferential inferentially consistent Σ-logic C is a proper
sublogic of the unique purely-inferential inferentially inconsistent Σ-logic IC+0, and
so is not structurally complete, in which case IC+0 is the structural completion of
C, for (img IC+0) = {Fmω

Σ,∅}, [relatively] axiomatized by x0 ` x1. �

A (logical) Σ-matrix (cf. [8]) is any couple of the form A = 〈A, DA〉, where
A is a Σ-algebra, called the underlying algebra of A, while dAe , A is called
the carrier/“underlying set” of A, whereas DA ⊆ A is called the truth predicate
of A, elements of A[∩DA] being referred to as [distinguished] values of A. (In
general, matrices are denoted by Calligraphic letters [possibly, with indices], their
underlying algebras being denoted by corresponding Fraktur letters [with same
indices, if any].) This is said to be n-valued/[in]consistent/truth(-non)-empty/truth-
|false-{non-}singular, where n ∈ (ω \ 1), provided (|A| = n)/(DA 6= [=]A)/(DA =
(6=)∅)/(|(DA|(A \ DA))| ∈ {6∈}2), respectively. Next, given any Σ′ ⊆ Σ, A is
said to be a ( Σ-)expansion of its Σ′-reduct (A�Σ′) , 〈A�Σ′, DA〉. (Any notation,
being specified for single matrices, is supposed to be extended to classes of matrices
member-wise.) Finally, A is said to be finite[ly-generated]/“generated by” a B ⊆ A,
whenever A is so.

Given any α ∈ ℘∞[\1](ω) [unless Σ has a nullary connective] and any class M of
Σ-matrices, we have the closure operator Cnα

M over Fmα
Σ dual to the closure system

with basis {h−1[DA] | A ∈ M, h ∈ hom(Fmα
Σ,A)}, in which case:

Cnα
M(X) = (Fmα

Σ ∩Cnω
M(X)), (2.22)

for all X ⊆ Fmα
Σ. Then, by (2.1), Cnω

M is a Σ-logic, called the logic of M, a Σ-logic
C being said to be [finitely-]defined by M, provided it is [finitely-]equivalent to Cnω

M,
A Σ-logic is said to be (unitary/uniform) n-valued, where n ∈ (ω \ 1), whenever it
is defined by an n-valued Σ-matrix, in which case it is finitary (cf. [8]), and so is
the logic of any finite class of finite Σ-matrices.

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic
systems; cf. [11]) of the first-order signature Σ ∪ {D} with unary predicate D, any
[in]finitary Σ-rule Γ ` φ being viewed as the [in]finitary equality-free basic strict
Horn formula (

∧
Γ) → φ under the standard identification of any propositional Σ-

formula ψ with the first-order atomic formula D(ψ), as well as being true/satisfied
in a class M of Σ-matrices iff it being satisfied in the logic of M.

Remark 2.6. Since any Σ-formula contains just finitely many variables, and so there
is a variable not occurring in it, the logic of any class of truth-non-empty Σ-matrices
is non-pseudo-axiomatic. �

Remark 2.7. Since any rule with[out] premises is [not] true in any truth-empty
matrix, taking Remark 2.6 into account, given any class M of Σ-matrices, the purely-
inferential/non-pseudo-axiomatic version of the logic of M is defined by M ∪ / \ S,



SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS 9

where S is “any non-empty class of truth-empty Σ-matrices”/“the class of all truth-
empty members of M”, respectively. �

Let A and B be two Σ-matrices. A (strict) [surjective] {matrix} homomorphism
from A [on]to B is any h ∈ hom(A,B) such that [h[A] = B and] DA ⊆ (=)h−1[DB],
the set of all them being denoted by hom[S]

(S)(A,B), in which case B/A is said
to be a (strict) [surjective] {matrix} homomorphic image/counter-image of A/B,
respectively. Then, by (2.1), we have:

(∃h ∈ hom[S]
S (A,B)) ⇒ (Cnα

B ⊆ [=] Cnα
A), (2.23)

(∃h ∈ homS(A,B)) ⇒ (Cnα
A(∅) ⊆ Cnα

B(∅)), (2.24)

for all α ∈ ℘∞\1(ω). Further, A[6= B] is said to be a [proper] submatrix of B,
whenever ∆A ∈ homS(A,B), in which case we set (B�A) , A. Injective/bijective
strict homomorphisms from A to B are referred to as embeddings/isomorphisms
of/from A into/onto B, in case of existence of which A is said to be embeddable/is-
omorphic into/to B.

Given a Σ-matrix A, χA , χDA

A is referred to as the characteristic function of
A. Then, any θ ∈ Con(A) such that θ ⊆ θA , (kerχA), in which case νθ is a strict
surjective homomorphism from A onto (A/θ) , 〈A/θ,DA/θ〉, is called a congruence
of A, the set of all them being denoted by Con(A). Given any θ, ϑ ∈ Con(A), the
transitive closure θq ϑ of θ ∪ϑ, being a congruence of A, is then that of A, for θA,
being an equivalence relation, is transitive. In particular, any maximal congruence
of A (that exists, by Zorn Lemma, because Con(A) 3 ∆A is both non-empty and
inductive, for Con(A) is so) is the greatest one to be denoted by a(A). Then, set
<(A) , (A/a(A)). Finally, A is said to be [hereditarily] simple, provided it has no
non-diagonal congruence [and no non-simple submatrix].

Remark 2.8. Let A and B be two Σ-matrices and h ∈ hom[S]
S (A,B). Then, θA =

h−1[θB] and f , {〈θ, h−1[θ]〉 | θ ∈ Con(B)} : Con(B) → (Con(A) ∩ ℘(kerh,A2))
[while h[θA] = θB and g , {〈ϑ, h[ϑ]〉 | ϑ ∈ (Con(A) ∩ ℘(kerh,A2))} : (Con(A) ∩
℘(kerh,A2)) → Con(B), whereas f ◦ g and g ◦ f are diagonal]. Therefore,

(i) f ′ , (f� Con(B)) : Con(B) → (Con(A) ∩ ℘(kerh,A2)) [while g′ , (g�
(Con(A)∩℘(kerh,A2))) : (Con(A)∩℘(kerh,A2)) → Con(B), whereas f ′ ◦ g′
and g′ ◦ f ′ are diagonal.]

In particular (when θ = ∆B), (kerh) = h−1[∆B ] ∈ Con(A), in which case (kerh) ⊆
a(A), and so

(ii) h is injective, whenever A is simple.
[Moreover, when ϑ = a(A) and θ = a(B), we have h−1[θ] ⊆ ϑ ⊇ (kerh), in
which case we get θ = h[h−1[θ]] ⊆ h[ϑ] ⊆ θ, and so θ = h[ϑ], in which case
ϑ = h−1[h[ϑ]] = h−1[θ], and so
(iii) a(B) = h[a(A)] and a(A) = h−1[a(B)]. In particular, B is simple, whenever

A is so.
In particular (when B = (A/a(A)) and h = νa(A)), we have h[a(A)] = h[kerh] =
∆B , and so
(iv) A/a(A) is simple.] �

A Σ-matrix A is said to be a [K-]model of a (finitary) Σ-logic C {over A}
[where K ⊆ ∞], provided C is a [K-]sublogic of the logic of A, the class of all
〈simple of〉 them being denoted by Mod〈∗〉[K](C{,A}), respectively. Then, FiC(A) ,
π1[Mod(C,A)], elements of which are called C-filters of/over A, is a(n inductive)
closure system over A, the dual (finitary) closure operator being denoted by FgA

C ,
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in which case FiC(Fmω
Σ) = (imgC), and so FgFmω

Σ
C = C (while, given any finitary

axiomatization C of C and any (X ∪ {a}) ⊆ A, it holds that a ∈ FgA
C(X) iff

a is derivable in C from X over A in the sense that there is a(n) (abstract) C-
derivation of a from X over A, that is, any b̄ ∈ A+ such that a ∈ (img b̄) and,
for each i ∈ (dom b̄), either bi ∈ X or there are some (Γ ` ϕ) ∈ C and some
h ∈ hom(Fmω

Σ,A) such that bi = h(ϕ) and h[Γ] ⊆ (img(b̄�i)) — the reservation
“from X”/“over A” is omitted, whenever (X = ∅)/(A = Fmω

Σ), respectively; cf.
[15]). Next, A is said to be ∼-paraconsistent/“[inferentially] (Y,∼)-paracomplete”,
whenever the logic of A is so. Further, A is said to be [weakly] �-conjunctive, where
� is a (possibly, secondary) binary connective of Σ, provided ({a, b} ⊆ DA)[⇐] ⇔
((a �A b) ∈ DA), for all a, b ∈ A, that is, the logic of A is [weakly] �-conjunctive.
Then, A is said to be [weakly] �-disjunctive, whenever 〈A, A \DA〉, in which case
[resp., that is] the logic of A is [weakly] �-disjunctive, and so is the logic of any
class of [weakly] �-disjunctive Σ-matrices. Likewise, A is said to be �-implicative,
whenever ((a ∈ DA) ⇒ (b ∈ DA)) ⇔ ((a �A b) ∈ DA), for all a, b ∈ A, in which
case it is ]�-disjunctive, while the logic of A is �-implicative, for both (2.11) and
(2.15) = ((x0 A x1) ]A x0) are true in any A-implicative (and so ]A-disjunctive)
Σ-matrix, while DT is immediate, and so is the logic of any class of �-implicative
Σ-matrices. Finally, given any (possibly secondary) unary connective o of Σ, put
(x0 �o x1) , o(ox0 � ox1) and (x0 Ao

� x1) , (ox0 � x1). Then, A is said to be [weakly]
(classically) o-negative, provided, for all a ∈ A, (a ∈ DA)[⇐] ⇔ (oAa 6∈ DA), in
which case it is [truth-non-empty], and so consistent.

Remark 2.9. Let � and o be as above. Then, the following hold:
(i) any (weakly) o-negative Σ-matrix A:

a) is [weakly] �-disjunctive/-conjunctive iff it is [weakly] �o-conjunctive/-
disjunctive, respectively;

b) defines a logic having PWC with respect to o ∈ Σ;
c) is Ao

�-implicative, whenever it is �-disjunctive;
d) is not o-paraconsistent(/(�, o)-paracomplete), whenever o ∈ Σ(/ while A

is weakly �-disjunctive).
(ii) given any two Σ-matrices A and B and any h ∈ hom[S]

S (A,B), A is (weakly)
o-negative|�-conjunctive/-disjunctive/-implicative if[f] B is so;

(iii) the direct product of any tuple of Σ-matrices is not o-paraconsistent, where
o ∈ Σ, whenever the tuple image contains a non-o-paraconsistent consistent
Σ-matrix. �

Remark 2.10. Given a Σ-logic C, by its structurality, for any T ∈ (imgC), 〈Fmω
Σ, T 〉

∈ Mod(C). Then, given any basis B of imgC, any Σ-rule Γ ` ϕ not satisfied in C,
in which case there is some T ∈ B such that Γ ⊆ T 63 ϕ, is not true in 〈Fmω

Σ, T 〉
under the diagonal Σ-substitution, and so C is defined by {〈Fmω

Σ, T 〉 | T ∈ B}. �

Given a set I and an I-tuple A of Σ-matrices, [any submatrix B of] the Σ-
matrix (

∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a] [sub]direct product of A
[whenever, for each i ∈ I, πi[B] = Ai]. As usual, if (imgA) ⊆ {A} (and I = 2),
where A is a Σ-matrix, AI , (

∏
i∈I Ai) [resp., B] is called the [a] [sub]direct I-power

(square) of A.
Given a class M of Σ-matrices, the class of all “strict surjective homomorphic

[counter-]images”/“(consistent) submatrices” of members of M is denoted, respec-
tively, by (H[−1]/S(∗))(M). Likewise, the class of all [sub]direct products of tuples
(of cardinality ∈ K ⊆ ∞) constituted by members of M is denoted by P[SD]

(K) (M).

Lemma 2.11. Let M be a class of Σ-matrices. Then, H(H−1(M)) ⊆ H−1(H(M)).
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Proof. Let A and B be Σ-matrices, C ∈ M and (h|g) ∈ homS
S(B, C|A). Then, by

Remark 2.8(i), (ker(h|g)) ∈ Con(B), in which case (ker(h|g)) ⊆ θ , a(B) ∈ Con(B),
and so, by the Homomorphism Theorem, (νθ ◦ (h|g)−1) ∈ homS

S(C|A,B/θ). �

Lemma 2.12 (Finite Subdirect Product Lemma; cf. Lemma 2.7 of [25]). Let M be
a finite class of finite Σ-matrices and A a finitely-generated (in particular, finite)
model of the logic of M. Then, A ∈ H−1(H(PSD

ω (S∗(M)))).

Theorem 2.13 (cf. Theorem 2.8 of [25]). Let K and M be classes of Σ-matrices,
C the logic of M and C ′ an extension of C. Suppose [both M and all members of
it are finite and] PSD

[ω](S∗(M)) ⊆ K (in particular, S(P[ω](M)) ⊆ K {in particular,
K ⊇ M is closed under both S and P[ω]〈 in particular, K = Mod(C)〉}). Then, C ′

is [finitely-]defined by Mod(C ′) ∩ K, and so by Mod(C ′).

Corollary 2.14 (cf. Corollary 2.9 of [25]). Let M be a class of Σ-matrices and A

an axiomatic Σ-calculus. Then, the axiomatic extension of the logic of M relatively
axiomatized by A is defined by S∗(M) ∩Mod(A).

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ′ ⊆ Fmα

Σ and hom(Fmα
Σ′ ,

Fmα
Σ′) = {h� Fmα

Σ′ | h ∈ hom(Fmα
Σ,Fmα

Σ), h[Fmα
Σ′ ] ⊆ Fmα

Σ′}, for all α ∈ ℘∞\1(ω),
we have the Σ′-logic C ′, defined by C ′(X) , (Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ ,

called the Σ′-fragment of C, in which case C is said to be a ( Σ-)expansion of C ′,
while, given any class M of Σ-matrices, C ′ is defined by M�Σ′, whenever C is defined
by M, whereas ≡ω

C′ = (≡ω
C ∩Eqω

Σ′), and so C ′ is self-extensional, whenever C is so.

3. Preliminary key adnanced generic issues

3.1. False-singular consistent weakly conjunctive matrices.

Lemma 3.1. Let A be a false-singular weakly Z-conjunctive Σ-matrix, f ∈ (A \
DA), I a finite set, C an I-tuple constituted by consistent submatrices of A and B
a subdirect product of C. Then, (I × {f}) ∈ B.

Proof. By induction on the cardinality of any J ⊆ I, let us prove that there is some
a ∈ B including (J × {f}). First, when J = ∅, take any a ∈ C 6= ∅, in which
case (J × {f}) = ∅ ⊆ a. Now, assume J 6= ∅. Take any j ∈ J ⊆ I, in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, and so, as Cj is a consistent submatrix of the
false-singular Σ-matrix A, we have f ∈ Cj = πj [B]. Hence, there is some b ∈ B
such that πj(b) = f , while, by induction hypothesis, there is some a ∈ B including
(K × {f}). Therefore, since J = (K ∪ {j}), while A is both weakly Z-conjunctive
and false-singular, we have B 3 c , (a ZB b) ⊇ (J × {f}). Thus, when J = I, we
eventually get B 3 (I × {f}), as required. �

3.2. Congruence and equality determinants versus matrix simplicity and
intrinsic varieties. A [binary] relational Σ-scheme is any Σ-calculus [of the form]
ε ⊆ (℘(Fm[2∩]ω

Σ ) × Fm[2∩]ω
Σ ), in which case, given any Σ-matrix A, we set θAε ,

{〈a, b〉 ∈ A2 | A |= (∀([2∩]ω)\2
∧
ε)[x0/a, x1/b]} ⊆ A2. Given a one more Σ-matrix

B and any h ∈ hom(S)
{S}(A,B), being strict, unless ε is axiomatic, we have:

h−1[θBε ]{⊆}(⊇)[⊇]θAε . (3.1)

A [unary] unitary relational Σ-scheme is any Υ ⊆ Fm[1∩]ω
Σ , in which case we have

the unary [binary] relational Σ-scheme εΥ , {(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈
σ1:+1[Υ]} such that θAεΥ

, where A is any Σ-matrix, is an equivalence relation on A.
A [binary] congruence/equality determinant for a class of Σ-matrices M is any

[binary] relational Σ-scheme ε such that, for each A ∈ M, θAε ∈ Con(A)/ = ∆A,
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respectively, that includes a finite one, whenever both M and all members of it are
finite.

Then, according to [22]/[21], a [unary] unitary congruence/equality determinant
for a class of Σ-matrices M is any [unary] unitary relational Σ-scheme Υ such
that εΥ is a/an congruence/equality determinant for M that includes a finite one,
whenever both M and all members of it are finite. (It is unary unitary equality
determinants that are equality determinants in the sense of [21].)

Lemma 3.2. Let A be a Σ-matrix, θ ∈ Con(A) and ε a relational Σ-scheme.
Then, θ ⊆ θAε , whenever ∆A ⊆ θAε . In particular, a(A) = θAε iff ε is a congruence
determinant for A, in which case A is simple iff ε is an equality determinant for
it.

Proof. Let B , (A/θ), in which case h , νθ ∈ homS
S(A,B). Consider any 〈a, b〉 ∈ θ,

in which case h(a) = h(b). Therefore, if ∆A ⊆ θAε , then we have 〈a, a〉 ∈ θAε , in
which case, by (3.1), we get 〈h(a), h(b)〉 = 〈h(a), h(a)〉 ∈ θBε , and so we eventually
get 〈a, b〉 ∈ θAε , as required. �

Corollary 3.3 (cf., e.g., [22]). Fmω
Σ is a unitary congruence determinant for every

Σ-matrix A.

Proof. Since ∆A ⊆ θAεFmω
Σ

, by Lemma 3.2, we have a(A) ⊆ θAεFmω
Σ

. Conversely,

consider any ā ∈ (A2 \ a(A)). Then, as ā ∈ (CgA(ā) \ a(A)), θ , CgA(ā) * a(A),
in which case Con(A) 3 θ 6∈ Con(A), and so θ * θA. Let

ϑ , {〈ϕA[x0/ai;xj+1/cj ]j∈(n−1), ϕ
A[x0/a1−i;xj+1/cj ]j∈(n−1)〉 |

i ∈ 2, n ∈ (ω \ 1), ϕ ∈ Fmn
Σ, c̄ ∈ An−1}.

Then, by Mal’cev’s Principal Congruence Lemma [10], θ is the transitive closure
of ϑ. Hence, θA, being transitive, does not include ϑ, in which case there are
some i ∈ 2, some n ∈ (ω \ 1), some ϕ ∈ Fmn

Σ and some c̄ ∈ An−1 such that
ϕA[x0/ai;xj+1/cj ]j∈(n−1) ∈ DA 63 ϕA[x0/a1−i;xj+1/cj ]j∈(n−1), in which case ā 6∈
θAεFmω

Σ
, and so θAεFmω

Σ
= a(A) ∈ Con(A), as required. �

Corollary 3.4. Let C be a Σ-logic, θ ∈ Con(C), A ∈ Mod(C) and h ∈ hom(Fmω
Σ,

A). Then, h[θ] ⊆ a(A).

Proof. Consider any 〈φ, ψ〉 ∈ θ, any g ∈ hom(Fmω
Σ,A) such that g(x0/1) = h(φ/ψ)

and any ϕ ∈ Fmω
Σ. Then, V , (Var(σ1:+1(ϕ)) \ {x0}) ∈ ℘ω(Vω). Let n , |V | ∈ ω

and v̄ any enumeration of V . Likewise, U , (
⋃

Var[{φ, ψ}]) ∈ ℘ω(Vω), in which
case Vω \ U is infinite, and so there is an injective ū ∈ (Vω \ U)n. Then, by
the reflexivity of θ ∈ Con(Fmω

Σ), we have ξ , (σ1:+1(ϕ)[x0/φ; vi/ui]i∈n) θ η ,
(σ1:+1(ϕ)[x0/ψ; vi/ui]i∈n). Let f ∈ hom(Fmω

Σ,A) extend (h�(Vω \ (img ū))) ∪
[ui/g(vi)]i∈n. Then, as A ∈ Mod(C) and θ ⊆ ≡ω

C , we get g(σ1:+1(ϕ)) = f(ξ) θA

f(η) = g(σ1:+1(ϕ)[x0/x1]). In this way, h(φ) θAεFmω
Σ
h(ψ), and so Corollary 3.3

completes the argument. �

As a particular case of Corollary 3.4, we first have:

Corollary 3.5. Let C be a Σ-logic. Then, π0[Mod∗(C)] ⊆ IV(C).

Corollary 3.6. Let C be a Σ-logic. Then, a(C) is fully invariant. In particular,
a(C) = θω

IV(C).

Proof. Consider any σ ∈ hom(Fmω
Σ,Fmω

Σ) and any T ∈ (imgC), in which case,
by the structurality of C, AT , 〈Fmω

Σ, T 〉 ∈ Mod(C), and so, by Corollary 3.4,
σ[a(C)] ⊆ a(AT ). Thus, σ[a(C)] ⊆ θ , (Eqω

Σ ∩
⋂
{a(AT ) | T ∈ (imgC)}) ⊆
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(Eqω
Σ ∩

⋂
{θAT | T ∈ (imgC)}) = ≡ω

C . Moreover, for each T ∈ (imgC), a(AT ) ∈
Con(Fmω

Σ), in which case θ ∈ Con(Fmω
Σ), and so σ[a(C)] ⊆ θ ⊆ a(C). �

Lemma 3.7. Let M be a class of Σ-matrices, K , π0[M] and C the logic of M.
Then, θω

K ⊆ ≡ω
C , in which case θω

K ⊆ a(C), and so IV(C) ⊆ V(K).

Proof. Then, for any 〈φ, ψ〉 ∈ θω
K , each A ∈ M and all h ∈ hom(Fmω

Σ,A), A ∈ K, in
which case 〈h(φ), h(ψ)〉 ∈ ∆A ⊆ θA, and so φ ≡ω

C ψ, as required. �

By Corollary 3.5 and Lemma 3.7, we immediately have:

Corollary 3.8. Let M be a class of Σ-matrices, K , π0[M] and C the logic of M.
Then, π0[Mod∗(C)] ⊆ V(K).

Likewise, by Corollary 3.5 and Lemma 3.7, we also have:

Theorem 3.9. Let M be a class of simple Σ-matrices, K , π0[M] and C the logic
of M. Then, IV(C) = V(K).

Lemma 3.10. Let A and B be Σ-matrices, ε a/an congruence/equality determinant
for B and h a/an “strict homomorphism”/embedding from/of A to/into B. Suppose
either ε is binary or h[A] = B. Then, ε is a/an congruence/equality determinant
for A.

Proof. In that case, by (3.1), we have θAε = h−1[θBε ]. In this way, Remark 2.8(i)/“the
injectivity of h” completes the argument. �

Theorem 3.11. Let A be a Σ-matrix. Then, the following are equivalent:
(i) A is hereditarily simple;
(ii) A has a binary equality determinant;
(iii) A has a unary binary equality determinant.

Proof. First, (ii) is a particular case of (iii), (ii)⇒(i) being by Lemmas 3.2 and 3.10.
Finally, assume (i) holds. Let ε , {φi ` φ1−i | i ∈ 2, φ̄ ∈ (Fm2

Σ)2, (φ0[x1/x0]) =
(φ1[x1/x0])}. Then, ∆A ⊆ θAε . Conversely, consider any distinct ā ∈ (A2 \ ∆A).
Let B be the submatrix of A generated by img ā. Then, it is simple, by (i). There-
fore, θ , CgB(ā) * θB, for θ 3 ā 6∈ ∆B is a non-diagonal congruence of B.
Let ϑ , {〈ϕB[x0/aj ;xk+1/ck]k∈(n−1), ϕ

B[x0/a1−j ;xk+1/ck]k∈(n−1)〉 | j ∈ 2, n ∈
(ω \ 1), ϕ ∈ Fmn

Σ, c̄ ∈ Bn−1}. Then, by Mal’cev’s Principal Congruence Lemma
[10], θ is the transitive closure of ϑ. Hence, θB, being transitive, does not include ϑ,
in which case there are some j ∈ 2, some n ∈ (ω \ 1), some ϕ ∈ Fmn

Σ and some c̄ ∈
Bn−1 such that 〈ϕB[x0/aj ;xk+1/ck]k∈(n−1), ϕ

B[x0/a1−j ;xk+1/ck]k∈(n−1)〉 6∈ θB,
in which case there is some i ∈ 2 such that ϕB[x0/ai;xk+1/ck]k∈(n−1) ∈ DB 63
ϕB[x0/a1−i;xk+1/ck]k∈(n−1), while, as B is generated by img ā, there is some
ψ̄ ∈ (Fm2

Σ)n−1 such that ck = ψB[xl/al]l∈2, for all k ∈ (n−1), and so φB
i [xl/al]l∈2 ∈

DB 63 φB
1−i[xl/al]l∈2, where, for each m ∈ 2, φm , (ϕ[x0/xm;xk+1/ψk]k∈(n−1) ∈

Fm2
Σ. Moreover, (φ0[x1/x0]) = (ϕ[xk+1/(ψk[x0/x1])]k∈(n−1) = (φ1[x1/x0]), in

which case (φi ` φ1−i) ∈ ε, and so ā 6∈ θBε = (θAε ∩ B2), in view of (3.1) with
h = ∆B as well as A and B instead of one another. Thus, ā 6∈ θAε , for ā ∈ B2, in
which case ε is a unary binary equality determinant for A, and so (iii) holds. �

Lemma 3.12. Let A be a Σ-matrix with unary unitary equality determinant Υ, B
a submatrix of A and h ∈ homS(B,A). Then, h is diagonal.

Proof. Consider any a ∈ B. Then, for any υ ∈ Υ, we have (υA(a) = υB(a) ∈
DA) ⇔ (υA(h(a)) = h(υB(a)) ∈ DA), so we get h(a) = a, as required. �



14 A. P. PYNKO

Lemma 3.13. Any axiomatic binary equality determinant ε for a class M of Σ-
matrices is so for P(M).

Proof. In that case, members of M are models of the infinitary universal strict Horn
theory ε[x1/x0] ∪ {(

∧
ε) → (x0 ≈ x1)} with equality, and so are well-known to be

those of P(M), as required. �

3.3. Disjunctivity. Fix any set A, any closure operator C over A and any δ :
A2 → A, in which case we set δ(X,Y ) , δ[X × Y ], for all X,Y ⊆ A.

Then, any X ⊆ A is said to be δ-disjunctive, provided, for all a, b ∈ A, (δ(a, b) ∈
X) ⇔ (({a, b} ∩X) 6= ∅), in which case, for all Y,Z ⊆ A, (δ(Y, Z) ⊆ X) ⇔ ((Y ⊆
X)|(Z ⊆ X)).

Next, C is said to be δ-disjunctive, provided, for all a, b ∈ A and every X ⊆ A,
it holds that

C(X ∪ {δ(a, b)}) = (C(X ∪ {a}) ∩ C(X ∪ {b})), (3.2)
in which case the following clearly hold, by (3.2) with X = ∅:

δ(a, b) ∈ C(a), (3.3)
δ(a, b) ∈ C(b), (3.4)

a ∈ C(δ(a, a)), (3.5)
δ(b, a) ∈ C(δ(a, b)), (3.6)

and so, by (3.2), (3.3) and (3.4), does:

δ(C(X ∪ {b}), a) ⊆ C(X ∪ {δ(b, a)}). (3.7)

Conversely, we have:

Lemma 3.14. Suppose either (3.3) or (3.4) as well as both (3.5), (3.6) and (3.7)
hold. Then, C is δ-disjunctive.

Proof. In that case, by (3.6), both (3.3) and (3.4) hold, and so does the inclusion
from left to right in (3.2). Conversely, consider any c ∈ (C(X ∪{b})∩C(X ∪{a})),
where (X∪{a, b}) ⊆ A. Then, by (3.6) and (3.7), we have δ(b, c) ∈ C(X∪{δ(a, b)}).
Likewise, by (3.5) and (3.7), we have c ∈ C(X∪{δ(b, c)}). Therefore, we eventually
get c ∈ C(X ∪ {δ(a, b)}), as required. �

Likewise, C is said to be δ-multiplicative, provided

δ(C(X), a) ⊆ C(δ(X, a)), (3.8)

for all X ⊆ A and all a ∈ A.

Lemma 3.15. Let B be a basis of imgC. Suppose every element of B is δ-
disjunctive. Then, C is δ-multiplicative, while (3.3), (3.4), (3.5) and (3.6) hold.

Proof. Consider any X ⊆ A, any a ∈ A and any Z ∈ B ⊆ (imgC). Then, Z = C(Z)
is δ-disjunctive, in which case we have (δ(X, a) ⊆ Z) ⇒ ((X ⊆ Z)|(a ∈ Z)) ⇒
((C(X) ⊆ Z)|(a ∈ Z)) ⇒ (δ(C(X), a) ⊆ Z), and so (3.8) does hold. Moreover,
δ(a, b) ∈ Z iff {a, b} = {b, a} is not disjoint with Z, so (3.3), (3.4) and (3.6) hold.
Finally, δ(a, a) ∈ Z iff {a, a} = {a} is not disjoint with Z, so (3.5) holds too, as
required. �

Corollary 3.16. Suppose C is finitary. Then, the following are equivalent:
(i) C is δ-disjunctive;
(ii) imgC has a basis consisting of δ-disjunctive sets;
(iii) C is δ-multiplicative, while either (3.3) or (3.4) as well as both (3.5) and

(3.6) hold.
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Proof. First, assume (i) holds. Then, by Remark 2.1, B , MI(imgC) is a basis
of imgC. Consider any a, b ∈ A and any X ∈ B. Then, in case (a/b) ∈ X,
by (3.3)/(3.4), δ(a, b) ∈ X. Conversely, assume δ(a, b) ∈ X. Then, by (3.2),
X = C(X) = C(X ∪ {δ(a, b)}) = (C(X ∪ {a}) ∩ C(X ∪ {b})), in which case X,
being meet-irreducible in (imgC) ⊇ {C(X ∪ {a}), C(X ∪ {b})}, is equal to either
C(X ∪ {a}) 3 a or C(X ∪ {b}) 3 b, and so X is δ-disjunctive. Thus, (ii) holds.

Next, (ii)⇒(iii) is by Lemma 3.15.
Finally, assume (iii) holds, and so does (3.4), in which case, by (3.8), (3.7) holds

too. Then, Lemma 3.14 completes the argument of (i). �

3.3.1. Disjunctive logics versus disjunctive matrices.

Corollary 3.17. Let C be a finitary Y-disjunctive Σ-logic and A a Σ-algebra.
Then, FgA

C is YA-disjunctive.

Proof. By (2.8) with i = 0, (2.9) and (2.10), (3.3), (3.5) and (3.6) with FgA
C instead

of C hold. Let C be a finitary Σ-calculus axiomatizing C. Consider any X ⊆ A,
any a, b ∈ A and any c ∈ FgA

C(X ∪ {b}). Then, there is some C-derivation d̄ of c
from X∪{b}. By complete induction on any j ∈ (dom d̄) ∈ (ω\1), let us prove that
(dj YA a) ∈ F , FgA

C(X ∪ {(b YA a)}). For consider the following complementary
cases:

• dj ∈ (X ∪ {b}).
Then, by (2.8) with i = 0, (dj YA a) ∈ ((X ∪{b})YA a) = ((X YA a)∪{(bYA

a)}) ⊆ F .
• dj 6∈ (X ∪ {b}).

Then, there are some (Γ ` ϕ) ∈ C and some h ∈ hom(Fmω
Σ,A) such

that dj = h(ϕ) and h[Γ] ⊆ (img(d̄�j)). Moreover, by the structurality
of C and Corollary 3.16(i)⇒(iii), (σ+1(ϕ) Y x0) ∈ C((σ+1[Γ] Y x0). Let
g ∈ hom(Fmω

Σ,A) extend [x0/a;xk+1/h(xk)]k∈ω. Then, by induction hy-
pothesis, we have g[σ+1[Γ] Y x0] = (h[Γ] YA a) ⊆ F ∈ FiC(A). Hence, since
〈A, F 〉 ∈ Mod(C), we get (dj YA a) = (h(ϕ) YA a) = g(σ+1(ϕ) Y x0) ∈ F .

Thus, as c ∈ (img d̄), we conclude that (c YA a) ∈ F , in which case (3.7) holds, and
so Lemma 3.14 completes the argument. �

By Remark 2.10 and Corollary 3.16(i)⇒(ii), we immediately have:

Theorem 3.18. A [finitary] Σ-logic is Y-disjunctive if[f ] it is defined by a class of
Y-disjunctive Σ-matrices.

3.3.1.1. Disjunctive models of finitely-valued disjunctive logics.

Lemma 3.19. Let M be a class of weakly Y-disjunctive Σ-matrices, I a finite set,
C ∈ MI , and D a consistent Y-disjunctive submatrix of

∏
C. Then, there is some

i ∈ I such that (πi�D) ∈ homS(D, Ci).

Proof. By contradiction. For suppose that, for every i ∈ I, (πi�D) 6∈ homS(D, Ci),
in which case DD ( (πi�D)−1[DCi ] = (D ∩ π−1

i [DCi ]), for (πi�D) ∈ hom(D, Ci),
and so there is some ai ∈ (D \DD) such that πi(ai) ∈ DCi . By induction on the
cardinality of any J ⊆ I, let us prove that there is some b ∈ (D \ DD) such that
πj(b) ∈ DCj , for all j ∈ J , as follows. In case J = ∅, take any b ∈ (D \DD) 6= ∅,
for D is consistent. Otherwise, take any j ∈ J , in which case K , (J \ {j}) ⊆ I,
while |K| < |J |, so, by the induction hypothesis, there is some c ∈ (D \ DD)
such that πk(c) ∈ DCk , for all k ∈ K. Then, by the Y-disjunctivity of D, b ,
(c YD aj) ∈ (D \ DD), while πi(b) ∈ DCi , for all i ∈ J = (K ∪ {j}), because
(πi�D) ∈ hom(D,Ci), while Ci is weakly Y-disjunctive. In particular, when J = I,
there is some b ∈ (D \DD) such that πi(b) ∈ DCi , for all i ∈ I. This contradicts to
the fact that DD = (D ∩

⋂
i∈I π

−1
i [DCi ]), as required. �
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By Lemmas 2.11, 2.12, 3.19 and Remark 2.9(ii), we immediately have:

Corollary 3.20. Let M be a finite class of finite weakly Y-disjunctive Σ-matrices
and A a finitely-generated (in particular, finite) consistent Y-disjunctive model of
the logic of M. Then, A ∈ H−1(H(S∗(M))).

Corollary 3.21. Let C be a Σ-logic. (Suppose it is defined by a finite class M of
finite [weakly Y-disjunctive] Σ-matrices.) Then, (i)⇔(ii)⇔(iii)(⇔(iv)), where:

(i) C is purely-inferential;
(ii) C has a truth-empty model;
(iii) C has a one-valued truth-empty model;
(iv) PSD

ω[∩0](S∗(M))[∪S∗(M)] has a truth-empty member.

Proof. First, (ii)⇒(i) is immediate. The converse is by the fact that, by the struc-
turality of C, 〈Fmω

Σ, C(∅)〉 is a model of C.
Next, (ii) is a particular case of (iii). Conversely, let A ∈ Mod(C) be truth-

empty. Then, χA is singular, in which case θA = A2 ∈ Con(A), and so, by (2.23),
(A/θA) ∈ Mod(C) is both one-valued and truth-empty.

(Finally, (iv)⇒(ii) is by (2.23). Conversely, (iii)⇒(iv) is by Lemma 2.12 [resp.,
Corollary 3.20 and the Y-disjunctivity of truth-empty Σ-matrices].) �

Theorem 3.22. Let M be a (finite) class of (finite [hereditarily simple]) Σ-matrices,
C the logic of M, S ⊆ Mod(C) (the class of all Y-disjunctive members of S∗(M);
cf. (2.23)) and K equal to either <[S] or S (resp., to ((<(S)[∩∅])[∪S])). Then,
((i)⇒)(ii)⇒(iii)(⇒(i)), where:

(i) C is Y-disjunctive;
(ii) for each A ∈ M and every a ∈ (A \ DA), there are some B ∈ K and some

h ∈ hom{S}(A,B) such that h(a) 6∈ DB;
(iii) C is defined by S.

(In particular, any Y-disjunctive Σ-logic defined by a finite class of finite Σ-matrices
is defined by a finite class of finite Y-disjunctive Σ-matrices.)

Proof. (First, (iii)⇒(i) is immediate.
Next, assume (i) holds. Consider any A ∈ M and any a ∈ (A \DA). Then, by

Corollaries 3.16(i)⇒(ii) and 3.17, there is some YA-disjunctive F ∈ FiC(A) such
that DA ⊆ F 63 a, in which case D , 〈A, F 〉 is a finite Y-disjunctive model of
C, and so, since every member of M ⊆ Mod(C) is weakly Y-disjunctive, for C is
so, by Corollary 3.20 and Remark 2.9(ii), there are some E ∈ S, some Σ-matrix F
and some (f |g) ∈ homS

S(D|E ,F). Hence, by Remark 2.8(i), (ker g) ⊆ θ , a(E), in
which case, by the Homomorphism Theorem, e , (νθ ◦ g−1) ∈ homS

S(F ,B), where
B , <(E) ∈ <[S], and so h , (e ◦ f) ∈ homS

S(D,B). [Likewise, by Remark 2.8(ii), g
is injective, for E is simple, in which case e , g−1 ∈ homS

S(F ,B), where B , E ∈ S,
and so h , (e ◦ f) ∈ homS

S(D,B).] In this way, B ∈ K, while h ∈ homS(A,B),
whereas h(a) 6∈ DB, for DA ⊆ F = DD 63 a. Thus, (ii) holds.)

Assume (ii) holds. Then, by (2.23), K ⊆ (<[S] ∪ S) ⊆ Mod(C). Conversely,
consider any Σ-rule Γ ` ϕ not satisfied in C, in which case there are some A ∈ M
and some g ∈ hom(Fmω

Σ,A) such that g[Γ] ⊆ DA 63 a , g(ϕ), and so, by (ii),
there are some B ∈ K and some h ∈ hom(A,B) such that h(a) 6∈ DB. Then,
f , (h ◦ g) ∈ hom(Fmω

Σ,B), while f [Γ] = h[g[Γ]] ⊆ h[DA] ⊆ DB 63 h(a) = f(ϕ).
Thus, C is defined by K, and so, by (2.23), (iii) holds. �

Theorem 3.22(i)⇔(ii) yields an effective algebraic criterion of the disjunctivity
of finitely-valued logics.
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Theorem 3.23. Let A be a finite weakly Y-disjuncive Σ-matrix with unary unitary
equality determinant Υ, C the logic of A and B a consistent Y-disjunctive model
of C. Then, homS(B,A) 6= ∅.

Proof. Take any b ∈ (B \DB) 6= ∅. Consider any F ∈ ℘ω({b}, B). Then, by (2.23)
and Remark 2.9(ii), the submatrix BF of B generated by F is a finitely-generated
consistent Y-disjunctive model of C. Therefore, by Corollary 3.20, Remark 2.8(ii)
and Theorem 3.11(ii)⇒(i), there is some hF ∈ homS(BF ,A). Now, consider any
G ∈ ℘ω(F,B) ⊆ ℘ω({b}, B), in which case BF ⊆ BG ⊆ B, and any a ∈ BF . Then,
for each υ ∈ Υ, (DA 3 υA(hF (a)) = hF (υBF (a))) ⇔ (υB(a) = υBF (a) ∈ DBF ) ⇔
(υBG(a) = υB(a) ∈ DB) ⇔ (υBG(a) ∈ DBG) ⇔ (υA(hG(a)) = hG(υBG(a)) ∈ DA),
in which case hF (a) = hG(a), and so hF ⊆ hG. Therefore, H , {hF | F ∈
℘ω({b}, B)} is an upward-directed (for ℘ω({b}, B) is so) subset of the inductive
set of all subalgebras of B × A (uniquely determined by, and so identified with
their carriers). Hence, h ,

⋃
H forms a subalgebra of B × A. And what is

more, B =
⋃
℘3({b}, B) ⊆

⋃
℘ω({b}, B) ⊆

⋃
{BF | F ∈ ℘ω({b}, B)} ⊆ B, in

which case (domh) =
⋃
{dom f | f ∈ H} =

⋃
{BF | F ∈ ℘ω({b}, B)} = B,

while, for all F,G ∈ ℘ω({b}, B), H , (F ∪ G) ∈ ℘ω({b}, B), in which case, for
every a ∈ (BF ∩ BG), hF (a) = hH(a) = hG(a), and so h is a function, whereas
(img h) =

⋃
{img f | f ∈ H} ⊆ A, and so h : B → A. In this way, h ∈ hom(B,A).

Finally, consider any a ∈ B, in which case a ∈ F , {a, b} ∈ ℘ω({b}, B), and so
(a ∈ DB) ⇔ (a ∈ DBF ) ⇔ (DA 3 hF (a) = h(a)). Thus, h ∈ homS(B,A). �

3.4. Implicativity. Fix any set A, any closure operator C over A and any ι :
A2 → A, in which case we put δι(a, b) : A2 → A, 〈a, b〉 7→ ι(ι(a, b), b).

Next, C is said to have Abstract Deduction Theorem (ADT) with respect to ι,
provided, for all a ∈ X ⊆ A and all b ∈ C(X), it holds that ι(a, b) ∈ C(X \ {a}).
Then, C is said to be weakly ι-implicative, provided it has ADT with respect to ι
and

b ∈ C({a, ι(a, b)}), (3.9)

for all a, b ∈ A. Likewise, C is said to be (strongly) ι-implicative, whenever it is
weakly so and

δι(ι(a, b), a) ∈ C(∅), (3.10)

for all a, b ∈ A.

Lemma 3.24. Suppose C is ι-implicative. Then, it is δι-disjunctive.

Proof. With using Lemma 3.14. Consider, any (X ∪ {a, b}) ⊆ A. Then, (3.4) is by
ADT w.r.t. ι. Next, (3.5) is by (3.9) and (3.10). Further, by (3.9) and ADT w.r.t.
ι, we have ι(ι(a, b), a) ∈ C({ι(b, a), δι(a, b)}), in which case, by (3.9) and (3.10),
we get a ∈ C({ι(b, a), δι(a, b)}), and so, by ADT w.r.t. ι, we eventually get (3.6).
Finally, consider any c ∈ C(X ∪ {b}). Then, by (3.9) and ADT w.r.t. ι, we have
ι(b, a) ∈ C(X∪{ι(c, a)}), in which case, by (3.9), we get a ∈ C(X∪{δι(b, a), ι(c, a)}),
and so, by ADT w.r.t. ι, we eventually get δι(c, a) ∈ C(X ∪{δι(b, a)}). Thus, (3.7)
holds, as required. �

3.4.1. Implicative matrices versus implicative logics.

Lemma 3.25. Let C be an A-implicative Σ-logic and A a ]A-disjunctive model
of C. Then, A is A-implicative.

Proof. By the fact that (2.11), (2.13) and (2.15) = ((x0 A x1)]Ax0), being satisfied
in C, are true in A. �

Combining Lemmas 3.24, 3.25 with Theorem 3.18, we first have:
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Corollary 3.26. A [finitary] Σ-logic is A-implicative if[f ] it is defined by a class
of A-implicative Σ-matrices.

Likewise, combining (2.23), Lemmas 3.24, 3.25 with Theorem 3.22, we also have:

Corollary 3.27. Let M be a finite class of finite [hereditarily simple] Σ-matrices,
C the logic of M, S the class of all A-implicative members of S∗(M) and K ,
((<(S)[∩∅])[∪S]). Then, the following are equivalent:

(i) C is A-implicative;
(ii) for each A ∈ M and every a ∈ (A \ DA), there are some B ∈ K and some

h ∈ hom(S)(A,B) such that h(a) 6∈ DB;
(iii) C is defined by S.

In particular, any A-implicative Σ-logic defined by a finite class of finite Σ-matrices
is defined by a finite class of finite A-implicative Σ-matrices.

Corollary 3.27(i)⇔(ii) yields an effective algebraic criterion of the implicativity
of finitely-valued logics.

3.4.2. Implicative calculi versus implicative logics.

Lemma 3.28. Let C ′ be a finitary Σ-logic and C ′′ a 1-extension of C ′. Suppose C ′

has DT with respect to A, while (2.11) is satisfied in C ′′. Then, C ′′ is an extension
of C ′. In particular, any exiomatically-equivalent finitary weakly A-implicative Σ-
logics are equal.

Proof. By induction on any n ∈ ω, we prove that C ′′ is an n-extension of C ′. For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0, and any ψ ∈ C ′(X). Then, in case
X = ∅, we have X ∈ ℘1(Fmω

Σ), and so ψ ∈ C ′(X) ⊆ C ′′(X), for C ′′ is a 1-extension
of C ′. Otherwise, take any φ ∈ X, in which case Y , (X \ {φ}) ∈ ℘n−1(Fmω

Σ),
and so, by DT with respect to A, that C ′ has, and the induction hypothesis, we
have (φ A ψ) ∈ C ′(Y ) ⊆ C ′′(Y ). Therefore, by (2.11)[x0/φ, x1/ψ] satisfied in C ′′,
in view of its structurality, we eventually get ψ ∈ C ′′(Y ∪ {φ}) = C ′′(X). Hence,
since ω = (

⋃
ω), we eventually conclude that C ′′ is an ω-extension of C ′, and so

an extension of C ′, for this is finitary. �

By I
[PL]
A we denote the Σ-calculus constituted by (2.11), (2.13) and (2.14) [as

well as (2.15)].

Lemma 3.29 (cf. Theorem 2.5 of [15]). Let A be an axiomatic Σ-calculus, C ′

the Σ-logic axiomatized by IA ∪A and A a Σ-algebra. Then, FgA
C′ has ADT with

respect to AA.

Proof. Consider any a ∈ X ⊆ A and any b ∈ FgA
C′(X), in which case there is some

(IA ∪A)-derivation c̄ of b from X over A. Then, by induction on any i ∈ (dom c̄),
with using the derivability of (2.12) in IA and Herbrand’s method (cf., e.g., the proof
of Proposition 1.8 of [12]), it is routine checking that (a AA ci) ∈ FgA

C′(X \ {a}).
In this way, the fact that b ∈ (img c̄) completes the argument. �

Corollary 3.30. Finitary weakly A-implicative Σ-logics are exactly axiomatic ex-
tensions of the Σ-logic axiomatized by IA.

Proof. Let C ′ be a finitary A-implicative Σ-logic and C ′′ the Σ-logic axiomatized
by IA ∪ C ′(∅). Then, C ′ is an extension of C ′′. Conversely, C ′′ is a 1-extension of
C ′, and so, by Lemma 3.28, is an extension of C ′. In this way, Lemma 3.29 with
A = Fmω

Σ completes the argument. �

After all, combining Lemma 3.29 and Corollary 3.30, we immediately get:

Corollary 3.31. Let C ′ be a finitary [weakly] A-implicative Σ-logic and A a Σ-
algebra. Then, FgA

C′ is [weakly] AA-implicative.
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3.5. Classical matrices and logics. A two-valued Σ-matrix A is said to be ∼-
classical, whenever it is ∼-negative, in which case it is both consistent and truth-
non-empty, and so is both false- and truth-singular, the unique element of (A \
DA)/DA being denoted by (0/1)A, respectively (the index A is often omitted,
unless any confusion is possible), in which case A = {0, 1}, while ∼Ai = (1− i), for
each i ∈ 2, whereas θA is diagonal, for χA is so, and so A is simple (in particular,
hereditarily so, for it has no proper submatrix) but is not ∼-paraconsistent, in view
of Remark 2.9(i)d).

A Σ-logic is said to be ∼-[sub]classical, whenever it is [a sublogic of] the logic
of a ∼-classical Σ-matrix, in which case it is inferentially consistent. Then, ∼ is
called a subclassical negation for a Σ-logic C, whenever the ∼-fragment of C is
∼-subclassical, in which case:

∼mx0 6∈ C(∼nx0), (3.11)

for all m,n ∈ ω such that the integer m− n is odd.

Lemma 3.32. Let A be a ∼-classical Σ-matrix, C the logic of A and B a truth-
non-empty consistent model of C. Then, A is a strict surjective homomorphic
image of a submatrix of B, in which case A is isomorphic to any ∼-classical model
of C, and so C has no proper ∼-classical extension.

Proof. Take any a ∈ DB 6= ∅ and any b ∈ (B \DB) 6= ∅. Then, by (2.23), the sub-
matrix D of B generated by {a, b} is a finitely-generated consistent truth-non-empty
model of C. Therefore, by Corollary 3.20, there are some set I, some submatrix
E of AI , some Σ-matrix F , some g ∈ homS

S(D,F) and some h ∈ homS
S(E ,F), in

which case E is both truth-non-empty and consistent (in particular, I 6= ∅), for
D is so, and so there is some d ∈ DE 6= ∅, in which case E 3 d , (I × {1}),
and so E 3 ∼Ed = (I × {0}). Hence, as I 6= ∅, e , {〈x, (I × {x})〉 | x ∈ A} is
an embedding of A into E , in which case f , (h ◦ e) ∈ homS(A,F) is injective,
in view of Remark 2.8(ii). Then, G , (img f) forms a subalgebra of F, in which
case H , g−1[G] forms a subalgebra of D, and so f−1 ◦ (g�G) is a strict surjective
homomorphism from (D�H) ∈ S(B) onto A. In this way, (2.23), Remark 2.8(ii)
and the fact that any ∼-classical Σ-matrix is simple and has no proper submatrix
complete the argument. �

A ∼-classical Σ-matrix A is said to be canonical, whenever A = 2 and aA = a, for
all a ∈ A, any isomorphism between canonical ones being clearly diagonal, so any
isomorphic canonical ones being equal. In general, the bijection eA , {〈i, iA〉 | i ∈
2} : 2 → A is an isomorphism from the canonical ∼-classical Σ-matrix 〈e−1

A [A], {1}〉
onto A. In this way, in view of (2.23) and Lemma 3.32, any ∼-classical Σ-logic is
defined by a unique canonical ∼-classical Σ-matrix, said to be characteristic for/of
the logic.

Corollary 3.33. Any ∼-classical Σ-logic has no proper inferentially consistent
extension, and so is structurally complete iff it has a theorem.

Proof. Let A be a ∼-classical Σ-matrix, C the logic of A and C ′ an inferentially
consistent extension of C. Then, x1 6∈ T , C ′(x0) 3 x0. On the other hand, by
the structurality of C ′, 〈Fmω

Σ, T 〉 is a consistent truth-non-empty model of C ′ (in
particular, of C). In this way, (2.23), Remark 2.5 and Lemma 3.32 complete the
argument. �

4. Structural completions versus free models

Let M be a class of Σ-matrices, C the logic of M, K , π0[M] and α ∈ ℘ω[\1](ω)
[unless Σ has a nullary symbol]. Then, for any A ∈ M and any h ∈ hom(Fmα

Σ,A),
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h ∈ homS(B,A), where B , 〈Fmα
Σ, h

−1[DA]〉, in which case, by Remark 2.8, we
have θα

K ⊆ (kerh) = h−1[∆A] ⊆ h−1[θA] = θB, and so θα
K ⊆ θD, where D ,

〈Fmα
Σ,Cnα

M(∅)〉 ∈ Mod(C), in view of the structurality of C. Thus, θα
K ∈ Con(D),

in which case, by (2.23), Fα
M , (D/θα

K) ∈ Mod(C), while Fα
M = Fα

K.

Theorem 4.1. Let Σ be a signature [with(out) nullary symbols], M a [finite (non-
empty)] class of [finite] Σ-matrices, C the logic of M, [f ∈

∏
A∈M ℘ω(\1)(A)] α ,

(ω[∩
⋃
A∈M |f(A)|]) and B a submatrix of Fα

M. Suppose every A ∈ M is a surjective
homomorphic image of B, unless B = Fα

M, [and generated by f(A)]. Then, the
structural completion of C is defined by B.

Proof. Then, by (2.23), the logic C ′ of Fω[/α]
M is defined by Dω[/α] , 〈Fm

ω[/α]
Σ ,

Cnω[/α]
M (∅)〉 ∈ Mod(C), in view of the structurality of C [/and (2.22)], in which

case it is an extension of C, and so C(∅) ⊆ C ′(∅). For proving the converse
inclusion, consider the following complementary cases:

• α = ω.
Then, applying the diagonal Σ-substitution, we get C ′(∅) ⊆ DDω = C(∅).

• α 6= ω.
Consider any A ∈ M, in which case it is generated by f(A) of cardinality
6 α, and so there is some surjective h ∈ hom(Fmα

Σ,A). Then, DDα =
Cnα

M(∅) ⊆ h−1[DA], in which case h ∈ homS(Dα,A), and so, by (2.24),
C ′(∅) ⊆ C(∅).

Next, Dω is a model of any extension C ′′ of C ′ such that C ′′(∅) = C(∅), in view of
its structurality [and so is its submatrix Dα, in view of (2.22) and (2.23)], in which
case C ′ is the structural completion of C. Finally, by (2.23), B is a model of C ′.
Conversely, if B = {6=}Fα

M, then {each A ∈ M is a surjective homomorphic image
of B, in which case, by (2.24)} CnB(∅) = C ′(∅), and so C ′, being structurally
complete, is defined by B, as required. �

The []-optional case of this theorem provides an effective procedure of finding
finite matrix semantics of any finitely-valued logic, applications of which are demon-
strated in proving Theorem 6.11 below.

5. Self-extensional logics versus simple matrices

Theorem 5.1. Let M be a class of simple Σ-matrices, K , π0[M], V , V(K),
α , (1 ∪ (ω ∩

⋃
{|A| | A ∈ M})) ∈ ℘∞\1(ω) and C the logic of M. Then, the

following are equivalent:
(i) C is self-extensional;
(ii) ≡ω

C ⊆ θω
K;

(iii) ≡ω
C = θω

K;
(iv) for all distinct a, b ∈ Fα

V , there are some A ∈ M and some h ∈ hom(Fα
V,A)

such that χA(h(a)) 6= χA(h(b));
(v) there is some class C of Σ-algebras such that K ⊆ V(C) and, for each A ∈ C

and all distinct a, b ∈ A, there are some B ∈ M and some h ∈ hom(A,B)
such that χB(h(a)) 6= χB(h(b));

(vi) there is some S ⊆ Mod(C) such that K ⊆ V(π0[S]) and, for each A ∈ S, it
holds that (A2 ∩

⋂
{θB | B ∈ S,B = A}) ⊆ ∆A.

Proof. First, (i/ii)⇒(ii/iii) is by Corollary 3.4/Lemma 3.7, respectively.
Next, assume (iii) holds. Then, θβ , ≡β

C = θβ
K = θβ

V ∈ Con(Fmβ
Σ), for all β ∈

℘∞\1(ω). In particular (when β = ω), (i) holds. Furthermore, consider any distinct
a, b ∈ Fα

V . Then, there are some φ, ψ ∈ Fmα
Σ such that νθα(φ) = a 6= b = νθα(φ),

in which case, by (2.22), Cnα
M(φ) 6= Cnα

M(ψ), and so there are some A ∈ M and
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some g ∈ hom(Fmα
Σ,A) such that χA(g(φ)) 6= χA(g(φ)). In that case, θα ⊆ (ker g),

and so, by the Homomorphism Theorem, h , (g ◦ ν−1
θα ) ∈ hom(Fα

V,A). Then,
h(a/b) = g(φ/ψ), in which case χA(h(a)) 6= χA(h(b)), and so (iv) holds.

Further, assume (iv) holds. Let C , {Fα
V}. Consider any A ∈ K and the following

complementary cases:
• |A| 6 α.

Let h ∈ hom(Fmα
Σ,A) extend any surjection from Vα onto A, in which case

it is surjective, while θ , θα
V = θα

K ⊆ (kerh), and so, by the Homomorphism
Theorem, g , (h◦ν−1

θ ) ∈ hom(Fα
V,A) is surjective. In this way, A ∈ V(Fα

V).
• |A| 
 α.

Then, α = ω. Consider any Σ-identity φ ≈ ψ true in Fω
V and any h ∈

hom(Fmω
Σ,A), in which case, we have θ , θω

V = θω
K ⊆ (kerh), and so,

since νθ ∈ hom(Fmω
Σ,F

ω
V), we get 〈φ, ψ〉 ∈ (ker νθ) ⊆ (kerh). In this way,

A ∈ V(Fα
V).

Thus, K ⊆ V(C), and so (v) holds.
Now, assume (v) holds. Let C′ be the class of all non-one-element members

of C and S , {〈A, h−1[DB]〉 | A ∈ C′,B ∈ M, h ∈ hom(A,B)}. Then, for all
A ∈ C′, each B ∈ M and every h ∈ hom(A,B), h is a strict homomorphism from
C , 〈A, h−1[DB]〉 to B, in which case, by (2.23), C ∈ Mod(C), and so S ⊆ Mod(C),
while χC = (χB ◦ h), whereas π0[S] = C′ generates the variety V(C). In this way,
(vi) holds.

Finally, assume (vi) holds. Consider any φ, ψ ∈ Fmω
Σ such that φ ≡ω

C ψ, any
A ∈ S and any h ∈ hom(Fmω

Σ,A). Then, for each B ∈ S with B = A, h(φ) θB h(ψ),
in which case h(φ) = h(ψ), and so A |= (φ ≈ ψ). Thus, K ⊆ V(π0[S]) |= (φ ≈ ψ),
and so (ii) holds, as required. �

When both M and all members of it are finite, α is finite, in which case Fα
V is

finite and can be found effectively, and so, taking (2.23) and Remark 2.8[(iv)] into
account, the item (iv) of Theorem 5.1 yields an effective procedure of checking the
self-extensionality of any logic defined by a finite class of finite matrices. However,
its computational complexity may be too large to count it practically applicable.
For instance, in the unitary n-valued case, where n ∈ ω, the upper limit nnn

of
|Fα

V | as well as the predetermined computational complexity nnnn

of the procedure
involved become too large even in the three-/four-valued case. And, though, in
the two-valued case, this limit — 16 — as well as the respective complexity —
216 = 65536 — are reasonably acceptable, this is no longer matter in view of the
following universal observation:

Example 5.2. LetA be a Σ-matrix. Suppose it is both false- and truth-singular (in
particular, two-valued as well as both consistent and truth-non-empty [in particu-
lar, classical]), in which case θA = ∆A, for χA is injective, and so A is simple. Then,
by Theorems 3.9 and 5.1(vi)⇒(i) with S = {A}, the logic of A is self-extensional,
its intrinsic variety being generated by A. Thus, by the self-extensionality of in-
ferentially inconsistent logics, any two-valued (in particular, classical) logic is self-
extensional. �

Nevertheless, the procedure involved is simplified much under certain conditions
upon the basis of the item (v) of Theorem 5.1.

5.1. Self-extensional conjunctive disjunctive logics.

Lemma 5.3. Let C be a [finitary Z-conjunctive] Σ-logic and A a [truth-non-empty
Z-conjunctive] Σ-matrix. Then, A ∈ Mod2\1(C) if[f ] A ∈ Mod(C).
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Proof. The “if” part is trivial. [Conversely, assume A ∈ Mod2\1(C). Then, by
Remark 2.6, A ∈ Mod2(C). By induction on any n ∈ ω, let us prove that A ∈
Modn(C). For consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0. In case |X| ∈ 2,
X ∈ ℘2(Fmω

Σ), and so C(X) ⊆ Cnω
A(X), for A ∈ Mod2(C). Otherwise, |X| > 2, in

which case there are some distinct φ, ψ ∈ X, and so Y , ((X \ {φ, ψ})∪{φZψ}) ∈
℘n−1(Fmω

Σ). Then, by the induction hypothesis and the Z-conjunctivity of both
C and A, we get C(X) = C(Y ) ⊆ Cnω

A(Y ) = Cnω
A(X). Thus, A ∈ Modω(C), for

ω = (
⋃
ω), and so A ∈ Mod(C), for C is finitary.] �

Remark 5.4. Let C be a Z-conjunctive or/and Y-disjunctive Σ-logic and φ ≈ ψ
a semi-lattice/“distributive lattice” identity for Z or/and Y, respectively. Then,
φ ≡ω

C ψ. �

Theorem 5.5. Let M be a class of simple Σ-matrices, K , π0[M], V , V(K) and
C the logic of M. Suppose C is finitary (in particular, both M and all members
of it are finite) and Z-conjunctive (that is, all members of M are so) [as well as
Y-disjunctive (in particular, all members of M are so)]. Then, the following are
equivalent:

(i) C is self-extensional;
(ii) for all φ, ψ ∈ Fmω

Σ, it holds that (ψ ∈ C(φ)) ⇔ (K |= (φ ≈ (φ Z ψ))), while
semi-lattice [resp., distributive lattice] identities for Z [and Y] are true in K;

(iii) every truth-non-empty Z-conjunctive Σ-matrix with underlying algebra in V
is a model of C, while semi-lattice [resp., distributive lattice] identities for Z
[and Y] are true in V;

(iv) any truth-non-empty Z-conjunctive [consistent Y- disjunctive] Σ-matrix with
underlying algebra in K is a model of C, while semi-lattice [resp., distributive
lattice] identities for Z [and Y] are true in K.

Proof. First, (i)⇒(ii) is by Theorem 5.1(i)⇒(iii), Remark 5.4 and the Z-conjuctivity
of C. Next, (ii)⇒(iii) is by Lemma 5.3. Further, (iv) is a particular case of (iii).
Finally, (iv)⇒(i) is by Theorem 5.1(vi)⇒(i) with S, being the class of all truth-non-
empty Z-conjunctive [consistent Y- disjunctive] Σ-matrices with underlying algebra
in K, and the semilattice identities for Z [as well as the Prime Ideal Theorem for
distributive lattices]. (More precisely, consider any A ∈ K and any ā ∈ (A2\∆A), in
which case, by the semilattice identities (more specifically, the commutativity one)
for Z, ai 6= (ai ZA a1−i), for some i ∈ 2, and so B , 〈A, {b ∈ A | ai = (ai ZA b)}〉 ∈ S
[resp., by the Prime Ideal Theorem, there is some B ∈ S] such that B = A and
ai ∈ DB 63 a1−i.) �

Theorem 5.6. Let M be a finite class of finite hereditarily simple Z-conjunctive
Y-disjunctive Σ-matrices, K , π0[M] and C the logic of M. Then, C is self-
extensional iff, for each A ∈ K and all distinct a, b ∈ A, there are some B ∈ M and
some h ∈ hom(A,B) such that χB(h(a)) 6= χB(h(b)).

Proof. The “if” part is by Theorem 5.1(v)⇒(i) with C = K. Conversely, assume C
is self-extensional. Consider any A ∈ K and any ā ∈ (A2 \∆A). Then, by Theorem
5.5(i)⇒(iv), A is a distributive (Z,Y)-lattice, in which case, by the commutativity
identity for Z, ai 6= (aiZAa1−i), for some i ∈ 2, and so, by the Prime Ideal Theorem,
there is some Z-conjunctive Y-disjunctive Σ-matrix D with D = A such that ai ∈
DD 63 a1−i, in which case D is both consistent and truth-non-empty, and so is a
model of C. Hence, by Corollary 3.20 and Remark 2.8(ii), there are some B ∈ M
and some h ∈ homS(D,B) ⊆ hom(A,B), in which case h(ai) ∈ DB 63 h(a1−i), and
so χB(h(ai)) = 1 6= 0 = χB(h(a1−i)), as required. �
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5.2. Self-extensional implicative logics.

Lemma 5.7. Let C be a Σ-logic, A ∈ Mod∗(C) and φ, ψ ∈ C(∅). Suppose C is
self-extensional. Then, A |= (φ ≈ ψ).

Proof. In that case, φ ≡ω
C ψ, and so Corollary 3.5 completes the argument. �

Lemma 5.8. Let C be a Σ-logic, A ∈ Mod∗(C), a ∈ A and B , 〈A, {a AA a}〉.
Suppose C is finitary, self-extensional and weakly A-implicattive. Then, (a AA

a) AA b) = b, for all b ∈ A, in which case B ∈ Mod(C), and so DB = FgA
C(∅).

Proof. Let ϕ ∈ C(∅) and h ∈ hom(Fmω
Σ,A). Then, V , Var(φ) ∈ ℘ω(Vω), in which

case (Vω \V ) 6= ∅, and so there is some v ∈ (Vω \V ). Let g ∈ hom(Fmω
Σ,A) extend

(h�(Vω \{v}))∪ [v/a]. Then, as, by (2.12), (v A v) ∈ C(∅), by Lemma 5.7, we have
h(ϕ) = g(ϕ) = g(v A v) = (a AA a) ∈ DB, and so B ∈ Mod1(C). Moreover, as, by
(2.12), (x0 A x0) ∈ C(∅), by (2.13) and (2.11), we have ((x0 A x0) A x1) ≡ω

C x1,
in which case, by Corollary 3.5, we get (a AA a) AA b) = b, for all b ∈ A, and so
(2.11) is true in B. In this way, (2.12) and Lemma 3.28 complete the argument. �

Theorem 5.9. Let M be a class of simple Σ-matrices, K , π0[M] and C the logic of
M. Suppose C is finitary (in particular, both M and all members of it are finite) and
A-implicative (in particular, all members of M are so). Then, C is self-extensional
iff, for all φ, ψ ∈ Fmω

Σ, it holds that (ψ ∈ C(φ)) ⇔ (K |= (ψ ≈ (φ ]A ψ))), while
both (2.3) and (2.4) as well as semi-lattice identities for ]A are true in K.

Proof. The “if” part is by Theorem 5.1(ii)⇒(i) and semi-lattice identities (more
specifically, the commutativity one) for ]A. Conversely, by Lemma 3.24, C is ]A-
disjunctive. In this way, Theorem 5.1(i)⇒(iii), Remark 5.4, (2.12), Lemma 5.8 and
the ]A-disjunctivity of C complete the argument. �

Now, we are in a position to prove the following “implicative” analogue of The-
orem 5.6:

Theorem 5.10. Let M be a finite class of finite hereditarily simple A-implicative
Σ-matrices, K , π0[M] and C the logic of M. Then, C is self-extensional iff, for
each A ∈ K and all distinct a, b ∈ A, there are some B ∈ M and some h ∈ hom(A,B)
such that χB(h(a)) 6= χB(h(b)).

Proof. The ”if” part is by Theorem 5.1(v)⇒(i) with C = K. Conversely, assume C is
self-extensional. Consider any A ∈ K and any distinct a, b ∈ A. Then, by Theorem
5.9, A is a ]A-semi-lattice satisfying (2.4), in which case, by the commutativity
identity for ]A, without loss of generality, b 6= (a ]A

A b), and so b 6∈ FgA
C(a), for,

otherwise, by Corollary 3.31 and Lemma 5.8, we would have (a AA b) ∈ FgA
C(∅) =

{a AA a}, in which case we would get (a AA b) = (a AA a), and so, by (2.4), we
would eventually get (a]A

A b) = ((a AA b) AA b) = ((a AA a) AA b) = b. Therefore,
by Corollaries 3.16(i)⇒(ii), 3.31 and Lemma 3.24, there is some ]A

A-disjunctive
G ∈ FiC(A) such that b 6∈ G 3 a, in which case D , 〈A, G〉 ∈ Mod(C) is finite
and ]A-disjunctive, and so, by Corollary 3.20 and Remark 2.8(ii), there are some
B ∈ M and some h ∈ homS(D,B) ⊆ hom(A,B), in which case, as b 6∈ G = DD 3 a,
we have h(a) ∈ DB 63 h(b), and so we get χB(h(a)) = 1 6= 0 = χB(h(b)). �

5.3. Common consequences. The effective procedure of verifying the self-ex-
tensionality of an n-valued implicative/“both disjunctive and conjunctive” logic,
where n ∈ ω, resulted from Theorem 5.6/5.10 has the computational complexity
nn that is quite acceptable for (3|4)-valued logics. And what is more, it provides
a quite useful heuristic tool of doing it, manual applications of which (suppressing
the factor nn at all) are presented below. First, we have:
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Corollary 5.11. Let n ∈ (ω\3), A a finite hereditarily simple A-implicative/“both
Z-conjunctive and Y-disjunctive” Σ-matrix and C the logic of A. Suppose every
non-singular endomorphism of A is diagonal. Then, the logic of A is not self-
extensional.

Proof. By contradiction. For suppose C is self-extensional. Then, as n ∈ (ω \ 3), A
is either false- or truth-non-singular, in which case χA is not injective, and so there
are some distinct a, b ∈ A such that χA(a) = χA(b). On the other hand, by Theorem
5.6/5.10, there is some h ∈ hom(A,A) such that χA(h(a)) 6= χA(h(b)), in which case
h is not singular, and so h = ∆A. Hence, χA(a) = χA(h(a)) 6= χA(h(b)) = χA(b).
This contradiction completes the argument. �

5.3.1. Self-extensionality versus algebraizability. We start from proving the follow-
ing “implicative” analogue of Lemma 11 of [22] being interesting in its own right
within the context of Universal Algebra:

Lemma 5.12. Let A be an A-implicative Σ-matrix with [finite] unary unitary
equality determinant Υ. Suppose A is an A-implicative inner semi-lattice. Then,
fA

Υ , {((γ(xi) A γ(x1−i)) ]A (δ(x2+j) A δ(x2+1−j))) ≈ (x0 A x0) | i, j ∈ 2, γ, δ ∈
Υ} is a [finite] disjunctive system for A.

Proof. Consider any ā ∈ A4. Let h ∈ hom(Fm4
Σ,A) extend [xi/ai]i∈4.

First, assume (a0 = a1)|(a2 = a3). Then, for each (γ|δ) ∈ Υ and every (i|j) ∈
2, (γ|δ)A(ai|(2+j)) = (γ|δ)A(a(1−i)|(2+1−j)), in which case ((γ|δ)A(ai|(2+j)) AA

(γ|δ)A(a(1−i)|(2+1−j))) = [A]A
, and so, for each (δ|γ) ∈ Υ and every (j|i) ∈ 2,

((γA(ai) AA γA(a1−i)) ]A
A (δA(a2+j) A δA(a2+1−j))) = [A]A

= (a0 AA a0). Thus,
A |= (

∧
fA

Υ)[h].
Conversely, assume both a0 6= a1 and a2 6= a3. Then, there are some γ, δ ∈ Υ

and some i, j ∈ 2 such that both γA(ai) ∈ DA 63 γA(a1−i) and δA(a2+j) ∈ DA 63
δA(a2+1−j), in which case, by the A-implicativity of A, (γA(ai) AA γA(a1−i)) 6∈
DA 63 (δA(a2+j) A δA(a2+1−j)), and so, by the ]A-disjunctivity of A, ((γA(ai) AA

γA(a1−i)) ]A
A (δA(a2+j) A δA(a2+1−j))) 6∈ DA. On the other hand, by the A-

implicativity ofA, (a0 AA a0) ∈ DA. Hence, ((γA(ai) AA γA(a1−i))]A
A(δA(a2+j) A

δA(a2+1−j))) 6= (a0 AA a0). Thus, A 6|= (
∧

fA
Υ)[h]. �

According to [22], given any m,n ∈ ω, a ( Σ-)equational `m
n -(sequent )defini-

tion for a Σ-matrix A is any Ω ∈ ℘ω(Eqm+n
Σ ) such that, for all ā ∈ Am and

all b̄ ∈ An, it holds that (((img a) ⊆ DA) ⇒ (((img b) ∩ DA) 6= ∅)) ⇔ (A |=
(
∧

Ω)[xi/ai;xm+j/bj ]i∈m;j∈n). (Equational `0/1
1 -definitions are also referred to as

equational “truth definitions”/implications, respectively/, according to Appendix
A of [24].) Some kinds of equational sequent definitions are actually equivalent for
implicative matrices, in view of the following compound immediate observation:

Remark 5.13. Given a[n A-implicative] Σ-matrix A, (i[-v]) does [resp., do] hold,
where:

(i) given any equational `2
2-definition Ω for A, Ω[x(2·i)+j/xi]i,j∈2 is an equational

implication for A (cf. Theorems 10 and 12(ii)⇒(iii) of [24]);
(ii) given any equational implication Ω for A, Ω[x0/(x0 A x0), x1/x0] is an equa-

tional truth definition for A;
(iii) given any equational truth definition Ω for A, the following hold:

a) Ω[x0/(x0 A x1)] is an equational implication for A;
b) Ω[x0/(x0 A (x1 A (x2 ]A x3)))] is an equational `2

2-definition for A;
(iv) given any unary [binary] equality determinant ε (in particular, ε = εΥ, where

Υ is a [unary] unitary equality determinant) for A, {φ A ψ | (φ ` ψ) ∈ ε} is
an axiomatic [binary] equality determinant for A;
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(v) in case A is truth-singular, {x0 ≈ (x0 A x0} is an equational truth definition
for it. �

In this way, taking Theorems 10, 12(i)⇔(ii) and 13 of [22] as well as Remark 5.13
into account, a “both Z-conjunctive and Y-disjunctive”/A-implicative consistent
truth-non-empty finite Σ-matrix M with unary unitary equality determinant has
an equational implication iff a multi-conclusion two-side sequent calculus S̃(k,l)

M,T
(cf. [21] as well as the paragraph -2 on p. 294 of [22] for more detail)/“ (or the
equivalent — in the sense of [18] — logic of M)” is algebraizable — in the sense
of [18]. In this connection, by Lemma 9 and Theorem[s] 10 [and 14(ii)⇒(i)] of [22]
[as well as Lemma 5.12/“11 of [22]”], we have

Lemma 5.14 (cf. Theorem[s] 14 [and 15] of [22] [for the “lattice conjunctive dis-
junctive” case]). Let A be a finite consistent truth-non-empty [ A-implicative/“both
Z-conjunctive and Y-disjunctive”] Σ-matrix with unary unitary equality determi-
nant. [Suppose A is an/a “A-implicative inner semi-lattice”/ (Z,Y)-lattice, respec-
tively.] Then, A has an equational implication [if and] only if every non-singular
partial endomorphism of A is diagonal.

As a consequence, by Theorem 3.11(ii)⇒(i), Corollary 5.11 and Lemma 5.14, we
immediately get the following universal negative result:

Corollary 5.15. Let n ∈ (ω \ 3), A an n-valued consistent truth-non-empty A-
implicative/“both Z-conjunctive and Y-disjunctive” Σ-matrix with unary unitary
equality determinant and C the logic of A. Suppose A has an equational implication.
Then, C is not self-extensional.

The converse does not, generally speaking, hold — even in the “lattice conjunc-
tive disjunctive” case (cf. Example 6.23), though does hold within the framework of
three-valued paraconsistent/paracomplete logics with subclassical negation as well
as “lattice conjunction and disjunction”|“implicative inner semi-lattice implication”
(cf. Corollary 6.121|6.131, respectively). In view of Theorem 10 and Lemma 8 of
[22], Example 5.2 and the self-extensionality of inferentially inconsistent logics, the
reservations “n ∈ (ω \ 3)” and “n-valued consistent truth-non-empty” cannot be
omitted in the formulation of Corollary 5.15.

Example 5.16 ( Lukasiewicz’ finitely-valued logics; cf. [9]). Let n ∈ (ω \ 3), Σ ,
(Σ+,∼ ∪{⊃}) with binary ⊃ (implication) and A the Σ-matrix with (A�Σ+) , Dn,
DA , {1}, ∼A , (1 − a) and (a ⊃A b) , min(1, 1 − a + b), for all a, b ∈ A, in
which case A is both consistent, truth-non-empty, ∧-conjunctive and Y-disjunctive
as well as, by Example 7 of [22], is implicative, and so, by Remark 5.13(v),(iii)a),
has an equational implication (cf. Example 7 of [22]) and, by Example 3 of [21], a
unary unitary equality determinant. Hence, by Corollary 5.15, the logic of A is not
self-extensional. �

Example 5.17. In view of Remarks 1 and 2 of [22], Lemma 5.14 and Corollaries
5.11 and 5.15, arbitrary three-valued expansions of both the logic of paradox LP [14]
and Kleene’s three-valued logic K3 [7] are not self-extensional, because the former
has the equational implication (x0 ∧ (x1 ∨ ∼x1)) ≈ (x0 ∧ x1), discovered in [17],
while the latter has the same underlying algebra. Likewise, in view of “Proposition
5.7 of [24]”/“both Lemma 4.1 of [15] and Remark 5.13(iii)a)” as well as Corollary
5.15, arbitrary three-valued expansions of P 1/HZ [26]/[6] are not self-extensional,
for they have an equational implication/“truth definition”, respectively. �

Another generic applications of our universal elaboration are discussed in the
next section.
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6. Applications and examples

6.1. Four-valued expansions of Belnap’s four-valued logic. Here, it is sup-
posed that Σ ⊇ Σ+,∼[,01]. Fix a Σ-matrix A with (A�Σ+,∼[,01]) , DM4[,01] and
DA , (22 ∩ π−1

0 [{1}]), Then, both A and ∂(A) , 〈A, 22 ∩ π−1
1 [{1}]〉 are both

∧-conjunctive and ∨-disjunctive, while {x0,∼x0} is a unary unitary equality deter-
minant for them (cf. Example 2 of [21]), so they as well as their submatrices are
hereditarily simple (cf. Theorem 3.11(ii)⇒(i)), while:

(θA ∩ θ∂(A)) = ∆A, (6.1)

D∂(A) = (∼A)
−1

[A \DA]. (6.2)

Let C be the logic of A. Then, as DM4[,01] , (A�Σ+,∼[,01]) defines [the bounded
version/expansion of] Belnap’s four-valued logic B4[,01] [3] (cf. [16]), C is a four-
valued expansion of B4[,01]. This exhaust all four-valued expansions of B4[,01], A
being uniquely determined by C, as we show below, marking the framework of the
present subsection:

Lemma 6.1. Any Σ+,∼[,01]-matrix B defines B4[,01] and is four-valued iff it is
isomorphic to DM4[,01], in which case it is simple.

Proof. The “if” part is by (2.23) and the fact that |22| = 4. Conversely, assume
B4[,01] is defined by B, while this is four-valued. Then, by (2.23) and Remark
2.8[(iv)], D , (B/θ), where θ , a(B), is a simple Σ+,∼[,01]-matrix defining B4[,01].
Hence, by Theorem 3.9, D and DM4[,01] generate the same (intrinsic) variety (of
B4[,01]), in which case they satisfy same identities, and so the former is a [bounded]
De Morgan lattice, for the latter is so. In particular,

((x0 ∧ ∼x0) ∧ (x1 ∨ ∼x1)) ≈ (x0 ∧ ∼x0), (6.3)

not being true in the latter under [xi/〈i, 1− i〉]i∈2, is not true in the former, in which
case D�Σ+ is not a chain, and so there are some a, b ∈ D such that D 3 (c|d) ,
(a(∧|∨)Db) 6∈ {a, b}. Then, a 6= b, in which case c 6= d, and so D = {a, b, c, d},
for |D| 6 |B| = 4. Therefore, |D| = 4 
 3, in which case θ is diagonal, and so
νθ is an isomorphism from B onto D. Hence, c|d is a zero|unit of D�Σ+, in which
case [(c|d) = (⊥|>)D, while], by (2.6)|(2.7), ∼D(c|d) = (d|c), and so, by (2.5),
∼D(a/b) 6∈ {c, d}. On the other hand, if ∼A(a/b) was equal to b/a, then, by (2.5),
∼A(b/a) was equal to a/b, in which case e(∧|∨)D∼De would be equal to c|d, for
all e ∈ D, and so (6.3) would be true in D. Thus, ∼D(a/b) = (a/b). And what
is more, D is both consistent, truth-non-empty and ∧-conjunctive, for DM4[,01]

is so, that is, B4[,01] is both inferentially consistent and ∧-conjunctive. Hence,
c 6∈ DD 3 d, in which case {a, b} * DD, and so ({a, b} ∩DD) 6= ∅, for, otherwise,
DD would be equal to {d}, in which case D would be non-∼-paraconsistent, and
so would be B4[,01], contrary to the fact that (2.16) is not true in DM4[,01] under
[xi/〈1− i, i〉]i∈2. Therefore, DD = {d, e}, for some e ∈ {a, b}, in which case the
mapping g : 22 → D, given by:

g(11) , d,

g(00) , c,

g(10) , e,

g(01) , f,

where f is the unique element of {a, b}\{e}, is an isomorphism from DM4[,01] onto
D, and so g−1 ◦νθ is that from B onto DM4[,01]. Finally, the simplicity of the latter
and Remark 2.8[(iii)] complete the argument. �
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Theorem 6.2. Any four-valued Σ-expansion C ′ of B4[,01] is defined by a unique
Σ-expansion of DM4[,01].

Proof. Let A′ be a four-valued Σ-matrix defining C ′. Then, A′�Σ+,∼[,01] is a four-
valued Σ+,∼[,01]-matrix defining B4[,01], in which case, by Lemma 6.1, there is some
isomorphism e from A′�Σ+,∼[,01] onto DM4[,01], and so e is an isomorphism from
A′ onto the Σ-expansion A′′ , 〈e[A′], 22 ∩ π−1

0 [{1}]〉 of DM4[,01]. Hence, by (2.23),
C ′ is defined by A′′, being both finite and Y-disjunctive as well as having a unary
unitary equality determinant. Finally, let A′′′ be any more Σ-expansion of DM4[,01]

defining C ′, in which case it is a ∨-disjunctive model of C ′, and so, by Theorem
3.23, there is some h ∈ homS(A′′′,A′′). Then, h ∈ homS(DM4[,01],DM4[,01]), in
which case, by Lemma 3.12, h is diagonal, and so A′′′ = A′′, as required. �

Given any i ∈ 2, put DM3,i , (22 \ {〈i, 1− i〉}). Then, in case this forms a sub-
algebra of A (such is the case, when, e.g., Σ = Σ∼,+[,01]), we set (A/DM)3,i/[,01] ,
((A/DM)/4[,01]�DM3,i), the logic (C/B)3,i/[,01] of which is a both ∨-disjunctive
and ∧-conjunctive (for its defining matrix is so; cf. Remark 2.9(ii)) as well as infer-
entially consistent (for its defining matrix is both consistent and truth-non-empty)
unitary three-valued both extension of (C/B)4/[,01], in view of (2.23), and a three-
valued expansion of [the bounded version/expansion LP01|K3,01 of] “the logic of
paradox”|“Kleene’s three-valued logic” LP |K3 [14]|[7], defined by DM3,i[,01], when-
ever i = (0|1), in which case it is ∨-disjunctive as well as ∼-paraconsistent|(∨,∼)-
paracomplete, and so is not ∼-classical, in view of Remark 2.9(i)d),(ii).

Let µ : 22 → 22, 〈i, j〉 7→ 〈j, i〉 and v , {〈ij, kl〉 ∈ (22)2 | i 6 k, l 6 j}, those n-
ary operations on 22, where n ∈ ω, which “commute with µ”/“are monotonic with
respect to v”, being said to be specular/regular, respectively. Then, A is said to be
specular/regular, whenever its primary operations are so, in which case secondary
ones are so as well. (Clearly, DM4[,01] is both specular and regular.) Then:

D∂(A) = µ−1[DA]. (6.4)

Theorem 6.3. The following are equivalent:
(i) C is self-extensional;
(ii) A is specular;
(iii) ∂(A) is isomorphic to A;
(iv) C is defined by ∂(A);
(v) ∂(A) ∈ Mod(C);
(vi) C has PWC with respect to ∼.

Proof. First, assume (i) holds. Then, by Theorem 5.6, there is some h ∈ hom(A,A)
such that χA(h(11)) 6= χA(h(10)), in which case h is not singular, and so B ,
(img h) forms a non-one-element subalgebra of A. Hence ∆2 ⊆ B, in which case
A[�B] is a (∧,∨)-lattice with zero/unit 〈0/1, 0/1〉, and so, by Lemma 2.3, (h�∆2) is
diagonal. Therefore, h(10) 6∈ DA, for h(11) = (11) ∈ DA. On the other hand, for
all a ∈ A, it holds that (∼Aa = a) ⇔ (a 6∈ ∆2). Therefore, h(10) = (01). Moreover,
if h(01) was equal to 01 too, then we would have (00) = h(00) = h((10)∧A (01)) =
((01) ∧A (01)) = (01). Thus, hom(A,A) 3 h = µ, so (ii) holds.

Next, (ii)⇒(iii) is by (6.4) and the bijectivity of µ : A → A, while (iii)⇒(iv) is
by (2.23), whereas (v) is a particular case of (iv). Further, (i)⇒(vi) is by:

Claim 6.4. Any self-extensional extension C ′ of C has PWC with respect to ∼.

Proof. In that case, C ′ is ∧-conjunctive and satisfies (2.8) with i = 1, for C is and
does so. Consider any φ ∈ Fmω

Σ and any ψ ∈ C ′(φ), in which case both ∼(φ∧ψ) ≡C

(∼φ∨∼ψ), in view of (2.6), true in A, and Lemma 3.7, and (φ∧ψ) ≡C′ φ, in view



28 A. P. PYNKO

the ∧-conjunctivity of C ′, and so, by (2.8) with i = 1 and the self-extensionality of
C ′, ∼φ ≡C′ (∼φ ∨ ∼ψ) ∈ C ′(∼ψ), as required. �

Now, assume (vi) holds. Consider any φ ∈ Fmω
Σ, any ψ ∈ C(φ), in which case

∼φ ∈ C(∼ψ), and any h ∈ hom(Fmω
Σ,A) such that h(φ) ∈ D∂(A), in which case,

by (6.2), h(∼φ) 6∈ DA, and so h(∼ψ) 6∈ DA, that is, h(ψ) ∈ D∂(A). Thus, ∂(A),
being both truth-non-empty and Z-conjunctive, is a (2 \ 1)-model of C, and so, by
Lemma 5.3, (v) holds.

Finally, (v)⇒(i) is by (6.1) and Theorem 5.1(vi)⇒(i) with S = {A, ∂(A)}. �

This positively covers B4[,01] as regular instances. And what is more, in case Σ =
Σ',+[,01] , (Σ∼,+[,01] ∪ {¬}) with unary ¬ (classical — viz., Boolean — negation)
and ¬A〈i, j〉 , 〈1− i, 1− j〉, Theorem 6.3 equally covers the logic CB4[,01] , C of
the (¬x0 ∨ x1)-implicative DMB4[,01] , A with non-regular — because of ¬A —
underlying algebra, introduced in [19]. Below, we disclose a unique (up to term-wise
definitional equivalence) status of these three self-extensional instances.

Lemma 6.5. Suppose A is specular. Then, ∆2 forms a subalgebra of A. In
particular, C is ∼-subclassical, whenever it is self-extensional.

Proof. By contradiction. For suppose there are some f ∈ Σ of arity n ∈ ω and
some ā ∈ ∆n

2 such that fA(ā) 6∈ ∆2. Then, fA(ā) = fA(µ◦ ā) = µ(fA(ā)) 6= fA(ā).
This contradiction, Theorem 6.3(i)⇒(ii) and (2.23) complete the argument. �

Corollary 6.6. Suppose C is self-extensional. Then, the following are equivalent:
(i) C has a theorem;
(ii) >DM4,01 is term-wise definable in A;
(iii) ⊥DM4,01 is term-wise definable in A;
(iv) {01} does not form a subalgebra of A;
(v) {10} does not form a subalgebra of A.

Proof. Then, by Theorem 6.3(i)⇒(ii), µ ∈ hom(A,A). First, (i,iv) are particular
cases of (ii), for (01) 6= >DM4,01 = (11) ∈ DA. Next, (ii)⇔(iii) is by the equalities
∼A(⊥DM4,01/>DM4,01) = (>DM4,01/⊥DM4,01). Likewise, (iv)⇔(v) is by the equal-
ities µ[{01/10}] = {10/01}. Further, (i)⇒(ii) is by Lemmas 5.7 and 6.5. Finally,
assume (iv) holds. Then, there is some ϕ ∈ Fm1

Σ such that ϕA(01) 6= (01), in which
case, by the injectivity of µ, we have (10) = µ(01) 6= µ(ϕA(01)) = ϕA(µ(01)) =
ϕA(10), and so, by Lemma 6.5, we get (x0∨ (ϕ∨∼ϕ)) ∈ C(∅). Thus, (i) holds. �

Corollary 6.7. Suppose C is self-extensional, and A is A-implicative. Then,
¬DMB4 is term-wise definable in A.

Proof. Then, by (2.12), true in A, and Corollary 6.6(i)⇒(iii), ⊥DM4,01 6∈ DA is
term-wise definable in A by some τ ∈ Fm1

Σ, and so A is −-negative, where −x0 ,
(x0 A τ). Moreover, by Theorem 6.3, A is specular, in which case, by Lemma 6.5,
∆2 forms a subalgebra of A, and so (−A�∆2) = (¬DMB4�∆2). On the other hand, if
−A(10) 6∈ DA was equal to 00, then, as (01) 6∈ DA, we would have DA 3 −A(01) =
−A(µ(10)) = µ(−A(10)) = µ(00) = (00) 6∈ DA. Therefore, −A(10) = (01), in which
case (10) = µ(01) = µ(−A(10)) = −Aµ(10) = −A(01), and so −A = ¬DMB4 . �

6.1.1. Specular functional completeness. As usual, Boolean algebras are supposed
to be of the signature Σ− , (Σ',+,01 \{∼}), the ordinary one over 2 being denoted
by B2.

Lemma 6.8. Let n ∈ ω and f : 2n → 2. [Suppose f is monotonic with respect to
6 (and f(n× {i}) = i, for each i ∈ 2, in which case n > 0).] Then, there is some
ϑ ∈ Fmn

Σ−[\{¬(,⊥,>)}] such that g = ϑB2 .



SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS 29

Proof. Then, by the functional completeness of B2, there is some ϑ ∈ Fmn
Σ− such

that g = ϑB2(6∈ {2n × {i} | i ∈ 2}), in which case, without loss of generality,
one can assume that ϑ = (∧〈ϕ̄,>〉), where, for each m ∈ ` , (dom ϕ̄) ∈ (ω(\1)),
ϕm = (∨〈(¬ ◦ φ̄m) ∗ ψ̄m,⊥〉), for some φ̄m ∈ V km

n , some ψ̄m ∈ V lm
n and some

km, lm ∈ ω such that ((img φ̄m) ∩ (img ψ̄m)) = ∅. [Set ζ , (∧〈η̄,>〉), where, for
each m ∈ (dom η̄) , `, ηm , (∨〈ψ̄m,⊥〉). Consider any ā ∈ An and the following
exhaustive cases:

(1) g(ā) = 0,
in which case we have ζB2 [xj/aj ]j∈n 6 ϑB2 [xj/aj ]j∈n = 0, and so we get
ζB2 [xj/aj ]j∈n = 0.

(2) g(ā) = 1,
in which case, for every m ∈ `, as ā 6 b̄m , ((ā�(n \Nm))∪ (Nm ×{1})) ∈
An, where Nm , {j ∈ n | xj ∈ (img φ̄m)}, by the monotonicity of g w.r.t.
6, we have 1 = g(ā) 6 g(b̄m) = ϑB2 [xj/bm,j ]j∈n 6 ϕB2

m [xj/bm,j ]j∈n =
ηB2

m [xj/aj ]j∈n, and so we get ζB2 [xj/aj ]j∈n = 1.

Thus, g = ζB2 . (And what is more, since, in that case, ` > 0 and lm > 0, for each
m ∈ `, we also have g = ξB2 , where ξ , (∧ῡ), whereas, for each m ∈ (dom ῡ) , `,
υm , (∨ψ̄m).)] This completes the argument. �

Theorem 6.9. Let Σ = Σ',+,01, n ∈ (ω(\1)) and f : An → A. Then, f is specular
[and regular (as well as f(n × {a}) = a, for all a ∈ (A \ ∆A))] iff there is some
τ ∈ Fmn

Σ[\{¬(,⊥,>)}] such that f = τA.

Proof. The “if” part is immediate. Conversely, assume f is specular [and regular
(as well as f(n× {a}) = a, for all a ∈ (A \∆A))]. Then,

g : 22·n → 2, ā 7→ π0(f(〈〈a2·j , 1− a(2·j)+1〉〉j∈n))

[is monotonic w.r.t. 6 (and g(n× {i}) = i, for each i ∈ 2)]. Therefore, by Lemma
6.8, there is some ϑ ∈ Fm2·n

Σ−[\{¬(,⊥,>)}] such that g = ϑB2 . Put

τ , (ϑ[x2·j/xj , x(2·j)+1/∼xj ]j∈n) ∈ Fmn
Σ[\{¬(,⊥,>)}] .

Consider any c̄ ∈ An. Then, since, for each i ∈ 2, we have πi ∈ hom(A�Σ−,B2),
we get π0(τA[xj/cj ]j∈n) = ϑB2 [x2·j/π0(cj), x(2·j)+1/(1 − π1(cj))]j∈n = π0(f(c̄))
and, likewise, as f is specular, π1(τA[xj/cj ]j∈n) = ϑB2 [x2·j/π1(cj), x(2·j)+1/(1 −
π0(cj))]j∈n = π0(f(µ ◦ c̄)) = π0(µ(f(c̄))) = π1(f(c̄)), as required. �

In this way, by Theorems 6.2, 6.3 and 6.9, CB4[,01] is the most expansive (up
to term-wise definitional equivalence) self-extensional four-valued expansion of B4.
And what is more, combining Theorems 6.3 and 6.9 with Corollaries 6.6 and 6.7,
we eventually get:

Corollary 6.10. C is self-extensional, while A is implicative/“both A is regular
and C is [not] purely-inferential”, iff C is term-wise definitionally equivalent to
CB4/B4[,01], respectively.

6.1.2. The structural completion of the bounded expansion. Here, it is supposed
that Σ , Σ∼,+,01, in which case A = DM4,01, and so C = B4,01.

Given any bounded De Morgan lattice B, we have both the truth-singular Σ-
matrix (B + >) , 〈B, {>B}〉 and the bounded De Morgan lattice (B u 2) ,
((B × K3,01)�((B × { 1

2}) ∪ {〈⊥
B, 0〉, 〈⊥B, 1〉})), for { 1

2} forms a subalgebra of K3.
Then, set DM10,01 , ((DM4,01 × K2,01) u 2).

Theorem 6.11. K3,01 is the structural completion of C.
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Proof. Then, A = DM4,01 is specular, in which case, by Theorem 6.3(ii)⇒(v),
∂(A) is a model of C, and so is D , (A +>), for {>A} = {〈1, 1〉} = (DA ∩D∂(A)),
that is, the logic C ′ of D is an extension of C. Moreover, ∆A ∈ homS(D,A), in
which case, by (2.24), T , C ′(∅) = C(∅), and so the structural completion of C
is that of C ′. We find the latter with using Theorem 4.1. Then, D is generated by
f(D) , (A \∆2) of cardinality 2. Put:

θ , θ2A,

a , (x0 ∧ ∼x0),

b , (x1 ∨ ∼x1),

c , ((a ∨ b) ∧ ∼a),

d , (b ∧ (∼a ∨ ∼b)),
h , [xi/〈i, 1− i〉]i∈2 ∈ hom(Fm2

Σ,A),

gj , [xi/
1

j−1 ]i∈2 ∈ hom(Fm2
Σ,Kj,01), (j ∈ (4 \ 2))

e , ((h× f2)× f3) ∈ hom(Fm2
Σ, (DM4,01 × K2,01)× K3,01)

and S the subalgebra of Fm2
Σ generated by H2 , {c, d}, in which case B , (S/θ)

forms a subalgebra of F2
A, and so ν′θ , (νθ�S) is a strict surjective homomorphism

from S , 〈S, S ∩ T 〉 onto B , (F2
D�B). Moreover, by (2.22), for each ϕ ∈ DS and

every g′ ∈ hom(Fm2
Σ,A), g′(ϕ) = >A = g′(>), in which case ϕ θ > ∈ DD, and so

B = (B + >). Therefore, as h(c|d) = 〈0|1, 1|0〉, we have h[S] = A, for A is thus
generated by h[H2], in which case, by the Homomorphism Theorem, ((h�S)◦ν′−1

θ ) ∈
hom(B,A) ⊆ hom(B,D) is surjective, and so D is a surjective homomorphic image
of B. Thus, the structural completion C ′′ of C[′] is defined by B. And what is more,
(e3 ◦ g3), (e2 ◦ g2) ∈ hom(Fm2

Σ,A), so θ ⊆ ((kerh)∩ (ker(e2 ◦ g2))∩ (ker(e3 ◦ g3))) =
((kerh) ∩ (ker g2) ∩ (ker g3)) = (ker e), for both e2 and e3 are injective. On the
other hand, as e(c|d) = 〈〈0|1, 1|0〉, 1, 1

2 〉 ∈ DM10,01, we have e[S] = DM10,01, for
DM10,01 is thus generated by e[H2]. Hence, by the Homomorphism Theorem,
e′ , ((e�S) ◦ ν′−1

θ ) ∈ hom(B,DM10,01) ⊆ hom(B,DM10,01 + >) is surjective.
Furthermore, as S is generated by H2, B is generated by ν′θ[H2] = νθ[H2], for
H2 ⊆ S. Put H10 , ({⊥,>}∪H2∪∼[H2]∪{∼k(c�d)|k ∈ 2, � ∈ Σ+}). Then, since
F2
D = F2

A, being isomorphic to a subalgebra of a direct power of A, is a bounded
De Morgan lattice, it is routine checking that νθ[H10] forms a subalgebra of it.
Moreover, H2 ⊆ H10, in which case B ⊆ νθ[H10], and so, if e′ was not injective, then
we would have 10 = |DM10,01| = |e′[B]| < |B| 6 |νθ[H10]| 6 |H10| = 10. Hence, e′

is injective, in which case it is an isomorphism from B onto E , (DM10,01 +>), and
so, by (2.23), C ′′ is defined by E . Finally, (e3◦(π2�DM10,01)) ∈ homS

S(E ,DM3,1,01).
Thus, by (2.23), C ′′ = K3,01, as required. �

6.1.3. No-more-than-three-valued extensions.

Lemma 6.12. Let n ∈ (4 \ 1). Then, any n-valued model/extension of C is ∨-
disjunctive.

Proof. Let B be an n-valued model of C, in which case, by (2.23) and Remark
2.8[(iv)], D , (B/a(B)), is an m-valued simple model of C, where m 6 n 6 3,
and so, by Corollary 3.8, D ∈ V(A). Therefore, D�Σ+, being an m-element lattice,
for A�Σ+ is a lattice, is a chain. Hence, D, being ∧-conjunctive, for C is so, is
∨-disjunctive, and so is B, by Remark 2.9(ii), as required. �

Corollary 6.13. Let B be a consistent truth-non-empty non-∼-negative three-
valued model of C and C ′ the logic of B. Then, there is some i ∈ 2 such that
DM3,i forms a subalgebra of A, while B is isomorphic to A3,i, and so C ′ = C3,i.
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Proof. Then, by Lemma 6.12, B is ∨-disjunctive. Hence, by Theorem 3.23, there is
some h ∈ homS(B,A), in which case D , (img h) forms a subalgebra of A, while h
is a strict surjective homomorphism from B onto D , (A�D). Therefore, if h was
not injective, then D would be either one-valued, in which case it would be either
inconsistent or truth-empty, and so would be B, or two-valued, in which case D
would be equal to ∆2, and so, by Remark 2.9(ii), B would be ∼-negative, for D
would be so. Thus, h is injective, in which case |D| = 3, and so D = DM3,i, for
some i ∈ 2. In this way, (2.23) completes the argument. �

Likewise, we have:

Corollary 6.14. Let B be a consistent truth-non-empty two-valued model of C
and C ′ the logic of B. Then, ∆2 forms a subalgebra of A, while B is isomorphic to
A�∆2, in which case it is ∼-classical, and so is C ′.

Proof. Then, by Lemma 6.12, B is ∨-disjunctive. Hence, by Theorem 3.23, there
is some h ∈ homS(B,A), in which case D , (img h) forms a subalgebra of A, while
h is a strict surjective homomorphism from B onto D , (A�D). Therefore, if h
was not injective, then D would be one-valued, in which case it would be either
inconsistent or truth-empty, and so would be B. Thus, h is injective, in which case
|D| = 2, and so D = ∆2. In this way, Remark 2.9(ii) completes the argument. �

And what is more, we also have:

Lemma 6.15. Let B be a ∼-negative model of C and C ′ the logic of B. Then, ∆2

forms a subalgebra of A, while B is a strict surjective homomorphic counter-image
of A�∆2, an so C ′ is ∼-classical.

Proof. Then, by the following auxiliary observation, B is ∨-disjunctive:

Claim 6.16. Any ∼-negative B ∈ Mod(C) is ∨-disjunctive.

Proof. Then, by Remark 2.9(i)a), B, being ∧-conjunctive, for C is so, is ∧∼-
disjunctive. On the other hand, as (2.5) and (2.7) are true in A, so is (x0 ∨ x1) ≈
(x0 ∧∼ x1), in which case, by Lemma 3.7, (x0 ∨ x1) ≡ω

C (x0 ∧∼ x1), and so
((a ∨B b) ∈ DB) ⇔ ((a(∧∼)Bb) ∈ DB), for all a, b ∈ B. Thus, B, being ∧∼-
disjunctive, is equally ∨-disjunctive, as required. �

Hence, by Theorem 3.23, there is some h ∈ homS(B,A), in which case D ,
(img h) forms a subalgebra of A, while h is a strict surjective homomorphism from B
onto D , (A�D), and so, by Remark 2.9(ii), D is ∼-negative, for B is so. Therefore,
D = ∆2. Finally, (2.23) completes the argument. �

By Corollary 6.14, Lemma 6.15 and (2.23), we immediately have:

Theorem 6.17. The following are equivalent:
(i) C is ∼-subclassical;
(ii) C has a consistent truth-non-empty two-valued model;
(iii) C has a ∼-negative model;
(iv) ∆2 forms a subalgebra of A, in which case A�∆2 is a ∼-classical model of

C isomorphic to any consistent truth-non-empty two-valued (in particular,
∼-classical) model of C and being a strict surjective homomorphic image of
any ∼-negative model of C, and so defines a unique inferentially consistent
two-valued (in particular, ∼-classical) extension of C.

Likewise, Examples 5.2, 5.17, Corollary 6.13, Lemma 6.15 and the self-extensi-
onality of inferentially inconsistent logics then immediately yield:
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Theorem 6.18. Let C ′ be a three-valued extension of C. Then, the following are
equivalent:

(i) C ′ is self-extensional;
(ii) C ′ is either inferentially inconsistent or ∼-classical;
(iii) for each i ∈ 2, if DM3,i forms a subalgebra of A, then C ′ 6= C3,i.

In general, since DM4�{01} is the only truth-empty submatrix of DM4, by
Corollaries 3.21, 6.13, Theprem 6.17 and (2.23), we also have:

Theorem 6.19. Let M be a non-empty class of consistent no-more-than-three-
valued models of C, C ′ the logic of M, n ∈ (4 \ 1) and M

(∗){,∼|6∼}
[n]〈,0/1〉 the class of all

(truth-non-empty) [n-valued] {∼-negative|non-∼-negative} 〈false-/truth-singular〉
members of M. Then, C ′ is defined by {A�{01} | (M\M∗) 6= ∅ = M∗, 6∼

3,1 }∪{A�∆2 |
(
⋃

i∈2 M∗, 6∼
3,i ) = ∅ 6= (M∼ ∪M∗

2)} ∪
⋃

i∈2{A3,i | M∗, 6∼
3,i 6= ∅}.

In view of Theorem 6.18, any inferentially consistent non-∼-classical unitary
three-valued extension of C ′ is not self-extensional. Then, taking (2.20), Theorem
6.19, Remark 2.7 and Example 5.2 into account, for analyzing the “non-unitary”
case it suffices to restrict our consideration by the following “double” one.
6.1.3.1. Double three-valued extension. Here, it is supposed that, for each i ∈ 2,
DM3,i forms a subalgebra of A, in which case, by (2.23), the logic (C/B)3/[,01] of
{(A/DM)3,0/[,01], (A/DM)3,1/[,01]} is the ∨-disjunctive both ∼-paraconsistent (for
(A/DM)3,0/[,01] is so) — in particular, non-∼-classical — and (∨,∼)-paracomplete
(for (A/DM)3,1/[,01] is so) proper extension of C/B4[,01] satisfying {x0,∼x0} `
(x1 ∨∼x1), for this is not true in A/DM4[,01] under [xi/〈1− i, i〉]i∈2, and so ∆2 =
(DM3,0 ∩DM3,1) forms a subalgebra of A[3,0], in which case C[3] is ∼-subclassical,
in view of (2.23). Moreover, set ∂(A3,i) , (∂(A)�DM3,i).

Theorem 6.20. The following are equivalent:
(i) C3 is self-extensional;
(ii) for each i ∈ 2, (µ�DM3,i) ∈ hom(A3,i,A3,1−i);
(iii) for some i ∈ 2, (µ�DM3,i) ∈ hom(A3,i,A3,1−i);
(iv) for each i ∈ 2, C3 is defined by {A3,i, ∂(A3,i)};
(v) for some i ∈ 2, C3 is defined by {A3,i, ∂(A3,i)};
(vi) for each i ∈ 2, ∂(A3,i) ∈ Mod(C3);
(vii) for some i ∈ 2, ∂(A3,i) ∈ Mod(C3);
(viii) A3,0 and A3,1 are isomorphic;
(ix) C3 has PWC with respect to ∼;
(x) A has a non-diagonal non-singular partial endomorphism.

Proof. First, assume (i) holds. Consider any i ∈ 2. Then, as DM3,i 3 a ,
〈1− i, i〉 6= b , 〈1− i, 1− i〉 ∈ ∆2 ⊆ DM3,i, by Theorem 5.6, there are some
j ∈ 2, some h ∈ hom(A3,i,A3,j) such that χA3,j (h(a)) 6= χA3,j (h(b)), in which
case h is not singular, and so B , (img h) forms a non-one-element subalgebra of
A3,j . Therefore, ∆2 ⊆ B. Hence, A3,i[−i+j][�B] is a (∧,∨)-lattice with zero/unit
〈0/1, 0/1〉, in which case, by Lemma 2.3, (h�∆2) is diagonal, and so h(b) = b ∈ DAj .
On the other hand, for all c ∈ A, it holds that (∼Ac = c) ⇔ (c 6∈ ∆2). Therefore,
as a 6∈ ∆2, h(a) 6∈ ∆2, in which case B 6= ∆2, and so B = DM3,j . Hence, if j
was equal to i, we would have h(a) = a, in which case we would get χA3,j (h(a)) =
χA3,j (a) = (1 − i) = χA3,j (b) = χA3,j (h(b)), and so j = (1 − i), in which case
h(a) = µ(a). Thus, hom(A3,i,A3,1−i) 3 h = (µ�DM3,i), and so (ii) holds.

Next, (iii/v/vii) is a particular case of (ii/iv/vi), respectively, while (viii) is
a particular case of (iii). Likewise, (vi/vii) is a particular case of (iv/v), while
(ii/iii)⇒(iv/v) is by (2.23) and (6.4).
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Further, assume (vii) holds. Then, as no false-/truth-singular Σ-matrix is iso-
morphic to any one not being so, while ∂(A3,i) is false-/truth-singular iff A3,i is
not so, by Remarks 2.8(ii), 2.9(ii) and Corollary 3.20, we conclude that ∂(A3,i) is
isomorphic to A3,1−i, and so (2.23) yields (v).

Now, assume (viii) holds. Let e be any isomorphism from A3,0 onto A3,1. Then,
since these are both (∧,∨)-lattices with zero/unit 〈0/1, 0/1〉, by Lemma 2.3, e�∆2 is
diagonal. Moreover, for all c ∈ A, it holds that (∼Ac = c) ⇔ (c 6∈ ∆2). Therefore,
e(10) = (01), in which case hom(A3,0,A3,1) 3 e = (µ�DM3,0), and so (iii) with
i = 0 holds.

Furthermore, (v)⇒(i) is by Theorem 5.1(vi)⇒(i) with S = M = {A3,i, ∂(A3,i)}
and (6.1), while (i)⇒(ix) is by Claim 6.4.

Conversely, assume (ix) holds. Consider any i ∈ 2, any φ ∈ Fmω
Σ, any ψ ∈ C3(φ),

in which case∼φ ∈ C3(∼ψ), and any h ∈ hom(Fmω
Σ,A3,i) such that h(φ) ∈ D∂(A3,i),

in which case, by (6.2), h(∼φ) 6∈ DA3,i , and so h(∼ψ) 6∈ DA3,i , that is, h(ψ) ∈
D∂(A3,i). Thus, ∂(A3,i) is a (2 \ 1)-model of C. Moreover, by Remark 2.9(ii), it is
Z-conjunctive, for ∂(A) is so, and so, by Lemma 5.3, (vi) holds.

Finally, (x) is a particular case of (iii). Conversely, assume (x) holds. Then, there
are some subalgebra B of A and some non-diagonal non-singular h ∈ hom(B,A),
in which case D , (img h) forms a non-one-element subalgebra of A, and so does
B = (domh). Hence, ∆2 ⊆ (B ∩D). Therefore, both B and D are (∧,∨)-lattices
with zero/unit 〈0/1, 0/1〉, in which case, as h ∈ hom(B,D) is surjective, by Lemma
2.3, h�∆2 is diagonal, and so there is some i ∈ 2 such that DM3,i ⊆ B, while
h(〈1− i, i〉) 6= 〈1− i, i〉. On the other hand, for all a ∈ A, it holds that (∼Aa =
a) ⇔ (a 6∈ ∆2), in which case ∼Ah(〈1− i, i〉) = h(∼A〈1− i, i〉) = h(〈1− i, i〉), and
so h(〈1− i, i〉) = 〈i, 1− i〉. In this way, hom(A3,i,A) 3 (h�DM3,i) = (µ�DM3,i), in
which case (µ�DM3,i) ∈ hom(A3,i,A3,1−i), and so (iii) holds, as required. �

First, by Lemma 5.14 and Theorem 6.20(i)⇔(x), we immediately have:

Corollary 6.21. C3 is self-extensional iff A has no equational implication.

Then, by Corollaries 5.15 and 6.21, we also have:

Corollary 6.22. C3 is self-extensional, whenever C is so.

On the other hand, the converse does not hold, as it follows from:

Example 6.23 (cf. Example 11 of [22]). Let Σ , (Σ∼,+[,01] ∪ {q}) with binary
q and qA , ((∨A�(DM2

3,0 ∪DM2
3,1)) ∪ {〈〈01, 10〉, 11〉, 〈〈10, 01〉, 00〉}). Then, A is

not specular, while (µ�DM3,0) ∈ hom(A3,0,A3,1). Hence, by Theorems 6.3, 6.20
and Corollary 6.21, C3 is self-extensional, while C is not so, whereas A has no
equational implication. �

6.2. Three-valued logics with subclassical negation. A Σ-matrix A is said to
be ∼-super-classical, if A�{∼} has a ∼-classical submatrix, in which case A is both
consistent and truth-non-empty, while, by (2.23), ∼ is a subclassical negation for
the logic of A, and so we have the “if” part of the following preliminary marking
the framework of the present subsection:

Theorem 6.24. Let A be a Σ-matrix. [Suppose |A| 6 3.] Then, ∼ is a subclassical
negation for the logic of A if[f ] A is ∼-super-classical.

Proof. [Assume ∼ is a subclassical negation for the logic of A. First, by (3.11) with
m = 1 and n = 0, there is some a ∈ DA such that ∼Aa 6∈ DA. Likewise, by (3.11)
with m = 0 and n = 1, there is some b ∈ (A \DA) such that ∼Ab ∈ DA, in which
case a 6= b, and so |A| 6= 1. Then, if |A| = 2, we have A = {a, b}, in which case A
is ∼-classical, and so ∼-super-classical. Now, assume |A| = 3.



34 A. P. PYNKO

Claim 6.25. Let A be a three-valued Σ-matrix, ā ∈ A2 and i ∈ 2. Suppose ∼ is a
subclassical negation for the logic of A and, for each j ∈ 2, (aj ∈ DA) ⇔ (∼Aaj 6∈
DA) ⇔ (a1−j 6∈ DA). Then, either ∼Aai = a1−i or ∼A∼Aai = ai.

Proof. By contradiction. For suppose both ∼Aai 6= a1−i and ∼A∼Aai 6= ai. Then,
in case ai ∈ / 6∈ DA, as |A| = 3, we have both (DA/(A \ DA)) = {ai}, in which
case ∼Aa1−i = ai, and ((A \DA)/DA) = {a1−i,∼Aai}, respectively. Consider the
following exhaustive cases:

• ∼A∼Aai = a1−i.
Then, ∼A∼A∼Aai = ai. This contradicts to (3.11) with (n/m) = 0 and
(m/n) = 3, respectively.

• ∼A∼Aai = ∼Aai.
Then, for each c ∈ ((A \ DA)/DA), ∼A∼A∼Ac = ∼Aai 6∈ / ∈ DA. This
contradicts to (3.11) with (n/m) = 3 and (m/n) = 0, respectively.

Thus, in any case, we come to a contradiction, as required. �

Finally, consider the following exhaustive cases:
• both ∼Aa = b and ∼Ab = a.

Then, {a, b} forms a subalgebra of A�{∼}, (A�{∼})�{a, b} being a ∼-
classical submatrix of A�{∼}, as required.

• ∼Aa 6= b.
Then, by Claim 6.25, ∼A∼Aa = a, in which case {a,∼Aa} forms a subalge-
bra of A�{∼}, (A�{∼})�{a,∼Aa} being a ∼-classical submatrix of A�{∼},
as required.

• ∼Ab 6= a.
Then, by Claim 6.25, ∼A∼Ab = b, in which case {b,∼Ab} forms a subalge-
bra of A�{∼}, (A�{∼})�{b,∼Ab} being a ∼-classical submatrix of A�{∼},
as required.] �

The following counterexample shows that the optional condition |A| 6 3 is es-
sential for the optional “only if” part of Theorem 6.24 to hold:

Example 6.26. Let n ∈ ω and A any Σ-matrix with A , (n ∪ (2 × 2)), DA ,
{〈1, 0〉, 〈1, 1〉}, ∼A〈i, j〉 , 〈1− i, (1− i+ j) mod 2〉, for all i, j ∈ 2, and ∼Ak ,
〈1, 0〉, for all k ∈ n. Then, for any subalgebra B of A�{∼}, we have (2× 2) ⊆ B, in
which case 4 6 |B|, and so A is not ∼-super-classical, for 4 
 2. On the other hand,
2×2 forms a subalgebra of A�{∼}, B , (A�{∼})�(2×2) being ∼-negative, in which
case χA�(2 × 2) is a surjective strict homomorphism from B onto the ∼-classical
{∼}-matrix C with C , 2, DC , {1} and ∼Ci , (1 − i), for all i ∈ 2, and so, by
(2.23), ∼ is a subclassical negation for the logic of A. �

Let A be a three-valued ∼-super-classical (in particular, both consistent and
truth-non-empty) Σ-matrix and B a ∼-classical submatrix of A�{∼}. Then, as
4 
 3, A is either false-singular, in which case the unique non-distinguished value
0A of A is that 0B of B, so 1∼A , ∼A0A = ∼B0B = 1B, or truth-singular, in which
case the unique distinguished value 1A of A is that 1B of B, so 0∼A , ∼A1A =
∼B1B = 0B. Thus, in case A is false-/truth-singular, B = 2∼A , {0/∼

A , 1∼/
A } is

uniquely determined by A and ∼, the unique element of A \ 2∼A being denoted by
( 1
2 )∼A. (The indexes A and, especially, ∼ are often omitted, unless any confusion

is possible.) Strict homomorphisms from A to itself retain both 0 and 1, in which
case surjective ones retain 1

2 , and so:

hom[S]
S (A,A) ⊇ [=]{∆A}, (6.5)
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the inclusion [not] being allowed to be proper (cf. Example 6.32 below). Then, A
is said to be canonical, provided A = (3÷ 2) and aA = a, for all a ∈ A.

Lemma 6.27. Any isomorphism e between canonical three-valued ∼-super-classical
Σ-matrices A and B is diagonal, in which case A = B.

Proof. Then, by Remark 2.9(ii), A is “false-/-truth-singular”|∼-negative iff B is so,
in which case DA = DB, and so ∼A 1

2 is equal to 0/1 iff ∼B 1
2 is so. Moreover, since

A and B are isomorphic, we have (∼A 1
2 = 1

2 ) ⇔ (A |= ∃1(∼x0 ≈ x0)) ⇔ (B |=
∃1(∼x0 ≈ x0)) ⇔ (∼B 1

2 = 1
2 ). Hence, ∼A = ∼B. In this way, e is an isomorphism

between common three-valued ∼-super-classical ∼-reducts of A and B, in which
case, by (6.5), e is diagonal, and so A = B, as required. �

Lemma 6.28. Any three-valued ∼-super-classical Σ-matrix A is isomorphic to a
unique canonical one.

Proof. Then, the mapping e : (3 ÷ 2) 7→ A, a 7→ aA is a bijection, in which case
it is an isomorphism from the canononical three-valued ∼-super-classical Σ-matrix
〈e−1[A], e−1[DA]〉 onto A. In this way, Lemma 6.27 completes the argument. �

As an immediate consequence of (2.23), Theorem 6.24 and Lemma 6.28, we have:

Corollary 6.29. Unitary three-valued Σ-logics with subclassical negation ∼ are ex-
actly Σ-logics defined by single canonical three-valued ∼-super-classical Σ-matrices.

From now on, unless otherwise specified, C is supposed to be the logic of an
arbitrary but fixed canonincal three-valued ∼-super-classical Σ-matrix A. (In view
of Corollary 6.29, this exhaust all three-valued Σ-logics with subclassical negation
∼.) Then, C is Z-conjunctive iff A is so. It appears that such does hold for both
disjunctivity and implicativity too, as it ensues from the following two lemmas:

Lemma 6.30. Let B be a Σ-matrix and C ′ the logic of B. Suppose [either] B is
false-singular (in particular, ∼-classical) [or both B is ∼-super-classical and |B| 6
3]. Then, the following are equivalent:

(i) C ′ is Y-disjunctive;
(ii) B is Y-disjunctive;
(iii) (2.8) with i = 0, (2.9) and (2.10) [as well as the Resolution rule:

{x0 Y x1,∼x0 Y x1} ` x1] (6.6)

are satisfied in C ′ (viz., true in B);
(iv) (2.8) with i = 0, (2.9) and (2.10) [as well as the Modus ponens rule for the

material implication ∼x0 Y x1:

{x0,∼x0 Y x1} ` x1] (6.7)

are satisfied in C ′ (viz., true in B).

Proof. First, (ii)⇒(i) is immediate.
Next, assume (i) holds. Then, (2.8) with i = 0, (2.9) and (2.10) are immediate.

[In addition, suppose B is not false-singular, in which case it is ∼-super-classical,
while |B| 6 3, and so it is both truth-singular and, therefore, not ∼-paraconsistent.
Hence, x1 ∈ (C ′(x1) ∩ C ′({x0,∼x0})) = (C ′(x1) ∩ C ′({x0 Y x1,∼x0})) = C ′({x0 Y
x1,∼x0 Y x1}), so (6.6) is satisfied in C ′.] Thus, (iii) holds.

Further, (iv) is a particular case of (iii) [for (6.7) is that of (6.6), in view of (2.8)
with i = 0].

Finally, assume (iv) holds. Consider any a, b ∈ B. In case (a/b) ∈ DB, by (2.8)
with i = 0 /“and (2.9)”, we have (a YB b) ∈ DB. Now, assume ({a, b} ∩ DB) =
∅. Then, in case a = b (in particular, B is false-singular), by (2.10), we get
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DB 63 (a YB a) = (a YB b). [Otherwise, B is not false-singular, in which case it
is ∼-super-classical, while |B| 6 3, whereas (6.7) is true in B, and so, for some
c ∈ (B \DB) = {a, b}, it holds that ∼Bc ∈ DB, while ∼B∼Bc = c. Let d be the
unique element of {a, b}\{c}, in which case {a, b} = {c, d}. Then, since ∼Bc ∈ DB,
we conclude that (cYBd) = (∼B∼BcYBd) 6∈ DB, for, otherwise, by (6.7), we would
get d ∈ DB. Hence, by (2.9), we eventually get (aYB b) 6∈ DB.] Thus, (ii) holds, as
required. �

Lemma 6.31. Let B be a Σ-matrix and C ′ the logic of B. Suppose [either] B is
false-singular (in particular, ∼-classical) [or both B is ∼-super-classical and |B| 6
3]. Then, the following [but (i)] are equivalent:

(i) C ′ is weakly A-implicative;
(ii) C ′ is A-implicative;
(iii) B is A-implicative;
(iv) (2.12), (2.13) and (2.11) [as well as both (2.15) and the Ex Contradictione

Quodlibet axiom:
∼x0 A (x0 A x1)] (6.8)

are satisfied in C ′ (viz., true in B).
In particular, any ∼-classical/“three-valued ∼-paraconsistent” Σ-logic /“with sub-
classical negation ∼” is A-implicative iff it is weakly so.

Proof. First, (iii)⇒(ii) is immediate, while (i) is a particular case of (ii).
Next, assume (i[i]) holds. Then, (2.12), (2.13) and (2.11) [as well as (2.15)] are

immediate. [In addition, suppose B is not false-singular, in which case it is ∼-
super-classical, while |B| 6 3, and so it is both truth-singular and, therefore, non-
∼-paraconsistent, and so is C ′. Hence, by Deduction Theorem, (6.8) is satisfied in
C ′.] Thus, (iv) holds.

Finally, assume (iv) holds. Consider any a, b ∈ B. In case b ∈ DB, by (2.13) and
(2.11), we have (a AB b) ∈ DB. Likewise, in case {a, a AB b} ⊆ DB, by (2.11), we
have b ∈ DB. Now, assume ({a, b} ∩DB) = ∅. Then, in case a = b (in particular,
B is false-singular), by (2.12), we get DB 3 (a AB a) = (a AB b). [Otherwise, B
is not false-singular, in which case it is ∼-super-classical, while |B| 6 3, whereas
both (2.15) and (6.8) and true in B, and so, for some c ∈ (B \ DB) = {a, b},
it holds that ∼Bc ∈ DB. Let d be the unique element of {a, b} \ {c}, in which
case {a, b} = {c, d}. Then, since ∼Bc ∈ DB, by (2.11) and (6.8), we conclude
that (c AB d) ∈ DB. Let us prove, by contradiction, that (d AB c) ∈ DB.
For suppose (d AB c) 6∈ DB, in which case (d AB c) = (c/d), and so we have
((d AB c) AB d) = ((c AB d)/(d AB d)) ∈ DB/, by (2.12). Hence, by (2.11) and
(2.15), we get d ∈ DB. This contradiction shows that (d AB c) ∈ DB 3 (c AB d).
In particular, we eventually get (a AB b) ∈ DB.] Thus, (iii) holds, as required/“,
in view of Corollary 6.29”. �

Next, we have the dual three-valued ∼-super-classical Σ-matrix ∂(A) , 〈A, {1}∪
({ 1

2} ∩ (A \DA))〉, in which case it is false/truth-singular iff A is not so, while:

(θA ∩ θ∂(A)) = ∆A. (6.9)

Likewise, set Aa[+(b)] , 〈A, {[ 12 (− 1
2 + b), ]a}〉, where a[(, b)] ∈ A, in which case

(∂(A)/A) = A1[+], whenever A is [not] false-/truth-singular, while:

(θAa[+] ∩ θAb[+]) = ∆A, (6.10)

for all distinct a, b ∈ A.
Further, given any i ∈ 2, put hi , (∆2 ∪ {〈 1

2 , i〉}) : (3÷ 2) → 2, in which case:

h−1
0/1[DA] = D∂(A), (6.11)
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whenever A is false-/truth-singular.
Finally, let h1− : (3÷ 2) → (3÷ 2), a 7→ (1− a), in which case:

h−1
1−[DAi[+] ] = DA(1−i)[+] , (6.12)

for all i ∈ 2.
Three-valued logics with subclassical negation ∼ (even both implicative — in

particular, disjunctive — and conjunctive ones) need not, generally speaking, be
non-∼-classical, as it ensues from the following elementary example:

Example 6.32. Let Σ , Σ+,∼ and (B/E)|F the ∧-conjunctive ∨-disjunctive ∼-
negative “false-/truth-singular canonical three-valued∼-super-classical”|∼-classical
Σ-matrix with (((B/E)|F)�Σ+) , D3|2. Then, (B/E)|F is A∼

∨ -implicative, in view
of Remark 2.9(i)c). And what is more, χB/E ∈ homS

S(B/E ,F). Therefore, by
(2.23), B/E define the same ∼-classical Σ-logic of F . On the other hand, B, being
false-singular, is not isomorphic to E , not being so. Moreover, h , (∆2 ◦ χB/E) is
a non-diagonal (for h( 1

2 ) = (1/0) 6= 1
2 ) strict homomorphism from B/E to itself, so

the “[]”-non-optional inclusion in (6.5) may be proper. �

On the other hand, ∼-classical three-valued Σ-logics with subclassical negation
∼ are self-extensional, in view of Example 5.2. This makes the characterization to
be obtained below especially acute.

Lemma 6.33. Let B be a three-valued ∼-super-classical Σ-matrix. Then, following
are equivalent:

(i) B is a strict surjective homomorphic counter-image of a ∼-classical Σ-matrix;
(ii) B is not simple;
(iii) B is not hereditarily simple;
(iv) θB ∈ Con(B).

Proof. First, (i)⇒(ii) is by Remark 2.8(ii) and the fact that 3 
 2. Next, (iii) is
a particular case of (ii). The converse is by the fact that any proper submatrix
of B, being either one-valued or o-classical, is simple. Further, (ii)⇒(iv) is by the
following claim:

Claim 6.34. Let B be a three-valued as well as both consistent and truth-non-empty
Σ-matrix. Then, any non-diagonal congruence θ of it is equal to θB.

Proof. First, we have θ ⊆ θB. Conversely, consider any ā ∈ θB. Then, in case
a0 = a1, we have ā ∈ ∆B ⊆ θ. Otherwise, take any b̄ ∈ (θ \ ∆B) 6= ∅, in which
case b̄ ∈ θB, for θ ⊆ θB. Then, as |B| = 3 � 4, there are some i, j ∈ 2 such
that ai = bj . Hence, if a1−i was not equal to b1−j , then we would have both
|{ai, a1−i, b1−j}| = 3 = |B|, in which case we would get {ai, a1−i, b1−j} = B, and
χB(b1−j) = χB(bj) = χB(ai) = χB(a1−i), and so B would be either truth-empty or
inconsistent. Therefore, both a1−i = b1−j and ai = bj . Thus, since θ is symmetric,
we eventually get ā ∈ θ, for b̄ ∈ θ, as required. �

Finally, assume (iv) holds. Then, θ , θB, including itself, is a congruence of B,
in which case νθ ∈ homS

S(B,B/θ), while B/θ is ∼-classical, and so (i) holds. �

Set h+/2 : 22 → (3÷ 2), 〈i, j〉 7→ i+j
2 .

Theorem 6.35. The following are equivalent:
(i) C is ∼-classical;
(ii) A is either a strict surjective homomorphic counter-image of a ∼-classical

Σ-matrix or a strict surjective homomorphic image of a submatrix of a direct
power of a ∼-classical Σ-matrix;
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(iii) either A is a strict surjective homomorphic counter-image of a ∼-classical
Σ-matrix or A is a strict surjective homomorphic image of the direct square
of a ∼-classical Σ-matrix;

(iv) either A is not simple or both 2 forms a subalgebra of A and A is a strict
surjective homomorphic image of (A�2)2;

(v) either θA ∈ Con(A) or both 2 forms a subalgebra of A, A is truth-singular
and h+/2 ∈ hom((A�2)2,A).

Proof. We use Lemma 6.33 tacitly. First, (ii/iii/iv) is a particular case of (iii/iv/v),
respectively. Next, (iv)⇒(i) is by (2.23). Further, (i)⇒(ii) is by Lemma 2.12 and
Remark 2.8(ii).

Now, let B be a ∼-classical Σ-matrix, I a set, D a submatrix of BI and h ∈
homS

S(D,A), in which case D is both consistent and truth-non-empty, for A is so,
and so I 6= ∅. Take any a ∈ DB 6= ∅. Then, as B is truth-singular, D 3 a =
(I × {1B}) ∈ DD, in which case D 3 b , ∼Da = (I × {0B}) 6∈ DD, for I 6= ∅,
while ∼Db = a, and so E , {a, b} forms a subalgebra of D�{∼}, E , ((D�{∼})�E)
being ∼-classical with 1E = a and 0E = b, and so being (A�{∼})�h[E]), in view of
Remark 2.9(ii). Hence, h(a/b) = (1/0). Therefore, there is some c ∈ (D \ {a, b})
such that h(c) = 1

2 . In this way, I 6= J , {i ∈ I | πi(c) = 1B} 6= ∅. Given
any ā ∈ B2, set (a0‖a1) , ((J × {a0}) ∪ ((I \ J) × {a1})) ∈ BI . Then, D 3
a = (1B‖1B) and D 3 b = (0B‖0B) as well as D 3 c = (1B‖0B), in which case
D 3 ∼Dc = (0B‖1B), and so e , {〈〈x, y〉, (x‖y)〉 | x, y ∈ B} is an embedding of B2

into D such that {a, b, c} ⊆ (img e). Hence, since h[{a, b, c}] = A, we conclude that
(h ◦ e) ∈ homS

S(B2,A). Thus, (ii)⇒(iii) holds.
Likewise, let B be a ∼-classical Σ-matrix and g ∈ homS

S(B2,A). Then, e′ ,
(∆B × ∆B) is an embedding of B into B2, in which case, by Remark 2.8(ii), g′ ,
(g ◦ e′) is an embedding of B into A, and so E , (img g′) forms a two-element
subalgebra of A, g′ being an isomorphism from B onto E , (A�E), in which case
h , ((g′−1 ◦ (π0�E2)) × (g′−1 ◦ (π1�E2))) is an isomorphism from E2 onto B2.
Therefore, as A�{∼} has no two-element subalgebra other than that with carrier 2,
E = 2. And what is more, (g ◦ h) ∈ homS

S(E2,A). Thus, (iii)⇒(iv) holds.
Finally, assume (iv) holds, while A is simple. Then, A is truth-singular, for F ,

(A�2) is so. Let f ∈ homS
S(F2,A). Then, 〈1, 1〉 ∈ DF2

, in which case f(〈1, 1〉) ∈
DA, and so f(〈1, 1〉) = 1. Hence, f(〈0, 0〉) = f(∼A2〈1, 1〉) = ∼Af(〈1, 1〉) = ∼A1 =
0. Moreover, ∼A2〈0/1, 1/0〉 = 〈1/0, 0/1〉 6∈ DF2

. Hence, f(〈0/1, 1/0〉) 6∈ DA 63
∼Af(〈0/1, 1/0〉). Therefore, f(〈0/1, 1/0〉) = 1

2 . Thus, f = h+/2, so (v) holds. �

Corollary 6.36. [Providing A is either false-singular or Z-conjunctive or Y-disj-
unctive] C is ∼-classical if[f ] A is not (hereditarily) simple.

Proof. The “if” part is by Theorem 6.35(iv)⇒(i) (and Lemma 6.33(iii)⇒(ii)). [The
converse is proved by contradiction. For suppose C is ∼-classical, while A is simple.
Then, by Lemma 6.33(iv)⇒(ii) and Theorem 6.35(i)⇒(v), 2 forms a subalgebra of
A, while h , h+/2 ∈ hom((A�2)2,A), whereas A is truth-singular, in which case
it is not false-singular, and so Z-conjunctive|Y-disjunctive, and so is A�2, in view
of Remark 2.9(ii). Hence, (i(Z|Y)Aj) = (min |max)(i, j), for all i, j ∈ 2. There-
fore, 1

2 = h(01) = h((01)(Z|Y)A2
(01)) = (h(01)(Z|Y)A2

h(01)) = ( 1
2 (Z|Y)A2 1

2 ) =
(h(01)(Z|Y)A2

h(10)) = h((01)(Z|Y)A2
(10)) = h((00)|(11)) = (0|1). This contradic-

tion completes the argument.] �

Generally speaking, the optional stipulation cannot be omitted in the formulation
of Corollary 6.36, even if C is weakly conjunctive/disjunctive, as it follows from:
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Example 6.37. Let Σ , {�,∼} with binary � and A truth-singular with (a�A b) ,
(0/1) and ∼Aa , (1 − a), for all a, b ∈ A. Then, A is weakly �-conjunctive/-
disjunctive, respectively, while 〈0, 1

2 〉 ∈ θA 63 〈1, 1
2 〉 = 〈∼A0,∼A 1

2 〉, in which case
θA 6∈ Con(A), and so, by Lemma 6.33(ii)⇒(iv), A is simple. On the other hand,
2 forms a subalgebra of A, while h+/2 ∈ hom((A�2)2,A). Hence, by Theorem
6.35(v)⇒(i), C is ∼-classical. �

Theorem 6.38. Let B be a [canonical] three-valued ∼-super-classical Σ-matrix.
Suppose C is defined by B as well as non-∼-classical. Then, B is isomorphic [equal]
to A.

Proof. In that case, A (as well as B) is simple, in view of ((2.23), Remark 2.8[(iii)],
Lemma 6.28 and) Theorem 6.35(iv)⇒(i).

Consider the following complementary cases:
• B is ∼-paraconsistent.

Then, it is false-singular, and so weakly ∼-negative. Moreover, any proper
submatrix of B is either ∼-classical or one-valued (in which case it is either
truth-empty or inconsistent), and so is not ∼-paraconsistent. Therefore,
by Remark 2.8(ii) and Lemma 6.41, there is an embedding of A into B,
being then an isomorphism from A onto B, because |A| = 3 6 n, for no
n ∈ 3 = |B|.

• B (and so A) is not ∼-paraconsistent.
Then, as B is simple and finite, by Lemma 2.12 and Remark 2.8(ii), there
are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it
and some g ∈ homS

S(D,B), in which case D is both truth-non-empty and
consistent (in particular, I 6= ∅), for B is so. Given any x ∈ A, set (I : x) ,
(I×{x}) ∈ AI . Then, by the following claim, a , (I : 1) ∈ D 3 b , (I : 0):

Claim 6.39. Let I be a finite set, C ∈ S∗(A)I and D a subdirect product of
it. Suppose A is weakly conjunctive, whenever it is ∼-paraconsistent, and
D is truth-non-empty, otherwise. Then, {I × {j} | j ∈ 2} ⊆ D.

Proof. Consider the following complementary cases:
– A is ∼-paraconsistent,

in which case it is false-singular and weakly conjunctive, and so, by
Lemma 3.1, b , (I × {0}) ∈ D.

– A is not ∼-paraconsistent,
in which case D is truth-non-empty. Take any a ∈ DD 6= ∅. Let
b , ∼Da ∈ D. Consider any i ∈ I. Then, πi(a) ∈ DA. Consider the
following complementary subcases:

∗ 1
2 ∈ D

A,
in which case, since A is not ∼-paraconsistent but is consistent,
πi(b) = ∼Aπi(a) 6∈ DA, and so, as 1 ∈ DA, πi(b) = 0.

∗ 1
2 6∈ D

A,
in which case, as 0 6∈ DA, πi(a) = 1, and so πi(b) = ∼Aπi(a) = 0.

In this way, D 3 b = (I × {0}).
Then, D 3 ∼Db = (I × {1}). �

Consider the following complementary subcases:
– 2 does not form a subalgebra of A,

in which case there is some ϕ ∈ Fm2
Σ such that ϕA(1, 0) = 1

2 , and so
D ∈ ϕD(a, b) = (I : 1

2 ). In this way, as I 6= ∅, e , {〈x, I : x〉 | x ∈ A}
is an embedding of A into D, in which case, by Remark 2.8(ii), (g◦e) ∈
homS(A,B) is injective, and so bijective, because |A| = 3 6 n, for no
n ∈ 3 = |B|.
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– 2 forms a subalgebra of A,
in which case E , (A�2) is ∼-classical, while a, b ∈ EI . Moreover,
a ∈ DD 63 b, for I 6= ∅, while ∼D(a/b) = (b/a), in which case F ,
((D�{∼})�{a, b}) is ∼-classical (in particular, simple) with 0F = b
and 1F = a, whereas (g�F ) ∈ homS(F ,B�{∼}), and so, by Remarks
2.8(ii) (implying the injectivity of g�F ) and 2.9(ii), (B�{∼})�g[F ] is
∼-classical, while g(a) ∈ DB 63 g(b). Hence, g(a) = 1B and g(b) = 0B.
Then, (1

2 )B ∈ B = g[D], in which case there is some c ∈ D such
that g(c) = ( 1

2 )B. Let G be the submatrix of D generated by {a, b, c},
in which case f , (g�G) ∈ homS

S(G,B), for g[{a, b, c}] = B. Let
J , {i ∈ I | πi(c) = 1

2}, in which case πi(c) ∈ E, for all i ∈ (I \ J),
and so, if J was empty, then c would be in EI , in which case G would
be a submatrix of EI , and so, by (2.23), C, being defined by B, would
be ∼-classical. Therefore, J 6= ∅. Take any j ∈ J . Let us prove,
by contradiction, that (πj�G) ∈ homS

S(G,A). For suppose (πj�G) 6∈
homS

S(G,A). Then, as (πj�G) ∈ homS(G,A), there is some d ∈ (G \
DG) such that πj(d) ∈ DA. Consider the following complementary
subsubcases:

∗ A is not truth-singular.
Then, by Lemma 2.12 and Remark 2.8(ii), A, being simple and
finite, is a strict surjective homomorphic image of a subdirect
product of a tuple constituted by submatrices of B, in which case
this is not truth-singular, and so is false-singular. Therefore, as
d 6∈ DG , we have f(d) 6∈ DB, in which case f(d) = 0B, for
B is false-singular, and so ∼Bf(d) = 1B ∈ DB. On the other
hand, as A is not ∼-paraconsistent but is consistent, πj(∼Gd) =
∼Aπj(d) 6∈ DA, in which case ∼Gd 6∈ DG , and so ∼Bf(d) =
f(∼Gd) 6∈ DB.

∗ A is truth-singular.
Then, πj(d) = 1A = πi(d), for all i ∈ J , because πj(e) = πi(e),
for all e ∈ {a, b, c}, and so for all e ∈ G 3 d, in which case d ∈
EI ⊇ {a, b}, and so the submatrixH of G generated by {a, b, d} is
a submatrix of EI . Moreover, πj(∼Gd) = ∼Aπj(d) = 0A 6∈ DA,
in which case ({d,∼Gd} ∩DG) = ∅, and so ({f(d),∼Bf(d)} ∩
DB) = ∅. Hence, f(d) = ( 1

2 )B, in which case f [{a, b, d}] = B,
and so (f�H) ∈ homS

S(H,B). In this way, by (2.23), C, being
defined by B, is ∼-classical.

Thus, anyway, we come to a contradiction. Therefore, (πj�G) ∈
homS

S(G,A). Hence, since f ∈ homS
S(G,B), by Remark 2.8(ii) and

Lemma 2.11, A and B, being both simple, are isomorphic.

[Then, Lemma 6.27 completes the argument.] �

In view of Corollary 6.29 [and Theorem 6.38], any [non-∼-classical] three-valued
Σ-logic with subclassical negation ∼ is defined by a [unique] canonical three-valued
∼-super-classical Σ-matrix [said to be characteristic for/of the logic], A being
characteristic for C. On the other hand, the uniqueness is not, generally speaking,
the case for ∼-classical (even both implicative — in particular, disjunctive — and
conjunctive) ones, in view of Corollary 6.29 and Example 6.32.

Corollary 6.40. Let Σ′ ⊇ Σ be a signature and C ′ a three-valued Σ′-expansion of
C. Suppose A is both either false-singular or conjunctive or disjunctive and simple
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(i.e., C is not ∼-classical; cf. Corollary 6.36). Then, C ′ is defined by a unique
Σ′-expansion of A.

Proof. In that case, ∼ is a subclassical negation for C ′. Hence, by Corollary 6.29,
C ′ is defined by a canonical three-valued ∼-super-classical Σ′-matrix A′, in which
case C is defined by the canonical three-valued ∼-super-classical Σ-matrix A′�Σ,
and so, by Theorem 6.38, this is equal to A. Finally, Lemma 6.27 and Theorem
6.38 complete the argument. �

And what is more, taking Lemma 6.5 into account, it is worth to explore connec-
tions between self-extensionality and existence of a classical extension. This makes
the characterization to be obtained below especially acute. We start from exploring
certain issues to be proved closely related to the primary one mentioned above.

A (2[+1])-ary [ 1
2 -relative] (classical) semi-conjunction for A is any ϕ ∈ Fm2[+1]

Σ

such that both ϕA(0, 1[, 1
2 ]) = 0 and ϕA(1, 0[, 1

2 ]) ∈ {0[, 1
2 ]}. (Clearly, any binary

semi-conjunction for A is a ternary 1
2 -relative one.)

Lemma 6.41. Let B be a ∼-paraconsistent model of C. Suppose either A has a
ternary 1

2 -relative semi-conjunction or { 1
2} does not form a subalgebra of A or B

is weakly ∼-negative or
x0 ` ∼x0 (6.13)

is not true in B. Then, A is embeddable into a strict homomorphic image of a
∼-paraconsistent submatrix of B.

Proof. Then, C is ∼-paraconsistent, and so is not ∼-classical, in which case, by
Theorem 6.35(iv)⇒(i), A is simple. Moreover, [in case (6.13) is not true in B] there
are some a, b[, c] ∈ B such that ∼Ba[, c] ∈ DB 63 b[,∼Bc]. Therefore, by (2.23), the
submatrix D of B generated by {a, b[, c]} is a finitely-generated ∼-paraconsistent
model of C [in which (6.13) is not true]. Hence, by Lemma 2.12, there are some
finite set I, some C ∈ S∗(A)I , some subdirect product E of it, some strict surjective
homomorphic image F of D and some h ∈ homS(E ,F), in which case, by (2.23), E is
∼-paraconsistent, and so consistent (in particular, I 6= ∅) [while (6.13) is not true in
E ]. Given any a′ ∈ A and any J ⊆ I, set (J : a′) , (J×{a′}) ∈ AJ . Likewise, given
any ā ∈ A2 and any J ⊆ I, set (a0‖Ja1) , ((J : a0) ∪ ((I \ J) : a1)) ∈ AI . Then,
there are some d ∈ (E \DE) and some e[, f ] ∈ DE such that ∼Ee ∈ DE [63 ∼Ef ], in
which case e = (I : 1

2 ) and J , {i ∈ I | πi(d) = 0} 6= ∅[6= K , {i ∈ I | πi(f) = 1}.
Consider the following complementary cases:

• { 1
2} forms a subalgebra of A,

in which case ∼A 1
2 = 1

2 . We are going to prove that there is some non-
empty L ⊆ I such that (0‖L

1
2 ) ∈ E. For consider the following exhaustive

subcases:
– A has a ternary 1

2 -relative semi-conjunction ϕ.
Let g , ϕE(d,∼Ed, e). Consider the following exhaustive subsubcases:

∗ ϕA(1, 0, 1
2 ) = 0.

Let L , {i ∈ I | πi(d) 6= 1
2} ⊇ J . Then, E 3 g = (0‖L

1
2 ).

∗ ϕA(1, 0, 1
2 ) = 1

2 .
Let L , J . Then, E 3 g = (0‖L

1
2 ).

– B is weakly ∼-negative.
Then, by Remark 2.9(ii), E is weakly ∼-negative, in which case ∼Ed ∈
DE , and so d ∈ {0, 1

2}
I . Let L , J . Then, E 3 d = (0‖L

1
2 ).

– (6.13) is not true in B.
Let L , K. Then, f ∈ DE ⊆ { 1

2 , 1}
I , in which case E 3 f = (1‖L

1
2 ),

and so E 3 ∼Ef = (0‖L
1
2 ).
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In this way, (0‖L
1
2 ) ∈ E 3 e = ( 1

2‖L
1
2 ), in which case E 3 ∼E(0‖L

1
2 ) =

(1‖L
1
2 ), and so, as L 6= ∅, while { 1

2} forms a subalgebra of A, h′ ,
{〈x, (x‖K

1
2 )〉 | x ∈ A} is an embedding of A into E .

• { 1
2} does not form a subalgebra of A,

in which case there is some ϕ ∈ Fm1
Σ such that ϕA( 1

2 ) ∈ 2, and so A =
{ 1

2 , ϕ
A( 1

2 ),∼AϕA( 1
2 )}. Hence, {I : x | x ∈ A} = {e, ϕE(e),∼EϕE(e)} ⊆ E.

Therefore, as I 6= ∅, h′ , {〈x, I : x〉 | x ∈ A} is an embedding of A into E .
Thus, (h ◦h′) ∈ homS(A,F) is injective, in view of Remark 2.8(ii), as required. �

Theorem 6.42. Suppose A is false-singular (in particular, ∼-paraconsistent) [and
C is ∼-subclassical]. Then, the following are equivalent:

(i) C has no proper ∼-paraconsistent [∼-subclassical] extension;
(ii) C has no proper ∼-paraconsistent non-∼-subclassical extension;
(iii) either A has a ternary 1

2 -relative semi-conjunction or { 1
2} does not form a

subalgebra of A (in particular, ∼A 1
2 6=

1
2);

(iv) L3 , {〈 1
2 ,

1
2 〉, 〈0, 1〉, 〈1, 0〉} does not form a subalgebra of A2;

(v) A has no truth-singular ∼-paraconsistent subdirect square;
(vi) A2 has no truth-singular ∼-paraconsistent submatrix;
(vii) C has no truth-singular ∼-paraconsistent model;
(viii) A 1

2
is not a ∼-paraconsistent model of C;

(ix) C has no truth-singular ∼-paraconsistent model over A.
In particular, C has a ∼-paraconsistent proper extension iff it has a [non-]non-∼-
subclassical one, and if any three-valued expansion of C does so.

Proof. First, assume (iii) holds. Consider any ∼-paraconsistent extension C ′ of C,
in which case x1 6∈ T , C ′({x0,∼x0}) ⊇ {x0,∼x0}, while, by the structurality of
C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and so, by Lemma 6.41 and
(2.23), A is a model of C ′, and so C ′ = C. Thus, both (i) and (ii) hold.

Next, assume L3 forms a subalgebra of A2. Then, by (2.23), B , (A2�L3) ∈
Mod(C) is a subdirect square of A. Moreover, as L3 3 〈0, 1〉 6∈ (L3 ∩ ∆A) =
{〈 1

2 ,
1
2 〉} = DB, for A is false-singular, B is both truth-singular and ∼-paracon-

sistent. Moreover, (π0�L3) ∈ homS
S(B,A 1

2
). Hence, by (2.23), A 1

2
∈ Mod(C) is

∼-paraconsistent. Thus, (v/viii)⇒(iv) holds, while (v/viii/ix) is a particular case
of (vi/ix/vii), whereas (vii)⇒(vi) is by (2.23).

Now, let B ∈ Mod(C) be both ∼-paraconsistent and truth-singular, in which
case (6.13) is true in B, and so is its logical consequence

{x0, x1,∼x1} ` ∼x0, (6.14)

not being true in A under [x0/1, x1/
1
2 ] [but true in any ∼-classical model C′ of

C, for C′ is ∼-negative]. Thus, the logic of {B[, C′]} is a proper ∼-paraconsistent
[∼-subclassical] extension of C, so (i)⇒(vii) holds. And what is more, (6.13), being
true in B, is not true in any ∼-[super-]classical Σ-matrix [in particular, in A], in
view of [(2.23) and] (3.11) with n = 0 and m = 1. Thus, the logic of B is a proper
∼-paraconsistent non-∼-subclassical extension of C, so (ii)⇒(vii) holds.

Finally, assume A has no ternary 1
2 -relative semi-conjunction and { 1

2} forms a
subalgebra of A. In that case, ∼A 1

2 = 1
2 . Let B be the subalgebra of A2 generated

by L3. If 〈0, 0〉 was in B, then there would be some ϕ ∈ Fm3
Σ such that ϕA(0, 1, 1

2 ) =
0 = ϕA(1, 0, 1

2 ), in which case it would be a ternary 1
2 -relative semi-conjunction for

A. Likewise, if either 〈 1
2 , 0〉 or 〈0, 1

2 〉 was in B, then there would be some ϕ ∈ Fm3
Σ

such that ϕA(0, 1, 1
2 ) = 0 and ϕA(1, 0, 1

2 ) = 1
2 , in which case it would be a ternary 1

2 -
relative semi-conjunction for A. Therefore, as ∼A1 = 0 and ∼A 1

2 = 1
2 , we conclude
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that ({〈0, 1
2 〉, 〈1,

1
2 〉, 〈

1
2 , 1〉, 〈

1
2 , 0〉, 〈0, 0〉, 〈1, 1〉} ∩ B) = ∅. Thus, B = L3 forms a

subalgebra of A2. In this way, (iv)⇒(iii) holds.
After all, Corollary 6.40 completes the argument, for any expansion of A inherits

ternary 1
2 -relative semi-conjunctions (if any). �

Theorem 6.42(i)⇔(iii[iv]) is especially useful for [effective dis]proving the maxi-
mal ∼-paraconsistency of C, as we show below [cf. Example 6.138]. And what is
more, since, by Remark 2.9(i)d), A has no proper ∼-paraconsistent submatrix, by
Corollaries 2.14 and 6.29, we immediately have the following “axiomatic” version
of Theorem 6.42:

Corollary 6.43. Any [non-]non-∼-paraconsistent three-valued Σ-logic with sub-
classical negation ∼ has no ∼-paraconsistent [proper axiomatic] extension [and so
is axiomatically maximally ∼-paraconsistent].

Let C 1
2

be the logic of A 1
2
.

Lemma 6.44. Let B ∈ Mod(C). Suppose C is a non-purely-inferential ∼-pa-
raconsistent sublogic of C 1

2
. Then, B is consistent iff it is ∼-paraconsistent. In

particular, A 1
2

is ∼-paraconsistent.

Proof. The “if” part is immediate. Conversely, assume B is consistent. Then, by the
structurality of C, applying the Σ-substitution extending [xi/x0]i∈ω to any theorem
of C, we conclude that there is some φ ∈ (Fm1

Σ ∩C(∅)), and so, as A 1
2
∈ Mod(C),

φA(a) = 1
2 , for all a ∈ A. Take any b ∈ (B \DB) 6= ∅, for B is consistent. Then,

by (2.23), the submatrix D of B generated by {b} is a finitely-generated consistent
model of C. Hence, by Lemma 2.12, there are some set I and some submatrix
E ∈ H−1(H(D)) of AI . Take any e ∈ E 6= ∅. Then, φE(e) = (I × { 1

2}) ∈ DE , in
which case ∼EφE(e) ∈ DE , for A is ∼-paraconsistent, and so E , being consistent,
for D is so, is ∼-paraconsistent. Thus, B is so, in view of (2.23), as required. �

Theorem 6.45. Suppose C has a proper ∼-paraconsistent extension. Then, the
following hold:

(i) C 1
2

is the proper (∼-para)consistent extension of C relatively axiomatized by
(6.13);

(ii) C 1
2

has no proper inferentially consistent (in particular, ∼-paraconsistent)
extension;

(iii) the following are equivalent:
a) C has a theorem;
b) 2 does not form a subalgebra of A;
c) C is not ∼-subclassical;
d) C 1

2
is the only proper (∼-para)consistent extension of C;

e) C 1
2

has no proper sublogic being a proper extension of C.

In particular, any three-valued ∼-paraconsistent Σ-logic with subclassical nega-
tion ∼ is premaximally ∼-paraconsistent extension iff it is either maximally ∼-
paraconsistent or not ∼-subclassical/purely-inferential (in particular, weakly dis-
junctive [in particular, implicative]).

Proof. Then, C is ∼-paraconsistent, and so is A, in which case this is false-singular.
Hence, by Theorem 6.42(iii/iv/viii)⇒(i), A 1

2
∈ Mod(C) is ∼-paraconsistent, while

A has no ternary 1
2 -relative semi-conjunction, whereas { 1

2}|L3 forms a subalgebra
of A|A2, respectively (in particular, ∼A 1

2 = 1
2 ).

(i) Then, (6.13), not being true in A under [x0/1], is true in A 1
2
. In this way, the

logic of A 1
2

is a proper (∼-para)consistent extension of C satisfying (6.13).
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Conversely, consider any Σ-rule Γ ` φ not satisfied in the extension C ′ of C
relatively axiomatized by (6.13), in which case, as ∼[Γ] ⊆ C ′(Γ), the Σ-rule
(Γ ∪ ∼[Γ]) ` φ is not satisfied in C ′, and so in its sublogic C. Then, there
is some h ∈ hom(Fmω

Σ,A) such that h[Γ ∪ ∼[Γ]] ⊆ DA = { 1
2 , 1} 63 h(φ). In

particular, h(φ) 6= 1
2 . And what is more, for each ψ ∈ Γ, both h(ψ) ∈ DA

and ∼Ah(ψ) = h(∼ψ) ∈ DA, in which case h(ψ) = 1
2 , for ∼A1 = 0 6∈ DA,

and so h[Γ] ⊆ { 1
2} = D

A 1
2 63 h(φ). Thus, C ′ = C 1

2
.

(ii) Consider any inferentially consistent extension C ′ of C 1
2
, in which case x1 6∈

T , C ′(x0) 3 x0. Then, by the structurality of C ′, 〈Fmω
Σ, T 〉 is a model of C ′

(in particular, of C 1
2
), and so is its finitely-generated consistent truth-non-

empty submatrix B , 〈Fm2
Σ, T 〉, in view of (2.23). Hence, by Lemma 2.12,

there are some set I and some submatrix D ∈ H−1(H(B)) of AI
1
2
, in which

case, by (2.23), D is a consistent truth-non-empty model of C ′, for B is so,
and so I 6= ∅, while there are some a ∈ DD and some b ∈ (D \DD). Then,
D 3 a = (I × { 1

2}) 6= b, in which case either J , {i ∈ I | πi(b) = 1} or
K , {i ∈ I | πi(b) = 0} is non-empty. Given any c̄ ∈ A3, set (c0‖c1‖c2) ,
((J ×{c0})∪ (K ×{c1})∪ ((I \ (J ∪K))×{c2})) ∈ AI . In this way, D 3 a =
( 1
2‖

1
2‖

1
2 ) and D 3 b = (1‖0‖ 1

2 ), in which case D 3 ∼Db = (0‖1‖ 1
2 ). Consider

the following exhaustive cases:
• J 6= ∅ 6= K.

Then, as { 1
2}|L3 forms a subalgebra of A|A2, {〈〈x, y〉, (x‖y‖ 1

2 )〉 | 〈x, y〉 ∈
L3} is an embedding of E , (A2�L3) into D, in which case, by (2.23), E
is a model of C ′, for D is so, and so is A 1

2
, for (π0�L3) ∈ homS

S(E ,A 1
2
).

• K = ∅,
in which case J 6= ∅, while D 3 a = (1

2‖
1
2‖

1
2 ), whereas D 3 b = (0‖ 1

2‖
1
2 ),

and so D 3 ∼Db = (1‖ 1
2‖

1
2 ). Then, as { 1

2} forms a subalgebra of A,
{〈x, (x‖ 1

2‖
1
2 )〉 | x ∈ A} is an embedding of A 1

2
into D, in which case, by

(2.23), A 1
2

is a model of C ′, for D is so.
• J = ∅,

in which case K 6= ∅, while D 3 a = ( 1
2‖

1
2‖

1
2 ), whereas D 3 b =

( 1
2‖0‖

1
2 ), and so D 3 ∼Db = ( 1

2‖1‖
1
2 ). Then, as { 1

2} forms a subalgebra
of A, {〈x, ( 1

2‖x‖
1
2 )〉 | x ∈ A} is an embedding of A 1

2
into D, in which

case, by (2.23), A 1
2

is a model of C ′, for D is so.
Thus, in any case, A 1

2
∈ Mod(C ′), and so C ′ = C 1

2
.

(iii) First, assume a) holds. Consider any consistent extension C ′ of C, in which
case C ′(∅) ⊇ C(∅) 6= ∅, and so, if C ′ was inferentially inconsistent, then
it, being structural, would be inconsistent, and the following complementary
cases:
• (6.13) is satisfied in C ′,

in which case, by (i), C ′ is an inferentially consistent extension of C 1
2
,

and so, by (ii), C ′ = C 1
2
.

• (6.13) is not satisfied in C ′,
in which case ∼x0 6∈ T , C ′(x0) 3 x0. Then, by the structurality of
C ′, B , 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), in which (6.13)
is not true under the diagonal Σ-substitution, in which case, by Lemma
6.44, B, being consistent, is ∼-paraconsistent, for C is so, and so, by
(2.23) and Lemma 6.41, A is a model of C ′, for B is so, in which case
C ′ = C.

Thus, by (i), d) holds.
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Next, d)⇒e) is by the consistency of A 1
2
, and so of C 1

2
.

Now, let B be a ∼-classical (and so non-∼-paraconsistent) model of C.
Then, (6.14), being a logical consequence of ((2.16)[x0/x1, x1/∼x0])/(6.13), is
true in B/A 1

2
, respectively/, in view of (i). However, it is not true in A under

[x0/1, x1/
1
2 ]. Moreover, by (3.11) with n = 0 and m = 1, (6.13) is not true

in B. In this way, by (i), the logic of {A 1
2
,B} is a proper extension/sublogic

of C/ 1
2
. Thus, e)⇒c) holds.

Further, if 2 forms a subalgebra of A, then, by (2.23), A�2 is a ∼-classical
model of C. Therefore, c)⇒b) holds.

Finally, assume b) holds. Then, there is some ϕ ∈ Fm2
Σ such that

ϕA(1, 0) = 1
2 = ϕA( 1

2 ,
1
2 ), for { 1

2} forms a subalgebra of A, in which case, if
ϕA(0, 1) was equal to 0, then ϕ would be a ternary 1

2 -relative semi-conjunction
for A, and so ϕA(0, 1) ∈ DA ⊇ {ϕA(1, 0), ϕA( 1

2 ,
1
2 )}. In this way, (ϕ[x1/∼x0])

∈ C(∅), and so a) holds.
After all, Corollary 6.29 as well as Lemmas 6.30, 6.31 and the fact that (2.18) is
a theorem of C, whenever A is false-singular (in particular, ∼-paraconsistent) and
Y-disjunctive, complete the argument. �

In this way, Corollary 6.29 as well as Theorem[s] 6.42(i)⇔(iv) [and 6.45(iii)b)⇔
d) provide an effective algebraic criterion of the [pre]maximal ∼-paraconsistency of
three-valued ∼-paraconsistent Σ-logics with subclassical negation ∼.

Remark 6.46. Suppose either A is both false-singular and weakly Z-conjunctive or
both 2 forms a subalgebra of A and A�2 is weakly Z-conjunctive. Then, (x0 Z x1)
is a binary semi-conjunction for A. �

By Corollary 6.29, Theorem 6.42(ii)⇒(i,ii) and Remark 6.46, we first have:

Corollary 6.47 (cf. the reference [Pyn 95b] of [17]). Any weakly conjunctive
three-valued Σ-logic with subclassical negation ∼ has no proper ∼-paraconsistent
extension.

The principal advance of this universal maximal paraconsistency result with re-
gard to the reference [Pyn 95b] of [17] consists in extending the latter beyond
subclassical logics towards those with merely subclassical negation, in which case,
contrary to the latter, the former is equally applicable to arbitrary three-valued ex-
pansions (cf. Corollary 6.40 below in this connection) of logics under consideration,
because expansions retain conjunction, subclassical negation and paraconsistency,
but do not, generally speaking, inherit the property of being subclassical, and so
the former, as opposed to the latter, covers arbitrary three-valued expansions of LP
(being ∧-conjunctive), HZ (being ∨∼-conjunctive) and P 1 (being conjunctive too;
cf. [15]). In view of Example 6.67 below, the stipulation of the weak conjunctivity
cannot be omitted in the formulation of Corollary 6.47.

Next, A is said to satisfy Generation Condition (GC), provided either 〈0, 0〉
or 〈 1

2 , 0〉 or 〈0, 1
2 〉 belongs to the carrier of the subalgebra of A2 generated by

{〈1, 1
2 〉}. Put M2 , {〈0, 1〉, 〈1, 0〉}. Then, A is said to satisfy Diagonal Generation

Condition (DGC), provided ∆A is not disjoint with the carrier of the subalgebra of
A2 generated by M2 ∪ {〈1, 1

2 〉}.

Lemma 6.48. Let I be a finite set, C ∈ S∗(A)I and D a consistent truth-non-
empty non-∼-paraconsistent subdirect product of it. Suppose A is not a model of
the logic of D, while either A is either non-∼-paraconsistent or weakly conjunctive,
or D is ∼-negative or both A either has a binary semi-conjunction or satisfies GC,
and either 2 forms a subalgebra of A or L4 , (A2 \ (22 ∪{ 1

2}
2)) forms a subalgebra

of A2 or A satisfies DGC. Then, the following hold:
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(i) if 2 forms a subalgebra of A, then A�2 is embeddable into D;
(ii) if 2 does not form a subalgebra of A, then A is both ∼-paraconsistent (in

particular, false-singular) and not weakly conjunctive, while L4 forms a sub-
algebra of A2, whereas A2�L4 is embeddable into D.

Proof. In that case, I 6= ∅, for D is consistent. Consider the following complemen-
tary cases:

(1) (I × {i}) ∈ D, for some i ∈ 2,
in which case D 3 ∼D(I × {i}) = (I × {1− i}), and so, if 2 did not form a
subalgebra of A, then there would be some ϕ ∈ Fm2

Σ such that ϕA(0, 1) = 1
2 ,

in which case D would contain ϕD(I × {0}, I × {1}) = (I × { 1
2}), and so,

as I 6= ∅, {〈a, I × {a}〉 | a ∈ A} would be an embedding of A into D (in
particular, by (2.23), A would be a model of the logic of D). Therefore, 2
forms a subalgebra of A, in which case {〈j, I × {j}〉 | j ∈ 2} is an embedding
of A�2 into D, and so (i,ii) hold, in that case.

(2) (I × {i}) ∈ D, for no i ∈ 2,
in which case, by Claim 6.39, A is both not weakly conjunctive and ∼-
paraconsistent, and so false-singular. In particular,

e , (I × { 1
2}) 6∈ D, (6.15)

for, otherwise, we would have {e,∼De} ⊆ DD, contrary to the fact that D
is not ∼-paraconsistent but is consistent. Take any a ∈ DD 6= ∅, for D is
truth-non-empty, Then, a ∈ { 1

2 , 1}
I , in which case, by (2) with i = 1 and

(6.15), I 6= J , {i ∈ I | πi(a) = 1} 6= ∅, and so b , ∼Da ∈ (D \ DD).
Given any ā ∈ A2, set (a0‖a1) , ((J×{a0})∪ ((I \J)×{a1})) ∈ AI . Then,
a = (1‖ 1

2 ).
Let us prove, by contradiction, that ∼A 1

2 = 1
2 . For suppose ∼A 1

2 6=
1
2 .

Then, as A is ∼-paraconsistent, we have ∼A 1
2 ∈ DA = { 1

2 , 1}, in which
case we get ∼A 1

2 = 1, and so both b = (0‖1) ∈ D and ∼Bb = (1‖0) ∈ D do
not belong to DD, for I 6= J 6= ∅. Hence, D is not ∼-negative. Moreover,
if A had a binary semi-conjunction ϕ, then D would contain ϕA(b,∼Bb) =
(0‖0) = (I × {0}), contrary to (2) with i = 0. Likewise, if A satisfied
GC, then there would be some ψ ∈ Fm1

Σ such that ψA(〈1, 1
2 〉) would be in

{〈0, 1
2 〉, 〈

1
2 , 0〉, 〈0, 0〉}, in which case ∼AψA(〈1, 1

2 〉) would be equal to 〈1, 1〉,
and so D would contain ∼DψD(a) = (1‖1) = (I×{1}), contrary to (2) with
i = 1. This contradicts to the fact that A is neither weakly conjunctive nor
non-∼-paraconsistent. Thus, ∼A 1

2 = 1
2 , in which case b = (0‖ 1

2 ). Consider
the following complementary subcases:

(i) 2 forms a subalgebra of A.
Let us prove, by contradiction, that so does { 1

2}. For suppose { 1
2}

does not form a subalgebra of A. Then, there is some ψ ∈ Fm1
ω such

that ψA( 1
2 ) ∈ 2, in which case ψA[A] ⊆ 2, for 2 forms a subalgebra

of A, and so ψA : A → 2 is not injective, for |A| = 3 
 2 = |2|.
Therefore, we have the following exhaustive subsubcases:

• ψA( 1
2 ) = ψA(0).

Then, (I × {1}) ∈ {ψD(b),∼DψD(b)} ⊆ D.
• ψA( 1

2 ) = ψA(1).
Then, (I × {1}) ∈ {ψD(a),∼DψD(a)} ⊆ D.

• ψA(1) = ψA(0).
Then, (I × {1}) ∈ {ψD(ψD(a)),∼DψD(ψD(a))} ⊆ D.

Thus, anyway, (I × {1}) ∈ D. This contradicts to (2) with i = 1.
In this way, { 1

2} forms a subalgebra of A. Then, as J 6= ∅, while
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(1‖ 1
2 ) = a ∈ D 3 b = (0‖ 1

2 ), {〈i, (i‖ 1
2 )〉 | i ∈ 2} is an embedding of

A�2 into D.
(ii) 2 does not form a subalgebra of A.

Then, there is some ϕ ∈ Fm2
Σ such that ϕA(0, 1) = 1

2 , in which
case ψ , ϕ[x1/∼x0] ∈ Fm1

Σ, while ψA(0) = ϕA(0, 1) = 1
2 , and so, as

D 3 ψD(b), by (6.15), we have ψD( 1
2 ) ∈ 2. Hence, we get c , ( 1

2‖1) ∈
{ψD(b),∼DψD(b)} ⊆ D, in which case D 3 d , ∼Dc = ( 1

2‖0),
and so {(x‖y) | 〈x, y〉 ∈ L4} = {a, b, c, d} ⊆ D. Let us prove, by
contradiction, that L4 forms a subalgebra of A2. For suppose L4 does
not form a subalgebra of A2, in which case there is some φ ∈ Fm4

Σ such
that φA2

(〈1, 1
2 〉, 〈0,

1
2 〉, 〈

1
2 , 1〉, 〈

1
2 , 0〉) ∈ (A \ L4) = (22 ∪ { 1

2}
2), and so

D 3 e , φD(a, b, c, d) = (x‖y), where 〈x, y〉 ∈ (22 ∪ { 1
2}

2). Then, by
(2) and (6.15), 〈x, y〉 ∈ (22 \∆2), in which case 0 ∈ {x, y}, and so e ∈
(D\DD) 3 (y‖x) = ∼De, for I 6= J 6= ∅. Hence, D is not ∼-negative.
Therefore, A satisfies DGC, for it is is neither weakly conjunctive
nor non-∼-paraconsistent, in which case there are some ξ ∈ Fm3

Σ and
some z ∈ A such that ξA2

(〈1, 1
2 〉, 〈1, 0〉, 〈0, 1〉) = 〈z, z〉, and so D 3

ξD(a, (1‖0), (0‖1)) = (z‖z), for {(1‖0), (0‖1)} = {e,∼De} ⊆ D 3 a.
This contradicts to (2) and (6.15). Therefore, L4 forms a subalgebra
of A2. Hence, as J 6= ∅ 6= (I \ J), {〈〈x, y〉, (x‖y)〉 | 〈x, y〉 ∈ L4} is an
embedding of A2�L4 into D, as required. �

Corollary 6.49. Let B be a ∼-classical model of C. Suppose C is not ∼-classical.
Then, the following hold:

(i) if 2 forms a subalgebra of A, then A�2 is isomorphic to B;
(ii) if 2 does not form a subalgebra of A, then both B is not disjunctive and C is

both not weakly conjunctive and maximally ∼-paraconsistent, in which case
A is ∼-paraconsistent, and so is false-singular, while L4 forms a subalgebra
of A2, whereas θA

2�L4 ∈ Con(A2�L4), 〈χA2�L4 [A2�L4], {1}〉 being isomorphic
to B.

Proof. Then, B is finite and simple. Therefore, by Lemma 2.12 and Remark 2.8(ii),
there are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it and
some h ∈ homS

S(D,B), in which case, by Remark 2.9(ii), D is ∼-negative, for B
is so, and so both consistent and truth-non-empty, while, by (2.23), the logic C ′

of D is the ∼-classical (in particular, non-∼-paraconsistent) one of B, and so, by
Corollary 3.33, A, being both consistent and truth-non-empty, in which case C is
inferentially-consistent, is not a model of C ′. Consider the following complementary
cases:

(i) 2 forms a subalgebra of A.
Then, by Lemma 6.48(i), there is some embedding e of A�2 into D, in which
case, by Remark 2.8(ii), h ◦ e is that into B, and so is an isomorphism from
A�2 onto B, for this has no proper submatrix.

(ii) 2 does not form a subalgebra of A.
Then, by Theorem 6.45(iii)b)⇒c) and Lemma 6.48(ii), C is both not weakly
conjunctive and maximally ∼-paraconsistent, in which case A is ∼-paracon-
sistent, and so is false-singular, while L4 forms a subalgebra of A2, whereas
there is some embedding e of of F , (A2�L4) into D, in which case g ,
(h ◦ e) ∈ homS

S(F ,B), for B, being ∼-classical, has no proper submatrix,
and so, by Remark 2.8, (kerχF ) = θF = g−1[θB] = g−1[∆B ] = (ker g) ∈
Con(F), in which case χF is a strict surjective homomorphism from F onto
G , 〈χF [F], {1}〉, and so, by the Homomorphism Theorem, χF ◦ g−1 is an
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isomorphism from B onto G. Finally, let us prove, by contradiction, that
B is not disjunctive. For suppose B is Y-disjunctive, and so is F , in view
of Remark 2.9(ii). Then, as 〈 1

2 , 1〉 ∈ DF , for A is false-singular, we have
{〈0, 1

2 〉Y
F 〈 1

2 , 1〉, 〈
1
2 , 1〉Y

F 〈0, 1
2 〉} ⊆ DF , in which case we get {0YA 1

2 ,
1
2 YA0} ⊆

DA, and so we eventually get (〈0, 1
2 〉Y

F 〈 1
2 , 0〉) ∈ D

F . This contradicts to the
fact that ({〈0, 1

2 〉, 〈
1
2 , 0〉} ∩D

F ) = ∅. Thus, B is not disjunctive. �

Combining [Lemmas 3.32, 6.30 and] Corollary 6.49 with (2.23) [and Remark
2.9(ii)], we immediately get:

Theorem 6.50. C has a [ Y-disjunctive] ∼-classical extension iff either of the
following [but (iii)] holds:

(i) C is ∼-classical [and Y-disjunctive];
(ii) 2 forms a subalgebra of A [with Y-disjunctive A�2], in which case A�2 is a

canonical ∼-classical model of C isomorphic to any ∼-classical model of C,
and so is a unique canonical one and defines a unique ∼-classical extension
of C;

(iii) C is both not weakly conjunctive and maximally ∼-paraconsistent, in which
case A is ∼-paraconsistent, and so is false-singular, while L4 forms a subal-
gebra of A2, whereas θA

2�L4 ∈ Con(A2�L4), in which case 〈χA2�L4 [A2�L4],
{1}〉 is a canonical ∼-classical model of C isomorphic to any ∼-classical
model of C, and so is a unique canonical one and defines a unique ∼-classical
extension of C.

In view of Lemma 3.32 and Theorem 6.50, C, being ∼-subclassical, has a unique
∼-classical extension/“canonical model” to be denoted by CPC/APC, respectively,
and referred to as characteristic of |for C, in which case CPC = [6=]C, whenever C
is [not] ∼-classical. It is remarkable that the Y-disjunctivity of C is not required in
the []-optional version of Theorem 6.50, making this the right characterization of
C’s being genuinely ∼-subclassical in the sense of having a functionally complete
∼-classical extension. And what is more, by Lemma 6.30 and Theorem 6.50, we
have:

Corollary 6.51. [Suppose A is either truth-singular or weakly conjunctive or dis-
junctive (in particular, implicative).] Then, C is ∼-subclassical if[f ] either of the
following holds:

(i) C is ∼-classical;
(ii) 2 forms a subalgebra of A, in which case A�2 is a canonical ∼-classical model

of C isomorphic to any ∼-classical model of C, and so is a unique canonical
one and defines a unique ∼-classical extension of C.

The ([]-optional) stipulation in the formulation of Corollary 6.51 (resp., The-
orem 6.50) cannot be omitted {or, even, “weakened”}, because of existence of
three-valued {even, weakly disjunctive} non-∼-classical 〈even, ∼-paraconsistent〉
∼-subclassical Σ-logics, the underlying algebras of the characteristic matrices of
which do not have subalgebras with carrier 2, as it ensues from:

Example 6.52. Let i ∈ 2, Σ , {q,∼} with binary q, B the canonical ∼-classical
Σ-matrix with (jqB k) , i, for all j, k ∈ 2, and A false-singular with ∼A 1

2 , 1
2 and

(aqA b) ,

{
i if a = 1

2 ,
1
2 otherwise,

for all a, b ∈ A, in which case A is both ∼-paraconsistent and, providing i = 1,
weakly q-disjunctive, and so is C. Then, we have:

(〈 1
2 , a〉 q

A2
〈b, 1

2 〉) = 〈i, 1
2 〉,
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(〈b, 1
2 〉 q

A2
〈 1
2 , a〉) = 〈 1

2 , i〉,

(〈 1
2 , a〉 q

A2
〈 1
2 , b〉) = 〈i, 1

2 〉,

(〈a, 1
2 〉 q

A2
〈b, 1

2 〉) = 〈 1
2 , i〉,

for all a, b ∈ 2. Hence, L4 forms a subalgebra of A2, while χA
2�L4 ∈ homS

S(A2�L4,B),
in which case, by (2.23), B ∈ Mod(C), and so C is ∼-subclassical. However,
(0qA 1) = 1

2 , in which case 2 does not form a subalgebra of A, and so, by Corollary
6.51, C is neither disjunctive nor weakly conjunctive. �

Corollary 6.53. Suppose A is A-implicative (viz., C is so; cf. Lemma 6.31).
Then, C has a proper consistent axiomatic extension iff it is non-∼-classical (in
particular, ∼-paraconsistent) and ∼-subclassical, in which case CPC is a unique
proper consistent axiomatic extension of C and is relatively axiomatized by φ̄ A ψ,
where φ̄ ∈ (Fm1

Σ)∗ and ψ ∈ (CPC(img φ̄) \ C(img φ̄)) (in particular, by (2.17)).

Proof. According to Corollary 2.14, any [proper] {consistent} axiomatic extension
of C is defined by some {non-empty} S ⊆ S∗(A) [not containing A, in which case
S ⊆ {=}{A�2}, if 2 forms a subalgebra of A, and S = ∅, otherwise {and so (2.12),
Corollaries 2.14, 3.33, 6.51 and Remark 2.9(ii)(,(i)d) complete the argument}. �

Lemma 6.54. Let S be a set of Σ-matrices and C ′ the logic of S. Then, the
following are equivalent:

(i) C ′ has a theorem;
(ii) for any set I, any e ∈ SI , any function f with domain I, and any S ⊆∏

i∈Ide(i)ef(i), the submatrix of
∏

i∈I e(i)
f(i) generated by S is truth-non-

empty;
(iii) for any set I, any e ∈ SI , any function f with domain I, and any ~̄g ∈∏

i∈Ide(i)ef(i), the submatrix of
∏

i∈I e(i)
f(i) generated by {~̄g} is truth-non-

empty;
(iv) for any enumeration e of S and any |S|-tuple ~̄g such that, for every i ∈ |S|,

ḡi is an enumeration of de(i)e, the submatrix of
∏

i∈I e(i)
|de(i)e| generated by

{~̄g} is truth-non-empty.

Proof. First, (i)⇒(ii) is by (2.23) and Corollary 3.21(ii)⇒(i). Next, (iii/iv) is a
particular case of (ii/iii), respectively. Finally, assume (iv) holds. Take any enu-
meration e of S and, for each i ∈ |S|, any enumeration ḡi of de(i)e. Let D be
the submatrix of

∏
i∈I e(i)

|de(i)e| generated by {~̄g}. Then, DD 6= ∅, in which case
there is some ϕ ∈ Fm1

Σ such that ϕD(~̄g) ∈ DD, and so for each i ∈ |S| and every
j ∈ |de(i)e|, ϕde(i)e(gi

j) = πj(πi(ϕD(~̄g))) ∈ Dde(i)e. In this way, ϕ ∈ C ′(∅). Thus,
(i) holds. �

In case both S and all members of it are finite, Lemma 6.54(i)⇔(iii) provides an
effective algebraic criterion of C ′’s having a theorem.

A semi-conjunction for/of a canonical ∼-classical Σ-matrix B is any ϕ ∈ Fm2
Σ

such that ϕA(i, 1− i) = 0, for all i ∈ 2.

Corollary 6.55. Let B be a canonical ∼-classical Σ-matrix and C ′ the logic of B.
Then, the following are equivalent:

(i) C ′ has a theorem;
(ii) M2 does not form a subalgebra of B2;
(iii) B has a semi-conjunction.

Proof. First, given any semi-conjunction ϕ of B, ∼ϕ[x1/∼x0] is a theorem of C ′.
Hence, (iii)⇒(i) holds.
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Next, assume (ii) holds. Then, there are some φ ∈ Fm2
Σ and some j ∈ 2 such

that φB(i, 1 − i) = j, for all i ∈ 2, in which case ∼jφ is a semi-conjunction of B,
and so (iii) holds.

Finally, assume (i) holds. Then, by Lemma 6.54(i)⇒(ii), the submatrix D of B2

generated by M2 is truth-non-empty, in which case the unique distinguished value
〈1, 1〉 6∈M2 of B2 belongs to D, and so D 6= M2. Thus, (ii) holds. �

Lemma 6.56. Suppose C is ∼-subclassical. Then, the following are equivalent:

(i) CPC has a theorem;
(ii) A has a binary semi-conjunction;
(iii) M

0/1
2[+2(+4)] does not form a subalgebra of (A([2])(�L2[+2]))2, whenever L2 , 2

does [not] form a subalgebra of A, while θA ∈ (6∈) Con(A), whereas A is false-
/truth-singular, where, for all i ∈ 2, M i

2 , M2, M i
4 , (M2 ∪ {〈i, 1

2 〉, 〈
1
2 , i〉})

and M{i}
8 , {〈{〈j, 1

2 〉, 〈1− j, l〉}, {〈k, 1
2 〉, 〈1− k, 1− l〉}〉 | j, k, l ∈ 2}.

Proof. Let B , APC. Consider the following complementary cases:

• C is ∼-classical,
in which case it is defined by B, and so, by Lemma 3.32, there are some
submatrix D of A and some g ∈ homS(D,B). Then, D is both consis-
tent and truth-non-empty, for B is so, and so is not one-valued. Hence,
2 ⊆ D. Assume A is false-/truth-singular. Then, both B and D are so
with the unique non-distinguihed/distinguished value 0/1, in which case
g(0/1) = (0/1), and so (1/0) = ∼B(0/1) = ∼Bg(0/1) = g(∼D(0/1)) =
g(∼A(0/1)) = g(1/0). Thus, g(i) = i, for all i ∈ 2. Consider the following
complementary subcases:

– 2 forms a subalgebra of A,
and so of D, for 2 ⊆ D, in which case g�2 is a diagonal strict homomor-
phism from (D�2) = (A�2) onto B. Hence, B = (A�2). In particular,
semi-conjunctions of B are exactly binary semi-conjunctions for A.
Moreover, M2 ⊆ 22 forms a subalgebra of B2, being a subalgebra of
A2, iff it forms a subalgebra of A2.

– 2 does not form a subalgebra of A.
Then, D = A, for 2 ⊆ D. Therefore, as B is truth-/false-singular,
g( 1

2 ) = (1/0) = g(1/0), in which case g is not injective, and so, by
Remark 2.8(ii) and Theorem 6.35(iii)⇒(v), θA ∈ Con(A). Moreover,
f , ((g ◦(π0�A2))×(g ◦(π1�A2))) ∈ hom(A2,B2) is surjective. Hence,
M2 forms a subalgebra of B2 iff M0/1

4 = f−1[M2] forms a subalgebra of
A2. Next, given any binary semi-conjunction ϕ for A and any i ∈ 2, we
have ϕA(i, 1−i) = 0, in which case we get ϕB(i, 1−i) = ϕB(g(i), g(1−
i)) = g(ϕA(i, 1 − i)) = g(0) = 0, and so ϕ is a semi-conjunction
of B. Conversely, consider any semi-conjunction ϕ of B, in which
case, for all i ∈ 2, g((∼A)0/1ϕA(i, 1 − i)) = (∼B)0/1ϕB(g(i), g(1 −
i))) = (∼B)0/1ϕB(i, 1 − i) = (∼B)0/10 = (0/1) 6∈ / ∈ DB, and so
(∼A)0/1ϕA(i, 1 − i) 6∈ / ∈ DA, in which case (∼A)0/1ϕA(i, 1 − i) =
(0/1), and so (∼A)0/2ϕA(i, 1 − i) = (∼A)0/1(∼A)0/1ϕA(i, 1 − i) =
(∼A)0/1(0/1) = 0. In this way, ∼0/2ϕ is a binary semi-conjunction for
A.

• C is not ∼-classical,
in which case, by Theorem 6.35(v)⇒(i), θA 6∈ Con(A). Consider the fol-
lowing complementary subcases:
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– 2 forms a subalgebra of A,
in which case B = (A�2), in view of (2.23) and Theorem 6.50, and so
binary semi-conjunctions for A are exactly semi-conjunctions of B.

– 2 does not form a subalgebra of A.
Then, by Theorem 6.50, A is false-singular, while L4 forms a sub-
algebra of A2, whereas θA

2�L4 ∈ Con(A2�L4), in which case B =
〈h[A2�L4], {1}〉, where h , χA2�L4 is a strict surjective homomorphism
from D , (A2�L4) onto B, and so g , ((h ◦ (π0�D2)× (h ◦ (π1�D2)) ∈
hom(D2,B2) is surjective. In particular, M2 forms a subalgebra of B2

iff M8 = g−1[M2] forms a subalgebra of D2. Moreover, as 1
2 ∈ D

A, for
A is truth-singular, a , 〈1, 1

2 〉 ∈ DD 63 b , 〈0, 1
2 〉 ∈ D, in which case

we have h(a|b) ∈ | 6∈ DB, and so h(a|b) = (1|0). Consider any binary
semi-conjunction ϕ for A. Then, D 3 ϕD(a|b, b|a) = ϕA2

(a|b, b|a),
in which case, as (π0�A2) ∈ hom(A2,A), we have π0(ϕD(a|b, b|a)) =
ϕA(π0(a|b), π0(b|a)) = ϕA(1|0, 0|1) = 0, and so ϕD(a|b, b|a) 6∈ DD.
Hence, ϕB(1|0, 0|1) = ϕB(h(a|b), h(b|a)) = h(ϕD(a|b, b|a)) 6∈ DB, in
which case ϕB(1|0, 0|1) = 0, and so ϕ is a semi-conjunction of B. Con-
versely, consider any semi-conjunction ϕ of B. Then, h(ϕD(a|b, b|a)) =
ϕB(h(a|b), (b|a)) = ϕB(1|0, 0|1) = 0 6∈ DB, in which case 〈ϕA(1|0, 0|1),
ϕA( 1

2 ,
1
2 )〉 = ϕD(a|b, b|a) 6∈ DD. Consider the following complemen-

tary subsubcases:
∗ ϕA( 1

2 ,
1
2 ) = 1

2 .
Then, as 1

2 ∈ DA, for A is false-singular, ϕA(1|0, 0|1) = 0, and
so ϕ is a binary semi-conjunction for A.

∗ ϕD( 1
2 ,

1
2 ) 6= 1

2 .
Then, as 22 is disjoint with L4 = D 3 ϕD(a|b, b|a), ϕA(1|0, 0|1) =
1
2 , in which case, as 1

2 ∈ D
A, for A is false-singular, ϕA( 1

2 ,
1
2 ) =

0, and so ϕ[xi/ϕ]i∈2 is a binary semi-conjunction for A.

In this way, Corollary 6.55 completes the argument. �

Corollary 6.57. Suppose C is ∼-subclassical and and weakly Y-disjunctive. Then,
A has a binary semi-conjunction.

Proof. In that case, CPC ⊇ C is weakly Y-disjunctive, and so, by Remark 2.9(i)d),
satisfies (2.18). In this way, Lemma 6.56(i)⇒(ii) completes the argument. �

By Corollaries 6.29, 6.57, Lemmas 6.30, 6.31 and Theorem{s} 6.42(iii)⇒(i) [in-
cluding the last assertion] {and 6.45}, we get the following “disjunctive” analogue
of Corollary 6.47, being essentially beyond the scopes of the reference [Pyn 95b] of
[17], and so becoming a one more substantial advance of the present study with
regard to that one:

Corollary 6.58. Any [three-valued expansion of any] disjunctive (in particular,
implicative) {non-}∼-subclassical three-valued Σ-logic {with subclassical negation
∼} has no {more than one} proper ∼-paraconsistent extension. In particular, any
disjunctive (in particular, implicative) ∼-paraconsistent three-valued Σ-logic with
subclassical negation ∼ is premaximally ∼-paraconsistent.

This (more precisely, the {}-non-optional part) is immediately applicable to ar-
bitrary (not necessarily ∼-subclassical) three-valued expansions of the implicative
∼-subclassical P 1 and HZ. On the other hand, as opposed to Corollary 6.47, the
condition of being ∼-subclassical in the formulation of the {}-non-optional part of
Corollary 6.58 is essential, as it follows from Example 6.138 below.
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Theorem 6.59. Suppose A is [not] false-singular, while C is ∼-subclassical. Then,
the following are equivalent:

(i) C has a theorem;
(ii) CPC has a theorem [and { 1

2} does not form a subalgebra of A];
(iii) A has a binary semi-conjunction [and { 1

2} does not form a subalgebra of A];
(iv) [ { 1

2} does not form a subalgebra of A, and] providing L2 does (not) form a
subalgebra of A, while θA ∈ {6∈}Con(A), whereas A is false-/truth-singular,
M

0/1
2(+2{+4}) does not form a subalgebra of (A{(2)}{�L2(+2)})2;

(v) Any consistent extension of C is a sublogic of CPC.

Proof. First, the equivalence of (ii–iv) is by Lemma 6.56. Next, (i)⇒(ii) is by the
fact that C(∅) ⊆ CPC(∅) [as well as both (2.23) and Corollary 3.21(ii)⇒(i), for
1
2 6∈ DA]. Conversely, assume (ii,iii) hold. Then, in case C is ∼-classical, and so
C = CPC, (i) is a particular case of (ii). Otherwise, (i) is by (iii) and the following
claim:

Claim 6.60. Let ϕ be a binary semi-conjunction for A. Suppose either A is false-
singular or both C is ∼-subclassical but not ∼-classical, and { 1

2} does not form a
subalgebra of A. Then, C has a theorem.

Proof. Let D the submatrix of A3 generated by the enumeration a , (10 1
2 ) of A.

Consider the following complementary cases:
• A is false-singular.

Consider the following exhaustive subcases:
– ∼A 1

2 = 1
2 .

Then, D 3 b , ∼Da = (01 1
2 ). Let x , ϕA( 1

2 ,
1
2 ) ∈ A. Consider the

following exhaustive subsubcases:
∗ x = 1

2 .
Then, D 3 c , ϕD(a, b) = (00 1

2 ). In this way, D 3 d , ∼Dc =
(11 1

2 ) ∈ (DA)3.
∗ x = 0.

Then, D 3 c , ϕD(a, b) = (000). In this way, D 3 d , ∼Dc =
(111) ∈ (DA)3.

∗ x = 1.
Then, D 3 c , ϕD(a, b) = (001), in which case D 3 ∼Dc =
(110), and so D 3 d , ∼DϕD(c,∼Dc) = (111) ∈ (DA)3.

– ∼A 1
2 = 1.

Then, D 3 b , ∼Da = (011), in which case D 3 ∼Db = (100), and so
D 3 d , ∼DϕD(b,∼Db) = (111) ∈ (DA)3.

– ∼A 1
2 = 0.

Then, D 3 b , ∼Da = (010), in which case D 3 ∼Db = (101), and so
D 3 d , ∼DϕD(b,∼Db) = (111) ∈ (DA)3.

• A is not false-singular,
in which case { 1

2} does not form a subalgebra of A, while, by Theorem
6.50, 2 forms a subalgebra of A, and so there is some ψ ∈ Fm1

Σ such
that ψA[A] ⊆ 2. Then, D 3 b , ψD(a) ∈ 23, in which case D 3 c ,
ϕD(b,∼Db) = (3× {0}), and so D 3 d , ∼Dc = (3× {1}) ∈ (DA)3.

Thus, anyway, d ∈ ((DA)3 ∩D) = DD, in which case D is truth-non-empty, and so
Lemma 6.54(iii)⇒(i) completes the argument. �

Finally, if C has no theorem, then the purely inferential (and so consistent) IC+0

is an extension of C, for C ⊆ IC, in which case C = C+0 ⊆ IC+0. And what is more,
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IC+0, being inferentially inconsistent, for IC, being an inconsistent (∞\1)-sublogic
of IC+0, is inferentially inconsistent, is not ∼-subclassical. Thus, (v)⇒(i) holds.
Conversely, assume (i,iii) hold. Consider any consistent extension C ′ of C. In case
C ′ = C, we have C ′ = C ⊆ CPC. Now, assume C ′ 6= C. If C ′ was ∼-paraconsistent,
then so would be its sublogic C, in which case A, being ∼-paraconsistent, would
be false-singular, and so, by (iii) and Theorem 6.42(iii)⇒(i), C ′ would be equal
to C. Therefore, C ′ is not ∼-paraconsistent. Then, x0 6∈ T , C ′(∅). Moreover,
by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and
so is its consistent finitely-generated submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of

(2.23). Then, by Lemma 2.12, there are some finite set I, some C ∈ S∗(A)I and
some subdirect product D ∈ H−1(H(B)) of it, in which case, by (2.23), D is a
consistent model of C ′, for B is so, and so D is non-∼-paraconsistent, for C ′ is so,
while A is not a model of the logic of D, for C ( C ′. And what is more, by (i) and
Corollary 3.21(iv)⇒(i), D is truth-non-empty. Hence, by (2.23), (iii), Lemma 6.48
and Theorem 6.50, a Σ-matrix defining CPC is embeddable into D, in which case
C ′ ⊆ CPC, and so (v) holds, as required. �

Corollary 6.55(i)⇔(ii) [resp., Theorem 6.59(i)⇔(iv)] provides an effective alge-
braic criterion of a [three-valued] ∼-[sub]classical Σ-logic’s having a theorem. In
this connection, in view of Corollary 6.57, the instance of the disjunctive K3/LP
without/with theorems and the same underlying algebra of their characteristic ma-
trices, dual to one another, shows that the “[]”-optional reservations in the formula-
tion of Theorem 6.59 are indeed necessary/irrelevant in the “truth-/false-singular”
case. This equally concerns the following immediate consequence of Remark 6.46,
Corollary 6.57 and Theorem 6.59(i)⇔(iii):

Corollary 6.61. Suppose C is both ∼-subclassical and weakly either conjunctive
or disjunctive, while A is [not] false-singular. Then, C has a theorem [iff { 1

2} does
not form a subalgebra of A].

The following simple example shows that the stipulation of the weak conjunctivi-
ty/disjunctivity cannot be omitted in Corollary 6.61 and “Remark 6.46”/”Corollary
6.57”, respectively:

Example 6.62. Let Σ , {∼} and A false-|truth-singular with ∼A 1
2 = (1|0), in

which case [A\]2 does [not] form a subalgebra of A, and so, by Theorem 6.50, C
is ∼-subclassical, while 〈∼A 1

2 ,∼
A(1|0)〉 = 〈1|0, 0|1〉 6∈ θA 3 〈 1

2 , 1|0〉, in which case
θA 6∈ Con(A), whereas M2 forms as subalgebra of A2, in which case, by Lemma
6.56(ii)⇒(iii), A has no binary semi-conjunction, and so, by Theorem 6.59(i)⇒(iii),
C has no theorem. In particular, by Corollary 6.61, C is weakly neither conjunctive
nor disjunctive. And what is more, if h , h+/2 would be a homomorphism from
(A�2)2 to A, then we would have (1|0) = ∼A 1

2 = ∼Ah(〈1, 0〉) = h(∼A2〈1, 0〉) =
h(〈0, 1〉) = 1

2 . Therefore, h 6∈ hom((A�2)2,A). Hence, by Theorem 6.35(i)⇒(v), C
is not ∼-classical. �

Theorem 6.63. [Suppose A is both ∼-paraconsistent and weakly conjunctive.]
Then, CNP is consistent if[f ] C is ∼-subclassical.

Proof. The “if” part is by Remark 2.9(i)d) and the consistency of any ∼-classical
Σ-matrix/-logic. [Conversely, assume CNP is consistent. Then, by Remark 6.46
and Claim 6.60, C has a theorem, in which case, by its structurality, applying
the Σ-substitution extending [xi/x0]i∈ω to any theorem of C, we get some ϕ ∈
(C(∅) ∩ Fm1

Σ) ⊆ T , CNP(∅) 63 x0. Moreover, by the structurality of CNP,
〈Fmω

Σ, T 〉 is a model of C [NP], and so is its consistent truth-non-empty finitely-
generated submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.23). Hence, by Lemma
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2.12, there are some finite set I, some C ∈ S∗(A)I and some subdirect product
D ∈ H−1(H(B)) of it, in which case, this is both consistent, truth-non-empty
and non-∼-paraconsistent, for B is so, and so A, being ∼-paraconsistent, is not a
model of the logic of it. In this way, Lemma 6.48 and Theorem 6.50 complete the
argument.] �

The logic IC+0 invoked in the proof of Theorem 6.59(v)⇒(i) (held in general) is,
though being consistent, is inferentially inconsistent. A proper “inferential” version
of this result is then as follows:

Theorem 6.64. Suppose A is [not] truth-singular, while C is ∼-subclassical. Then,
any inferentially consistent extension of C is a sublogic of CPC [iff A has GC and
C has no proper ∼-paraconsistent extension iff A satisfies GC and L3 does not
form a subalgebra of A2].

Proof. [First, the second “iff” part is by Theorem 6.42(i)⇔(iv). Likewise, by Theo-
rem 6.42(i)⇒(ii), C has a ∼-paraconsistent (and so inferentially consistent) non-∼-
subclassical extension, whenever it has a proper∼-paraconsistent one. Now, assume
A does not satisfy GC. Let B be the submatrix of A2 generated by ∅ 6= {〈1, 1

2 〉} ⊆
DB, for A is false-singular. Then, by (2.23) and the following claim, the logic of B is
an inferentially consistent (for B is both consistent and truth-non-empty) extension
of C, not being a sublogic of CPC:

Claim 6.65. Let B be the submatrix of A2 generated by {〈1, 1
2 〉} and C ′ the logic of

B. Suppose A is false-singular and does not satisfy GC. Then, (B\DB) = M2 6= ∅,
in which case ∼x0 ` x0 is true in B, and so, by (3.11) with n = 1 and m = 0, ∼ is
not a subclassical negation for C ′ (in particular, C ′ 6= C is not ∼-subclassical; cf.
Corollary 6.29).

Proof. Then, (B ∩ {〈0, 0〉, 〈0, 1
2 〉, 〈

1
2 , 0〉}) = ∅, in which case ∼A 1

2 = 1, and so
(B \DB) = M2 6= ∅. On the other hand, for every a ∈M2, ∼Ba ∈M2, so the rule
∼x0 ` x0 is true in B, as required. �

Thus, the first “only if” part holds. Conversely, assume A has GC, while C
has no proper ∼-paraconsistent extension.] Consider any inferentially consistent
extension C ′ of C. In case C ′ = C, we have C ′ = C ⊆ CPC. Now, assume
C ′ 6= C. If C ′ was ∼-paraconsistent, then so would be its sublogic C, in which
case A, being ∼-paraconsistent, would be false-singular, and so, by the []-optional
assumption, C ′ would be equal to C. Therefore, C ′ is not ∼-paraconsistent. Then,
x1 6∈ T , C ′(x0) 3 x0. Moreover, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of
C ′ (in particular, of C), and so is its consistent truth-non-empty finitely-generated
submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.23). Then, by Lemma 2.12, there are

some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈ H−1(H(B))
of it, in which case, by (2.23), D is a consistent truth-non-empty model of C ′, for
B is so, and so D is non-∼-paraconsistent, for C ′ is so, while A is not a model of
the logic of D, for C ( C ′. Hence, by (2.23), (iii), Lemma 6.48 and Theorem 6.50,
a Σ-matrix defining CPC is embeddable into D, in which case C ′ ⊆ CPC. �

Theorem 6.66. Suppose A is either non-∼-paraconsistent (in particular, truth-
singular) or weakly conjunctive (viz., C is so). Then, C has a proper inferentially
consistent extension iff it is ∼-subclassical but not ∼-classical, in which case CPC

is an extension of any inferentially consistent extension of C.

Proof. The “if” part is by the inferential consistency of ∼-classical Σ-logics. Con-
versely, consider any proper inferentially consistent extension C ′ of C, in which
case, by Corollary 3.33, C is not ∼-classical. Moreover, if C ′ was ∼-paraconsistent,
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then so would be its sublogic C, in which case this would be weakly conjunctive,
and so, by Corollaries 6.29 and 6.47, C ′ would be equal to C. Therefore, C ′ is not
∼-paraconsistent. Then, x1 6∈ T , C ′(x0) 3 x0. Moreover, by the structurality of
C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and so is its consistent truth-
non-empty finitely-generated submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.23).

Then, by Lemma 2.12, there are some finite set I, some C ∈ S∗(A)I and some
subdirect product D ∈ H−1(H(B)) of it, in which case, by (2.23), D is a consistent
truth-non-empty model of C ′, for B is so, and so D is non-∼-paraconsistent, for C ′

is so, while A is not a model of the logic of D, for C ( C ′. Hence, by Lemma 6.48,
2 forms a subalgebra of A, while A�2 is embeddable into D, whereas, by Theorem
6.50, C is ∼-subclassical, in which case CPC is defined by A�2, and so, by (2.23),
C ′ ⊆ CPC, as required. �

The initial stipulation in the formulation of Theorem 6.66 cannot be omitted, as
it ensues from:

Example 6.67. Let A be false-singular, Σ , {∼,>} with nullary > and >A ,
∼A 1

2 , 1
2 , in which case 2 63 1

2 = >A does not form a subalgebra of A, while
〈∼A1,∼A 1

2 〉 = 〈0, 1
2 〉 6∈ θA 3 〈1, 1

2 〉, in which case θA 6∈ Con(A), whereas L4 63
〈 1
2 ,

1
2 〉 = >A2

does not form a subalgebra of A2, and so, by Theorem[s] 6.35(i)⇒(v)
[and 6.50], C is not ∼-[sub]classical. On the other hand, L3 3 〈 1

2 ,
1
2 〉 = >A2

,
being closed under ∼A2

, forms a subalgebra of A2, in which case, by Theorem
6.42(i)⇒(iv), C has a proper ∼-paraconsistent (and so inferentially consistent)
extension, and so, by Theorem 6.66, C is not weakly conjunctive. �

Theorem 6.68. Suppose A is false-singular [while, providing C is ∼-subclassical,
it is either ∼-paraconsistent or disjunctive]. Then, C is structurally complete if[f ]
the following hold:

(i) C has a theorem;
(ii) C has no proper ∼-paraconsistent extension;
(iii) A satisfies GC;
(iv) A satisfies DGC;
(v) L4 does not form a subalgebra of A2;
(vi) C is ∼-subclassical iff it is ∼-classical;

in which case, providing C is not ∼-classical, any three-valued expansion of it is
structurally complete. In particular, providing C is ∼-paraconsistent, it is struc-
turally complete iff A satisfies both GC and DGC, while C is both maximally ∼-
paraconsistent and neither ∼-subclassical nor purely-inferential, whereas L4 does
not form a subalgebra of A2.

Proof. First, assume (i–vi) hold. Then, in case C is ∼-classical, by (i) and Corollary
3.33, it is structurally complete. Now, assume C is not ∼-classical, and so is not ∼-
subclassical, in view of (vi). Let C ′ be any extension of C such that T , C ′(∅) =
C(∅) 63 x0, by the consistency of A, and so of C. Then, by (2.23), (i) and the
structurality of C ′, B , 〈Fm1

Σ, T ∩ Fm1
Σ〉 is a finitely-generated consistent truth-

non-empty model of C ′ (in particular, of C), in which case, by Lemma 2.12, there
are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈ H−1(H(B))
of it, in which case, by (2.23), D is a consistent truth-non-empty model of C ′, for
B is so. Consider the following complementary cases:

• D is ∼-paraconsistent.
Then, by (2.23), (ii), Lemma 6.41 and Theorem 6.42(i)⇒(iii), A is a model
of C ′, for D is so.
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• D is not ∼-paraconsistent.
Then, as C is not ∼-subclassical, by (iii-v), Lemma 6.48 and Theorem 6.50,
A is a model of C ′, for D is so.

Thus, anyway, A ∈ Mod(C ′), in which case C ′, being an extension of C, is equal
to C, and so C is structurally complete. [Conversely, assume either of (i-vi) does
not hold. Consider respective cases:

(i) does not hold.
Then, by Remark 2.5, C, being inferentially consistent, for A is both consis-
tent and truth-non-empty, is not structurally complete.

(ii) does not hold.
Then, by Theorem 6.45, C 1

2
is a proper extension of C, while ∆A ∈ homS(A 1

2
,

A), in which case, by (2.24), C 1
2
(∅) = C(∅), and so C is not structurally

complete.
(iii) does not hold.

Let B′ be the submatrix of A2 generated by {〈1, 1
2 〉}. Then, by (2.23) and

Claim 6.65, the logic C ′ of B′ is a proper extension of C, while (π1�B′) ∈
homS(B′,A), for π1[M2] = 2, in which case, by (2.24), C ′(∅) = C(∅), and so
C is not structurally complete.

(iv) does not hold.
Let B′ be the submatrix of A2 generated by M2 ∪ {〈1, 1

2 〉} and C ′ the logic
of B′. Then, as 〈0, 0〉 6∈ B′, while ∼A1 = 0, ∼A 1

2 6= 0, in which case A
is ∼-paraconsistent, and so is C. Moreover, as 〈 1

2 ,
1
2 〉 6∈ B′, B′ is non-∼-

paraconsistent, and so is C ′, in which case, by (2.23), C ′ is a proper extension
of C. Moreover, (π1�B′) ∈ homS(B′,A), for π1[M2] = 2, in which case, by
(2.24), C ′(∅) = C(∅), and so C is not structurally complete.

(v) does not hold.
Let B′ , (A2�L4) and C ′ the logic of B′. Then, as 〈0, 0〉 6∈ L4, while ∼A1 = 0,
∼A 1

2 6= 0, in which case A is ∼-paraconsistent, and so is C. Moreover, as
〈 1
2 ,

1
2 〉 6∈ L4, B′ is non-∼-paraconsistent, and so is C ′, in which case, by

(2.23), C ′ is a proper extension of C. Moreover, (π1�L4) ∈ homS(B′,A),
for π1[L4] = A, in which case, by (2.24), C ′(∅) = C(∅), and so C is not
structurally complete.

(vi) does not hold,
in which case C is ∼-subclassical but not ∼-classical. Let B′ , APC ∈
Mod(C). Then, D , (A× B′) is a model of C, in which case the logic C ′ of
D is an extension of C, and so, as (π0�D) ∈ homS(D,A), by (2.24), we have
C ′(∅) = C(∅). For proving the fact that C ′ 6= C, consider the following
complementary cases:
• A is ∼-paraconsistent,

and so is C. Then, by Remark 2.9(i)d),(iii), C ′ is not ∼-paraconsistent,
for B′, being ∼-negative, is so, and so C ′ 6= C.

• A is not ∼-paraconsistent,
in which case it is ∼-negative. Then, C, being both ∼-subclassical and
non-∼-paraconsistent, is Y-disjunctive, and so is A, in view of Lemma
6.30, in which case, by Remark 2.9(i)c), it is implicative, while D is
weakly Y-disjunctive, whereas, by Corollary 6.51, 2 forms a subalge-
bra of A, in which case B′ = (A�2). Moreover, by Corollary 6.36, A
is hereditarily simple, and so is D, by Lemmas 3.10, 3.13, Theorem
3.11(i)⇔(iii) and Remark 5.13(iv). We prove that C ′ 6= C by con-
tradiction. For suppose C ′ = C, in which case A is a finite model
of C ′, and so, by Corollary 3.20 and Remark 2.8(ii), there is some
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h ∈ homS
S(A,D). Then, g , ((π1�D) ◦ h) ∈ homS(A,B′), in which

case, as DA = {1, 1
2}, we have g(1) = 1 = g( 1

2 ), and so g is not injective,
while 0 = ∼B1 = ∼Bg(1) = g(∼A1) = g(0). Hence, g is strict. This
contradicts to Remark 2.8(ii). Thus, C ′ 6= C.

Thus, anyway, C ′ 6= C, in which case C is not structurally complete.

Thus, in any case, C is not structurally complete.]
Finally, as expansions of A/C inherit (iii-v)/“both (i) and absence of ∼-classical

models”, respectively, Corollary 6.40 and Theorem 6.42 complete the proof. �

Remark 2.5 and Theorem 6.68 inevitably raise the problem of finding the struc-
tural completion of C, whenever it is both ∼-paraconsistent and ∼-subclassical but
not purely-inferential.

Lemma 6.69. Let i ∈ 2, K′3,i the submatrix of A2 generated by K3,i , (∆2 ∪
{〈 1

2 , i〉}). Suppose 2 forms a subalgebra of A, in which case C is ∼-subclassical,
CPC being defined by A�2; cf. Theorem 6.50. Then, the following are equivalent:

(i) 〈0, 1〉 ∈ K ′
3,i;

(ii) 〈1, 0〉 ∈ K ′
3,i;

(iii) M2 ⊆ K ′
3,i;

(iv) (M2 ∩K ′
3,i) 6= ∅;

(v) K ′
3,i * K4 , (

⋃
j∈2K3,j);

(vi) neither K3,i nor K4 forms a subalgebra of A2.

Moreover, providing A is ([both Z-conjunctive and] Y-disjunctive as well as) false-
singular {more specifically, ∼-paraconsistent}, a)⇔b)⇒ (⇔)c)⇒ {⇔}d)⇐ ([⇔
])e)〈⇒b)〉, where:

a) CPC is a proper axiomatic extension of C;
b) CPC(∅) 6= C(∅);
c) 〈0, 1〉 ∈

⋂
j∈2K

′
3,j 〈while C is not ∼-classical〉;

d) 〈0, 1〉 ∈ K ′
3,0 〈while C is not ∼-classical〉;

e) A is implicative 〈while C is not ∼-classical〉.

In particular, the non-〈〉-optional versions of a)–e) are equivalent, whenever C is
both conjunctive and disjunctive as well as both ∼-paraconsistent and ∼-subclassi-
cal.

Proof. First, (i)⇔(ii) is by the fact that ∼Aj = (1− j), for all j ∈ 2, while (iii/iv)
is the conjunction/disjunction of (i) and (ii). Next, (iii)⇒(v) is by the fact that
M2 * K4. Further, (v)⇒(vi) is by the fact that K3,i ⊆ K4. The converse is by the
fact that K4 = (K3,i ∪ {〈 1

2 , 1− i〉}), while K3,i ⊆ K ′
3,i. Furthermore, (v)⇒(iv) is

by the fact that K4 = ((A× 2) \M2), while K ′
3,i ⊆ (A× 2), for π1[K3,i] = 2 forms

a subalgebra of A.
Now, suppose A is [both Z-conjunctive and] Y-disjunctive (in which case A�2 is

so; cf. Remark 2.9(ii)) as well as false-singular {more specifically, ∼-paraconsistent}.
First, b) is a particular case of a). Conversely, assume b) holds. Then, CPC(∅)

* C(∅), for C ⊆ CPC, in which case there is some ϕ ∈ (CPC(∅) \ C(∅)) 6= ∅,
and so ϕ is true in A�2 but is not true in A. On the other hand, A�2 is the only
proper consistent submatrix of A. Hence, by Corollary 2.14, CPC is the axiomatic
extension of C relatively axiomatized by ϕ. Thus, a) holds.

Next, d) is a particular case of c). {Conversely, assume 〈0, 1〉 ∈ K ′
3,0. Consider

the following complementary cases:
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• ∼A 1
2 = 1

2 .
Then, 〈 1

2 , 0〉 = ∼A2〈 1
2 , 1〉 ∈ K

′
3,1, for K ′

3,1 ⊇ K3,1 3 〈 1
2 , 1〉 forms a subalge-

bra of A2, in which case K3,0 = (∆2 ∪ {〈 1
2 , 0〉}) ⊆ K ′

3,1, for ∆2 ⊆ K3,1 ⊆
K ′

3,1, and so, K ′
3,1, forming a subalgebra of A2, includes K ′

3,0 3 〈0, 1〉.
• ∼A 1

2 6=
1
2 , in which case ∼A 1

2 = 1,
for A is ∼-paraconsistent, and so 〈0, 1〉 = ∼A2∼A2〈 1

2 , 1〉 ∈ K
′
3,1, for K ′

3,1 ⊇
K3,1 3 〈 1

2 , 1〉 forms a subalgebra of A2.
Thus, in any case, 〈0, 1〉 ∈

⋂
j∈2K

′
3,j , and so d)⇒c) holds.}

(Further, assume 〈0, 1〉 ∈
⋂

j∈2K
′
3,j . Then, there is some φ̄ ∈ (Fm3

Σ)2 such that,
for each j ∈ 2, φA

j (0, 1
2 , 1) = 0 and φA

j (0, j, 1) = 1. Moreover, by Remark 2.9(i)d),
ϕ , (2.18) ∈ (CPC(∅) ∩ Fm1

Σ). Set ψ , (Yφ̄[x0/∼ϕ, x2/ϕ]) ∈ Fm2
Σ. Then, since

both A and A�2 are Y-disjunctive as well as false-singular, while the latter is also
both ∼-negative and truth-singular, we have, for all k ∈ 2, ψA(k, 1

2 ) = 0 as well as
ψA(k, l) = 1, for all l ∈ 2, in which case ψ is not true in A under [x0/k, x1/

1
2 ] but

is true in A�2, and so ψ ∈ (CPC(∅) \ C(∅)). Thus, c)⇒b) holds.) Conversely, if
〈0, 1〉 6∈ K ′

3,j , for some j ∈ 2, then (π1�K ′
3,j) ∈ homS

S(K′3,j ,A�2), because π1[K3,j ] =
2 forms a subalgebra of A, in which case, by (2.23), CPC is defined by K′3,j , and so,
by (2.24), CPC(∅) = C(∅), for (π0�K ′

3,j) ∈ homS
S(K′3,j ,A), because π0[K3,j ] = A.

〈Likewise, if C is ∼-classical, then, by Lemma 3.32, CPC = C, for C ⊆ CPC.〉 Thus,
b)⇒c) holds.
〈Furthermore, if e) holds, then, as C ⊆ CPC, b) is by Remark 2.9(ii) and Lemma

3.28.〉
Finally, assume A is A-implicative. Then, as 0 6∈ DA, we have both ( 1

2 AA

0) = 0, for A is false-singular, and (0 AA 0) = 1, for 2 forms a subalgebra of
A. Therefore, since K ′

3,0 ⊇ K3,0 3 〈0/ 1
2 , 0〉 forms a subalgebra of A2, we get

〈0, 1〉 = (〈 1
2 , 0〉 AA2 〈0, 0〉) ∈ K ′

3,0. Thus, e)⇒d) holds. ([Conversely, assume
〈0, 1〉 ∈ K ′

3,0. Then, there is some φ ∈ Fm3
Σ such that φA( 1

2 , 0, 1) = 0, while
φA(0, 0, 1) = 1, in which case ψ , (φ[x2/∼x1]) ∈ Fm2

Σ, while ψA( 1
2 , 0) = 0, whereas

ψA(0, 0) = 1, and so ϕ , (ψ Z ∼x0) ∈ Fm2
Σ, while ϕA(a, 0) = (1 − χA(a)), for all

a ∈ A, for A is both Z-conjunctive and false-singular. In this way, by the following
claim, A, being Y-disjunctive, is implicative:

Claim 6.70. Let N ′
2 be the submatrix of A3 generated by N2 , {〈0, 1, 1

2 〉, 〈0, 0, 0〉}.
Suppose A is false-singular, while 2 forms a subalgebra of A. Then, A is implicative
iff it is disjunctive, while 〈1, 0, 0〉 ∈ N ′

2.

Proof. First, if A is A-implicative, then it is ]A-disjunctive, while N ′
2 3 (〈0, 1, 1

2 〉
AA3 〈0, 0, 0〉) = 〈1, 0, 0〉, for N ′

2 ⊇ N2 forms a subalgebra of A3, while 2 forms a
subalgebra of A, whereas A is false-singular. Conversely, assume A is Y-disjunctive,
while, 〈1, 0, 0〉 ∈ N ′

2, in which case there is some φ ∈ Fm2
Σ such that φA(a, 0) =

(1−χA(a)), for all a ∈ A, and so ψ , (φYx1) ∈ Fm2
Σ, while A, being false-singular,

is ψ-implicative. �

Thus, d)⇒e) holds.])
In this way, Remark 2.9(i)d), Lemmas 6.30, 6.31 and Corollary 6.51 complete

the argument. �

By Corollaries 3.33, 6.51, 6.61, Lemmas 3.32, 6.69 and Remark 2.9(i)d), we
immediately get:

Corollary 6.71. Suppose C is [both conjunctive and] disjunctive as well as ∼-
subclassical, while A is false-singular (more specifically, C is ∼-paraconsistent).
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Then, CPC is the structural completion of C iff [either C is ∼-classical or] either
K4 or K3,i, for some i ∈ (2(∩1)[∩1]), forms a subalgebra of A2 [if and] only
if C is either ∼-classical or non-implicative. In particular, providing C is ∼-
paraconsistent, CPC is the structural completion of it iff either K4 or K3,0 forms a
subalgebra of A2 [if and] only if it is not implicative.

The opposite case is analyzed in Subsubsection 6.2.2 below within the framework
of ∼-paraconsistent three-valued Σ-logics with subclassical negation ∼ as well as
lattice conjunction and disjunction. On the other hand, the []-optional stipulation
of conjunctivity cannot be omitted in the formulations of Lemma 6.69 and Corollary
6.71, even if C is ∼-paraconsistent, in view of:

Example 6.72. Let Σ , {�,∨,∼} with binary ∼ and A false-singular with ∼A 1
2 ,

1
2 and

(a(∨|�)Ab) ,

{
1
2 |0 if 1

2 ∈ {a, b},
max(a, b)|1 otherwise,

for all a, b ∈ A. Then, 2 forms a subalgebra of A, while A is both ∼-paraconsistent
and ∨-disjunctive, whereas 〈0, 1〉 = (〈 1

2 , 0〉 �
A2 〈0, 0〉) ∈ K ′

3,0, for K ′
3,0 ⊇ K3,0 ⊇

{〈 1
2 , 0〉, 〈0, 0〉} forms a subalgebra of A2. On the other hand, ((22×{ 1

2})∪(∆2×2)) ⊇
N2 forms a subalgebra of A3 but does not contain 〈1, 0, 0〉, for 1 6= 0 6= 1

2 , in which
case, by Claim 6.70, A is not implicative, and so is not conjunctive, in view of
Lemma 6.69d)⇒e). �

Remark 6.73. Let ϕ be a binary semi-conjunction for A. Then, ϕA2
(〈0, 1〉, 〈1, 0〉) =

〈0, 0〉 ∈ ∆A, so A satisfies DGC. �

Remark 6.74. Suppose A is both false-singular and weakly Z-conjunctive (viz., C
is so). Then, as 0 is the only non-distinguished value of A, we have (0 ZA a) =
0 = (a ZA 0), for all a ∈ A, in which case we get (〈0, a〉 ZA2 〈a, 0〉) = 〈0, 0〉 6∈ L4 ⊇
{〈0, 1

2 〉, 〈
1
2 , 0〉}, and so, in particular, L4 does not form a subalgebra of A2, while, in

case ∼A 1
2 = 1, we have 〈0, 0〉 = (∼A2〈1, 1

2 〉 ZA2 ∼A2∼A2〈1, 1
2 〉), whereas, otherwise,

we have ∼A2〈1, 1
2 〉 ∈ {〈0, 0〉, 〈0,

1
2 〉}. Thus, in addition, A satisfies GC. �

Combining Theorems 6.42(iii)⇒(i), 6.59(iii)⇒(i), 6.68 with Remarks 6.46, 6.73,
6.74 and Corollary 3.33, we immediately get:

Corollary 6.75. Suppose A is false-singular (in particular, ∼-paraconsistent) and
weakly conjunctive. Then, C is structurally complete iff it is either ∼-classical or
non-∼-subclassical.

Further, A is said to be classically-hereditary, provided 2 forms a subalgebra of A.
Likewise, A is said to be classically-valued, provided, for each ς ∈ Σ, (img ςA) ⊆ 2,
in which case it is classically-hereditary.

Remark 6.76. Suppose A is both classically-valued and A-implicative. Then, as
1 ∈ DA 63 0, we have (a AA a) = 1, for all a ∈ A, in which case, as ∼A1 = 0, A is
¬-negative, where (¬x0) , (x0 A ∼(x0 ⊃ x0)), and so ]∼A-conjunctive, in view of
Remark 2.9(i)a). �

Combining Remarks 2.9(i)d) and 6.76 with Corollaries 6.51 and 6.75, we also
have:

Corollary 6.77. Let c 6∈ Σ be a nullary connective, Σ′ , (Σ ∪ {c}), A′ the Σ′-
expansion of A with cA

′
, 1

2 and C ′ the logic of A′. Suppose A is ∼-paraconsistent
as well as both classically-hereditary and weakly conjunctive (in particular, both
implicative and classically-valued). Then, C ′ is structurally complete, while C is
not so, whereas both C and C ′ are maximally ∼-paraconsistent.
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This covers, in particular, both LP , LA, HZ (remark that this is ∨∼-conjunctive)
— as non-classically-valued conjunctive classically-hereditary instances — and P 1

— as a term-wise definitionally minimal classically-valued implicative instance —
as well as their bounded expansions by classical constants ⊥ and > interpreted as 0
and 1, respectively. (In this connection, recall that the fact that LP is “maximally
∼-paraconsistent”/“not structurally complete” has been due to [17]/[20], respec-
tively, proved ad hoc therein.) Thus, in view of Corollaries 6.29, 6.77 and Theorem
6.68, any ∼-paraconsistent three-valued ∼-paraconsistent Σ-logic with subclassical
negation ∼ is maximally so, whenever it is structurally complete, while the con-
verse does not, generally speaking, hold, whereas the structural completeness of
such a logic subsumes absence of its ∼-classical extensions. On the other hand, the
situation with paracompleteness is quite different. First, we have:

Lemma 6.78. Suppose C is maximally (Y,∼)-paracomplete. Then, it is struc-
turally complete.

Proof. In that case, any extension C ′ of C such that C ′(∅) = C(∅) is (Y,∼)-
paracomplete as well, and so equal to C, as required. �

Lemma 6.79. Let K′3 be the submatrix of A2 generated by K3 , K3,1 and C ′ the
logic of K′3. Suppose C is both Y-disjunctive and (Y,∼)-paracomplete (viz. A is
so; cf. Lemma 6.30) as well as ∼-subclassical. Then, C ′ is an extension of C such
that C ′(∅) = C(∅), in which case it is (Y,∼)-paracomplete, and so inferentially
(Y,∼)-paracomplete (in particular, C ′ is a proper sublogic of CPC). Moreover,
(i)⇒ [⇔](ii)⇔(iii)⇔(iv)⇔(v), where:

(i) A is implicative;
(ii) 〈1, 0〉 ∈ K ′

3 [and C has a theorem];
(iii) K ′

3 * K4 [and C has a theorem];
(iv) [both] neither K3 nor K4 forms a subalgebra of A2 [and C has a theorem];
(v) C 6= C ′ [has a theorem].

Proof. In that case, A is truth-singular, while, by Remark 2.9(i)d), C is not ∼-
classical, and so, by Corollary 6.51, 2 forms a subalgebra of A, while, by (2.23), C ′

is an extension of C. And what is more, as π0[K3] = A, (π0�K ′
3) ∈ homS(K′3,A), in

which case, by (2.24), C ′(∅) = C(∅), and so C ′ (viz., K′3) is (Y,∼)-paracomplete.
Hence, as K′3 is truth-non-empty, for 〈1, 1〉 ∈ K3, it (viz., C ′) is inferentially
(Y,∼)-paracomplete, in which case C ′ is inferentially consistent, and so, by Re-
mark 2.9(i)d) and Theorem 6.64, is a proper sublogic of CPC.

Next, assume A is A-implicative, in which case, since DA = {1}, ( 1
2 AA 0) = 1

and, as 2 forms a subalgebra of A, (1 AA 0) = 0, and so 〈1, 0〉 = (〈 1
2 , 1〉 AA2 〈0, 0〉) ∈

K ′
3, for {〈 1

2 , 1〉, 〈0, 0〉} ⊆ K3 ⊆ K ′
3. Thus, (i)⇒(ii) holds [in view of (2.12)].

[Conversely, assume (ii) holds, in which case, by the following claim, there is
some φ ∈ Fm1

Σ such that φA( 1
2 ) = 1, while φA(1) = 0, there is some φ ∈ Fm1

Σ such
that φA( 1

2 ) = 1, while φA(1) = 0:

Claim 6.80. Suppose A is truth-singular, while C has a theorem, whereas 〈1, 0〉 ∈
K ′

3. Then, there is some φ ∈ Fm1
Σ such that φA( 1

2 ) = 1, while φA(1) = 0.

Proof. In that case, there is some ϕ ∈ Fm3
Σ such that ϕA( 1

2 , 1, 0) = 1, while
ϕA(1, 1, 0) = 0, and so we have ψ , ϕ[x2/∼x1] ∈ Fm2

Σ such that ψA( 1
2 , 1) = 1,

while ψA(1, 1) = 0. Take any ζ ∈ (Fm1
Σ ∩C(∅)) 6= ∅, in view of the structurality

of C. Then, φ , ψ[x1/ζ] ∈ Fm1
Σ, while φA( 1

2 ) = 1, whereas φA(1) = 0, for A is
truth-singular. �

Then, ξ , (φ Y ∼x0) ∈ Fm1
Σ, in which case A, being truth-singular and Y-dis-

junctive, is ξ-negative, and so (i) is by Remark 2.9(i)c).]
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Further, (ii)⇔(iii)⇔(iv) is by Lemma 6.69(ii)⇔(v)⇔(vi) with i = 1.
Finally, assume (ii) holds. We prove that C ′ 6= C, by contradiction. For suppose

C ′ = C, in which case A is a finite consistent truth-non-empty Y-disjunctive simple
(in view of Theorem 6.35(iv)⇒(i)) model of C ′ ⊇ C, being, in its turn, weakly
Y-disjunctive, and so is K′3. Then, by Corollary 3.20 and Remark 2.8, there is
some submatrix D of K′3, being a strict surjective homomorphic counter-image of
A, in which case, by (2.23) and Remark 2.9(ii), it is both truth-non-empty, (Y,∼)-
paracomplete and Y-disjunctive, for A is so, and so DD = {〈1, 1〉}, while there is
some a ∈ D such that D 3 b , (a YA2 ∼A2

a) 6∈ DD = {〈1, 1〉}. On the other hand,
since π1[K3] = 2 forms a subalgebra of A, in which case π1[D] ⊆ π1[K ′

3] ⊆ 2, by
the truth-singularity and Y-disjunctivity of A, we have π1(b) = 1, in which case
π0(b) 6= 1, and so we have the following two exhaustive cases:

• π0(b) = 1
2 .

Then, as 〈0, 0〉 = ∼A2〈1, 1〉 ∈ D, we have K3 ⊆ D, in which case, by (ii),
we get 〈1, 0〉 ∈ D, and so 〈0, 1〉 = ∼A2〈1, 0〉 ∈ D.

• π0(b) = 0.
Then, we also have 〈1, 0〉 = ∼A2〈0, 1〉 ∈ D.

Thus, anyway, M2 ⊆ (D \ DD), while, by the Y-disjunctivity of A, (〈0, 1〉 YA2

〈1, 0〉) = 〈1, 1〉 ∈ DD. This contradicts to the Y-disjunctivity of D. Thus, (v)
holds. Conversely, assume 〈1, 0〉 6∈ K ′

3, in which case (π0�B) ∈ homS
S(K′3,A), and

so C ′ = C, by (2.23), as required. �

Lemma 6.81. Suppose C is weakly Y-disjunctive (viz. A is so), while, providing
C is ∼-subclassical, either K3 or K4 forms a subalgebra of A2. Then, C has no
proper inferentially (Y,∼)-paracomplete extension.

Proof. Let C ′ be an inferentially (Y,∼)-paracomplete (and so inferentially con-
sistent) extension of C, in which case (x1 Y ∼x1) 6∈ T , C ′(x0) 3 x0, while,
by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and
so is its (Y,∼)-paracomplete truth-non-empty finitely-generated submatrix D ,
〈Fm2

Σ,Fm2
Σ ∩T 〉, in view of (2.23), whereas C is [inferentially] (Y,∼)-paracomplete

(viz., A is so), in which case, since A is weakly Y-disjunctive and 1 ∈ DA, and so
((1/0) YA∼A(1/0)) = ((1/0) YA (0/1)) ∈ DA, we have ( 1

2 YA∼A 1
2 ) 6∈ DA, and so A

is truth-singular.
Then, in case C is not ∼-subclassical, by Theorem 6.66, we have C ′ = C. Now,

assume C is ∼-subclassical, in which case either K3 or K4 forms a subalgebra of
A2, and so (1

2 YA ∼A 1
2 ) = 1

2 , for, otherwise, we would have ( 1
2 YA ∼A 1

2 ) = 0, in
which case we would get (〈 1

2 , 1〉 YA2 ∼A2〈 1
2 , 1〉) = 〈0, 1〉 6∈ K4 ⊇ K3, and so neither

K3 3 〈 1
2 , 1〉 nor K4 would form a subalgebra of A2. Further, by Lemma 2.12, there

are some finite set I, some C ∈ S(A)I and some subdirect product E of it, being
a strict homomorphic counter-image of a strict homomorphic image of D, and so
a (Y,∼)-paracomplete (in particular, consistent, in which case I 6= ∅) truth-non-
empty model of C ′, in view of (2.23), for D is so. Hence, C ′ ⊆ C, by (2.23), Lemma
6.79(v)⇒(iv) and the following claim:

Claim 6.82. Let I be a finite set, C ∈ S(A)I and E a truth-non-empty (Y,∼)-
paracomplete subdirect product of it. Suppose both C is Y-disjunctive (viz., A is so)
and either ( 1

2 YA ∼A 1
2 ) = 1

2 or (I × { 1
2}) ∈ E. Then, A is embeddable into E, if

(I × { 1
2}) ∈ D, and K′3 is embeddable into E, otherwise.
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Proof. Then, by (2.23), E ∈ Mod(C), in which case C is (Y,∼)-paracomplete, for
E is so, and so is A. Therefore, A, being Y-disjunctive with 1 ∈ DA, is truth-
singular, and so not ∼-paraconsistent, in which case, by Claim 6.39, E contains
both a , (I×{1}) and b , (I×{0}). Consider the following complementary cases:

• (I × { 1
2}) ∈ E,

in which case, as I 6= ∅, for E , being (Y,∼)-paracomplete, is consistent,
{〈e, I × {e}〉 | e ∈ A} is an embedding of A into E .

• (I × { 1
2}) 6∈ E,

in which case ( 1
2 YA ∼A 1

2 ) = 1
2 , and so ((1/0/ 1

2 ) YA ∼A(1/0/ 1
2 )) = (1/1/ 1

2 ),
for A is Y-disjunctive and DA = {1}. Hence, as E is (Y,∼)-paracomplete,
there is some c ∈ E such that d , (c YE ∼Ec) 6∈ DE , in which case d ∈
(E ∩ { 1

2 , 1}
I) ⊆ E 63 (I × { 1

2}), and so I 6= J , {i ∈ I | πi(d) = 1
2} 6= ∅.

Given any ē ∈ A2, set (e0‖e1) , ((J × {e0}) ∪ ((I \ J) × {e1})) ∈ AI . In
this way, E 3 a = (1‖1), E 3 b = (0‖0) and E 3 d = ( 1

2‖1). Then, as J 6=
∅ 6= (I \ J) and {(x‖y) | 〈x, y〉 ∈ K3} ⊆ E, {〈〈x, y〉, (x‖y)〉 | 〈x, y〉 ∈ K ′

3} is
an embedding of K′3 into E . �

Thus, C ′ = C, as required. �

By Lemmas 6.79, 6.81, Corollaries 2.14, 3.21(ii) ⇒(i) and Remark 2.9(i)d), we
first get the following effective algebraic criterion of the maximal inferential (Y,∼)-
paracompleteness of Y-disjunctive (Y,∼)-paracomplete Σ-logics with subclassical
negation ∼ (cf. Corollary 6.29):

Theorem 6.83. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is
so; cf. Lemma 6.30). Then, C has no proper axiomatic/inferentially (Y,∼)-
paracomplete extension (i.e., C is maximally axiomatically/inferentially (Y,∼)-pa-
racomplete)./“ iff either 2 does not form a subalgebra of A or either K3 or K4

forms a subalgebra of A2.”

And what is more, we have the following effective algebraic criterion of their
structural completeness:

Theorem 6.84. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is
so; cf. Lemma 6.30). Then, the following are equivalent:

(i) C is structurally complete;
(ii) C [has a theorem and] is maximally (Y,∼)-paracomplete;
(iii) C has a theorem and, providing it is ∼-subclassical, either K3 or K4 forms a

subalgebra of A2 (i.e., C {viz., A} is not implicative; cf. Lemmas 6.31 and
6.79(i)⇔(iv));

(iv) both { 1
2} does not form a subalgebra of A and either 2 does not form a

subalgebra of A or either K3 or K4 forms a subalgebra of A2.

Proof. First, (i)⇒(iii) is by Remark 2.5 and Lemma 6.79(iv)⇒(v). Next, as A
is then truth-singular, (iii)⇔(iv) is by Corollaries 3.21(i)⇔(iv), 6.51 and Remark
2.9(i)d),(ii). Further, in case C has a theorem, any extension of it has a theorem,
and so is (Y,∼)-paracomplete iff it is inferentially so. Therefore, (iii)⇒(ii) is by
Lemma 6.81. Finally, (ii)⇒(i) is by Lemma 6.78. �

Corollary 6.85. Let Σ ⊇ Σ+,∼[,01], A′ a Σ-expansion of DM4[,01] and C ′ the
logic of A′. Suppose C ′ has a theorem, while A′ is regular, whereas DM3,1 forms a
subalgebra of it (in particular, Σ = Σ+,∼,01). Then, C ′

3,1 is the structural completion
of C ′.

Proof. In that case, e3 is an isomorphism from the canonical truth-singular three-
valued ∼-super-classical Σ-matrix A with A , e−1

3 [A′
3,1] onto A′

3,1, in which case,
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Figure 1. The lattice of proper extensions of C.

by (2.23), the logic C of A is equal to C ′
3,1 ⊇ C ′, and so is both ∨-disjunctive

(cf. Remark 2.9(ii)) and (∨,∼)-paracomplete as well as has a theorem. Let us
prove, by contradiction, that 〈1, 0〉 6∈ K ′

3. For suppose 〈1, 0〉 ∈ K ′
3, in which case

there is some ϕ ∈ Fm3
Σ such that ϕA(0, 1

2 , 1) = 1 and ϕA(0, 0, 1) = 0, and so,
applying e3 ∈ hom(A,A′) to these equalities, we have ϕA′(〈0, 0〉, 〈0, 1〉, 〈1, 1〉) =
〈1, 1〉 and ϕA′(〈0, 0〉, 〈0, 0〉, 〈1, 1〉) = 〈0, 0〉. Hence, as 〈0, 1〉 v 〈0, 0〉, while A′ is
regular, whereas v is reflexive, we get 〈1, 1〉 v 〈0, 0〉. This contradiction shows
that 〈1, 0〉 6∈ K ′

3. Therefore, by Lemma 6.79(iv)⇒(ii) and Theorem 6.84(iii)⇒(i),
C ′

3,1 = C is structurally complete. Finally, by Lemma 4.24 of [25] with A′ instead
of A and B = A′

3,1, C ′
3,1(∅) = C ′(∅), as required. �

This subsumes Theorem 6.11, providing a more generic insight into it.

Lemma 6.86. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is so;
cf. Lemma 6.30). Then, CEM is ∼-classical, whenever C is ∼-subclassical, in
which case CEM = CPC, and inconsistent, otherwise.

Proof. Then, by Remark 2.9(i)d),(ii), C is not ∼-classical, while there is a non-
(Y,∼)-paracomplete submatrix of A iff 2 forms a subalgebra of A, in which case
A�2 is the only non-(Y,∼)-paracomplete submatrix of A. In this way, Corollaries
2.14 and 6.51 complete the argument. �

Finally, by (2.21), Remarks 2.4, 2.6, 2.7, 2.9(i)d),(ii), Lemmas 6.30, 6.79, 6.81,
6.86, Corollaries 3.21(i)⇔(iv), 6.51 and Theorem 6.64, we also get:

Theorem 6.87. Suppose C is both Y-disjunctive, (Y,∼)-paracomplete and [not]
∼-subclassical as well as has a/no theorem. Then, proper (arbitrary/“merely non-
pseudo-axiomatic”) extensions of C form the four-element diamond (resp., two-
element chain) [resp., (2(−1))-element chain] depicted at Figure 1 (with merely
solid circles) [(and) with solely big circles] iff either C is not ∼-subclassical or,
otherwise, either K3 or K4 forms a subalgebra of A2 {“that is”/“in particular”,
C is not implicative}, IC〈/+0〉 |CEM

〈/+0〉 being Y-disjunctive, relatively axiomatized by
(〈x0 `〉(x1|(x1 Y∼x1)) and defined by (∅|{A�2})〈∪{A�{ 1

2}}〉, respectively.

Perhaps, most representative subclassical instances of this discussion are three-
valued expansions (by solely classical constants ⊥ and > interpreted by 0 and 1,
respectively, as non-purely-inferential ones with K4[−1] [not] forming a subalgebra
of A2) of Kleene’ logic [7], {the implication-free fragment of} Gödel’s one [4] —
with K3[+1] [not] forming a subalgebra of A2 — and  Lukasiewicz’ one [9] (as an im-
plicative one; cf. Example 7 of [22]), having a unique proper non-pseudo-axiomatic
(Y,∼)-paracomplete extension (cf. [24]). In this way, these instances (apart from
the last — non-structurally-complete — one, covered by the next subsubsection)
show that, as opposed to ∼-paraconsistent three-valued Σ-logics with subclassi-
cal negation ∼, the structural completeness of Y-disjunctive (Y,∼)-paracomplete
ones, though equally implying (even, being equivalent to) their maximal (Y,∼)-
paracompleteness, does not subsume absence of their ∼-classical extensions.
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6.2.1. Extensions of implicative paracomplete logics with subclassical negation and
lattice disjunction and conjunction. A Σ-matrix/-logic is said to be [/maximally]
A-implicatively ∼-paracomplete, provided the rule:

{∼ix0 A ∼1−ix0 | i ∈ 2} ` x0 (6.16)

is not satisfied in it [/and it has no proper A-implicatively ∼-paracomplete exten-
sion], in which case it is “truth-non-empty and”/inferentially consistent. (Clearly,
any A-implicative ∼-negative/-classical Σ-matrix/-logic is not A-implicatively ∼-
paracomplete/, in view of Lemma 6.31.) By CINPC we denote the least A-impli-
catively non-∼-paracomplete extension of C, that is, the extension of C relatively
axiomatized by (6.16).

Throughout this subsubsection, it is supposed that C is both A-implicative,
Y-disjunctive and (Y,∼)-paracomplete (viz., A is so; cf. Lemmas 6.30, 6.31), in
which case ({ 1

2 ,∼
A 1

2}∩D
A) = ∅ (in particular, A is truth-singular), and so ( 1

2 AA

∼A 1
2 ) = 1 = (∼A 1

2 AA 1
2 ). In particular, A is A-implicatively ∼-paracomplete (and

so is C), for (6.16) is not true in it under [x0/
1
2 ]. And what is more, we have:

Theorem 6.88. C is maximally A-implicatively ∼-paraconsistent.

Proof. Let C ′ be an A-implicatively ∼-paracomplete extension of C, in which case
x1 6∈ T , C ′({∼ix0 A ∼1−ix0 | i ∈ 2}), while, by the structurality of C ′,
〈Fmω

Σ, T 〉 is a model of C ′ ⊇ C, and so is its finitely-generated A-implicatively
∼-paracomplete submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.23). Hence, by

Lemma 2.12, there are some finite set I, some C ∈ S∗(A)I and some subdirect
product D ∈ H−1(H(B)) of it, in which case, by (2.23), D is an A-implicatively
∼-paracomplete (and so both consistent and truth-non-empty) model of C ′ ⊇ C,
and so, if D was not (Y,∼)-paracomplete, then it would be a consistent [truth-non-
empty] model of CEM, in which case its logic C ′′ would be a[n inferentially] consis-
tent extension of CEM, and so, by Lemmas 6.31, 6.86 and Theorem 6.64, C ′′ would
be both ∼-classical and A-implicative, contrary to the fact that any A-implicative
∼-classical Σ-logic is not A-implicatively ∼-paracomplete. Therefore, D is (Y,∼)-
paracomplete. And what is more, since it is A-implicatively ∼-paracomplete, there
must be some a ∈ D such that {a AD ∼Da,∼Da AD a} ⊆ DD, in which case
D 3 a = (I × { 1

2}), and so, by Claim 6.82, A is embeddable into D. Thus, by
(2.23), C ′ = C, as required. �

Lemma 6.89. Let B be a three-valued ∼-super-classical Σ-matrix, I a finite set,
C ∈ S∗(B)I , D a subdirect product of it and J , {i ∈ I | 1

2 ∈ πi[D]}. Suppose B

is a (Z,Y)-lattice with 0 ≤B
Z 1 and 1

2 (≤ | 6≤)B
Z ∼B 1

2 , while A is weakly conjunctive,
whenever it is ∼-paraconsistent, whereas D is truth-non-empty, otherwise. Then,
there is some a ∈ (D ∩ { 1

2 , 0|1}
I) including J × { 1

2}.

Proof. Then, by Claim 6.39, for each j ∈ 2, (I × {j}) ∈ D. Moreover, 〈B,≤B
Z 〉

is a chain, for |B| = 3, in which case 1
2 (≤ | ≥)B

Z ∼B 1
2 , while 1

2 (≤ / ≥)B
Z (0|1).

By induction on the cardinality of any K ⊆ J , let us prove that there is some
a ∈ (D∩{ 1

2 , 0|1}
I) including K×{ 1

2}. In case K = ∅, we have j , (0|1) ∈ 2, while
(K × { 1

2}) = ∅ ⊆ (I × {j}) ∈ (D ∩ { 1
2 , 0|1}

I). Now, assume K 6= ∅. Take any
j ∈ K ⊆ J , in which case L , (K \ {j}) ⊆ J , while |L| < |K|, and so, by induction
hypothesis, there is some b ∈ (D ∩ { 1

2 , 0|1}
I) including L × { 1

2}. Moreover, since
1
2 ∈ πj [D], there is some c ∈ D such that πj(c) = 1

2 . Let d , (c(Z|Y)D∼Dc) ∈ D

and a , (b(Z/Y)Dd) ∈ D. Then, as 0 ≤B
Z 1, while 1

2 (≤ | ≥)B
Z ∼B 1

2 , for each i ∈ I,
πi(d) is equal to 1

2 , if πi(c) is so, and is equal to 0|1, otherwise, in which case, as
b ∈ { 1

2 , 0|1}
I , while 1

2 (≤ / ≥)B
Z (0|1), πi(a) is equal to 1

2 , if either πi(b) or πi(d) is
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so, and is equal to 0|1, otherwise, and so a ∈ (D ∩ { 1
2 , 0|1}

I) includes K × { 1
2}, for

K = (L ∪ {j}). Thus, the case, when K = J , completes the argument. �

Throughout the rest of this subsubsection, it is also supposed that A is a (Z,Y)-
lattice, in which case it is a chain one with unit 1, for A is three-valued, truth-
singular and Y-disjunctive, and so A is Z-conjunctive.

Corollary 6.90. Let I be a finite set, C ∈ S∗(A)I , and D an A-implcatively non-
∼-paraconsistent consistent subdirect product of C. Then, 2 forms a subalgebra of
A, while hom(D,A�2) 6= ∅.

Proof. In that case, by (2.12) and Corollary 3.21(iv)⇒(i), D is truth-non-empty.
Therefore, if, for each i ∈ I, 1

2 was in πi[D] = Ci, then, by Lemma 6.89 with J = I,
a , (I × { 1

2}) would be in D, in which case (6.16) would not be true in D under
[x0/a], for I 6= ∅, because D is consistent, and so D would be A-implicatively
∼-paracomplete. Hence, there is some i ∈ I such that 1

2 6∈ B , πi[D] = Ci 6= ∅,
in which case B ⊆ 2 forms a subalgebra of A, and so B = 2, while (πi�D) ∈
hom(D,A�B). �

Theorem 6.91. The following are equivalent:
(i) CINPC is consistent;
(ii) CINPC is ∼-subclassical;
(iii) CINPC is (Y,∼)-paracomplete;
(iv) C is ∼-subclassical (i.e., 2 forms a subalgebra of A; cf. Corollary 6.51), in

which case CINPC is defined by K6 , (A× (A�2)), and so CINPC(∅) = C(∅).

Proof. First, (i/iii) is a particular case of (ii[i]/iv), respectively, for A is (Y,∼)-
paracomplete. Next, (iv)⇒(ii) is by the consistency of K6, (2.12) and Theorem
6.64. Further, (i)⇒(iv) is by Theorem 6.63.

Finally, assume (i,iv) hold. Then, by Theorem 2.13 with M , {A} and K ,
PSD

ω (S∗(M)), CINPC is finitely-defined by the non-empty class S of all consistent
members of K ∩ Mod(C ′). Consider any D ∈ S ⊆ Mod (6.16), in which case there
are some finite set I and some C ∈ S∗(A)I such that D is a subdirect product
of it, and so, by Corollary 6.90, hom(D,A�2) 6= ∅. Take any g ∈ hom(D,A�2).
Consider any a ∈ (D \DD). Then, there is some i ∈ I such that πi(a) 6∈ DA, while
f , (πi�D) ∈ hom(D,A), in which case h , (f × g) ∈ J , hom(D,K6), while
h(a) 6∈ DK6 , and so (

∏
J) ∈ homS(D,KJ

6 ). Thus, by (2.23), CINPC is finitely-
defined by the finite K6, in which case it, being finitary, for (6.16) is so, while A
is finite, is defined by K6, and so (2.24) and the fact that (π0�K6) ∈ homS(K6,A)
complete the argument. �

Lemma 6.92. Suppose C is ∼-subclassical. Then, K6 is generated by K1 ,
{〈 1

2 , 1〉}.

Proof. Let D be the submatrix of K6 generated by K1. Then, by (2.12) and the
truth-singularity of A, we have D 3 a , (〈 1

2 , 1〉 AD 〈 1
2 , 1〉) = 〈1, 1〉, in which

case D 3 ∼Da = 〈0, 0〉, and so K3 = (∆2 ∪ K1) ⊆ D. Hence, by (2.12), Lemma
6.79(i)⇒(ii) and Claim 6.80, D 3 b , 〈1, 0〉, in which case D 3 ∼Db = 〈0, 1〉, while
there is some φ ∈ Fm1

Σ such that φA( 1
2 ) = 1, whereas φA(1) = 0, in which case we

have ϕ , (x0 Zφ) ∈ Fm1
Σ such that D 3 ϕD(〈 1

2 , 1〉) = 〈 1
2 , 0〉, for A is a (Z,Y)-lattice

with unit 1, and so K6 = (K3 ∪M2 ∪ {〈 1
2 , 0〉}) ⊆ D, as required. �

As ∼A1 = 0, by Lemma 6.92, we immediately have:

Corollary 6.93. Suppose C is ∼-subclassical, while ∼A 1
2 = 1

2 . Then, K6 is gen-
erated by {〈 1

2 , 0〉}.
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Lemma 6.94. Let K′5 be the submatrix of A2 generated by K5 , (K6\K1). Suppose
C is ∼-subclassical. Then, K′5 is a model of any (Y,∼)-paracomplete extension of
CINPC. In particular, the structural completion of C [INPC] is defined by K′5.

Proof. Then, by Theorem 6.91, CINPC(∅) = C(∅). while CINPC is defined by K6.
Let C ′ be any (Y,∼)-paracomplete (in particular, having same theorems, for C is
so) extension of CINPC, in which case, by (2.12), (2.18) 6∈ T , C ′(∅) ⊇ C(∅) 3
(2.12), while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of
C), and so is its truth-non-empty (Y,∼)-paracomplete finitely-generated submatrix
D , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.23). Therefore, by Lemma 2.12, there are

some finite set I, some C ∈ S(A)I and some subdirect product E of it, being a
strict homomorphic counter-image of a strict homomorphic image of D, and so a
(Y,∼)-paracomplete (in particular, consistent, in which case I 6= ∅) truth-non-
empty model of C ′ (in particular, of (6.16)), in view of (2.23), for D is so. Then,
since A, being truth-singular, for it is Y-disjunctive and (Y,∼)-paracomplete, is not
∼-paraconsistent, by Claim 6.39, E contains both a , (I ×{1}) and b , (I ×{0}).
Moreover, if E contained c , (I × { 1

2}), then (6.16) would not be true in E under
[x0/c, x1/b], for I 6= ∅. Consider the following complementary cases:

• ( 1
2 YA ∼A 1

2 ) = 1
2 .

Then, by Lemma 6.92, K6 is generated by K3 ⊇ K1. Hence, as c 6∈ E,
by Lemma 6.82, K6 is embeddable into E ∈ Mod(C ′), and so, by (2.23), a
model of C ′, and so is its submatrix K′5.

• ( 1
2 YA ∼A 1

2 ) 6= 1
2 ,

in which case ∼A 1
2 = 0, and so [AZ = 1

2 . Moreover, A�2 is a (Z,Y)-lattice
with zero 0, for A is that with unit 1. And what is more, since E is (Y,∼)-
paracomplete, J , {i ∈ I | 1

2 ∈ πi[E]} 6= ∅. Given any x, y ∈ A, set
(x‖y) , ((J × {x}) ∪ ((I \ J)× {y})) ∈ AI . Then, E 3 (a/b) = (1/0‖1/0).
Moreover, by Lemma 2.3, E, being finite, is a (Z,Y)-lattice with zero d ,
( 1
2‖0) ∈ E. Hence, I 6= J , for c 6∈ E. Then, E 3 [∼E]∼Ed = ([1−]0‖[1−]1).

Thus, {(x‖y) | 〈x, y〉 ∈ K5} ⊆ E. In this way, since J 6= ∅ 6= (I \ J),
{〈〈x, y〉, (x‖y)〉 | 〈x, y〉 ∈ D} is an embedding of K′5 into E ∈ Mod(C ′), in
which case, by (2.23), K′5 ∈ Mod(C ′).

Moreover, as K5 ⊆ K6, while π0[K5] = A, K′5 is a submatrix of K6, while (π0�K ′
5) ∈

homS(K′5,A), in which case, by (2.23) and (2.24), K′5 is a model of C [INPC] such
that Cnω

K′5(∅) = C [INPC](∅), and so the structural completion of C [INPC] is defined
by it. �

Lemma 6.95. Suppose 2 forms a subalgebra of A (i.e., C is ∼-subclassical; cf.
Corollary 6.51). Then, (i)⇔(ii)⇔(iii)⇐(iv)⇔(v)⇔(vi), where:

(i) ((2.18)[x0/(2.18)]) ∈ C(∅);
(ii) neither ∼A 1

2 = 1
2 nor 0 ≤A

Z
1
2 ;

(iii) ( 1
2 (Y)A∼A 1

2 ) 6= 1
2 ;

(iv) K5 forms a subalgebra of A2;
(v) K6 is not generated by K2 , {〈 1

2 , 0〉, 〈1, 1〉};
(vi) neither K6 is generated by K2 nor A has a discriminator.

In particular, K5 does not form a subalgebra of A2, whenever ∼A 1
2 = 1

2 .

Proof. First, (i)⇔(ii)⇔(iii) are immediate. Next, if ( 1
2 YA∼A 1

2 ) = 1
2 , then (〈 1

2 , 0〉Y
A

∼A〈 1
2 , 0〉) = 〈 1

2 , 1〉 6∈ K5, in which case K5 3 〈1
2 , 0〉 does not form a subalgebra of

A2, and so (iv)⇒(iii) holds.
Further, assume K5 does not form a subalgebra of A2, in which case K ′

5 = K6.
Let B be the subalgebra of A2 generated by K2 ⊆ K6. Then, in case ∼A 1

2 = 1
2 ,
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by Corollary 6.93, K6 is generated by K2 3 〈 1
2 , 0〉. Otherwise, ∼A 1

2 = 0, in which
case B 3 ∼B〈 1

2 , 0〉 = 〈0, 1〉, and so K5 = (K2 ∪ ∆2 ∪M2) ⊆ B, in which case
K6 = K ′

5 ⊆ B ⊆ K6, and so B = K6. Thus, (v)⇒(iv) holds. Furthermore, (v) is a
particular case of (vi). Finally, if K6 is generated by K2 ⊆ K5, then K6 ⊆ K ′

5 ⊆ K6,
in which case K ′

5 = K6, and so K5 does not form a subalgebra of A2, for, otherwise,
K ′

5 ⊇ K5 would be equal to K5 6= K6. Likewise, if A has a discriminator δ, then
so does A�2, in which case δ is a congruence-permutation term for both A and
A�2, being simple, and so so K5 does not form a subalgebra of A2, for, otherwise,
D , (A2�K5) would be a subdirect product of 〈A,A�2〉, in which case, by Lemma
2.2, it would be isomorphic to either K6 or A or A�2, and so 5 = |D| would be equal
to either 6 = |K6| or 3 = |A| or 2 = |2|. Thus, (iv)⇒(vi) holds, as required. �

Next, by CINPC+DN we denote the extension of CINPC relatively axiomatized by
the Double Negation rule:

∼∼x0 ` x0, (6.17)
the inverse one being satisfied in C.

Lemma 6.96. Suppose C is ∼-subclassical 〈i.e., 2 forms a subalgebra of A; cf.
Corollary 6.51〉 (while ∼A 1

2 6=
1
2 {in particular, K5 forms a subalgebra of A2; cf.

Lemma 6.95}). Then, (6.17) is ([not]) true in A�2 ([resp. K6] {as well as in
K5 , (A2�K5)}).

Proof. First, (6.17) is true in A�2, for ∼A∼Ai = i, for all i ∈ 2. Finally, using the
truth-singularity of A, it is routine checking that (6.17) is ([not]) true in A2 under
[x0/〈 1

2 , [1−]0〉]. �

Theorem 6.97. Suppose C is ∼-subclassical. Then, the following are equivalent:
(i) CINPC has a proper (Y,∼)-paracomplete extension;
(ii) CINPC is not structurally complete;
(iii) CINPC 6= CINPC+DN 6= CPC;
(iv) CINPC+DN 6= CINPC is (Y,∼)-paracomplete;
(v) K5 forms a subalgebra of A2,

in which case 1
2 ≤

A
Z 0 = ∼A 1

2 , while the logic of K5 has no proper (Y,∼)-paracom-
plete extension, whereas it is the structural completion of C [INPC].

Proof. First, since (K6 \ K5) = K1 is a singleton, K5 forms a subalgebra of A2

iff K ′
5 6= K6. In this way, (2.12), (2.23), Remark 2.9(i)d),(ii), Corollaries 6.51,

Lemmas 6.86, 6.94, 6.95, 6.96 and Theorem 6.91 complete the argument. �

Given any ϕ ∈ Fm1
Σ, by CINPC+ϕ we denote the extension of CINPC relatively

axiomatized by:
ϕ ` x0. (6.18)

In this way, CINPC+DN = CINPC+(∼∼x0). A characteristic formula for a K ⊆
(K6 \ ∆2) is any ϕ ∈ Fm1

Σ such that, for all a ∈ K6, it holds that (a ∈ K) ⇒
(ϕK6(a) = 〈1, 1〉) ⇒ (a 6= 〈0, 0〉), in which case, unless K = ∅, (6.18) is not true in
K6 under [x0/a], where a ∈ K 63 〈1, 1〉.

Lemma 6.98. Let ϕ be any characteristic formula for K1 (in particular, ϕ =
∼∼x0, unless ∼A 1

2 = 1
2). Then, CINPC has no proper extension not satisfy-

ing (6.18) (in particular, (6.17), unless ∼A 1
2 = 1

2). In particular, CINPC+ϕ =
CINPC+DN, unless ∼A 1

2 = 1
2 .

Proof. The case, when CINPC is inconsistent, is evident. Now, assume it is consis-
tent. Then, by Theorem 6.91, C is ∼-subclassical (i.e., 2 forms a subalgebra of A;
cf. Corollary 6.51), while CINPC is defined by K6. Consider any extension C ′ of
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CINPC not satisfying (6.18). Then, by Theorem 2.13, there are some set I, some
C ∈ S(A)I and some subdirect product D ∈ Mod(C ′) of it, not satisfying (6.18), for
this is finitary, in which case there is some a ∈ (D\DD) such that ϕD(a) ∈ DD, and
so (I ×{1}) 6= a ∈ { 1

2 , 1}
I , for ϕA(0) 6= 1. Hence, ∅ 6= J , {i ∈ I | πi(a) = 1

2} 6= I,
for, otherwise, (6.16) would not be true in D under [xi/a]i∈2. Given any ā ∈ A2,
set (a0‖a1) , ((J × {a0}) ∪ ((I \ J) × {a1})) ∈ AI . Then, D 3 a , ( 1

2‖1). In
this way, as J 6= ∅ 6= (I \ J), by Lemma 6.92, {〈ā, (a0‖a1)〉 | ā ∈ K6} is an em-
bedding of K6 into D ∈ Mod(C ′), in which case, by (2.23), K6 ∈ Mod(C ′), and
so C ′ = CINPC. Finally, the fact that (6.18) is not true in K6 under [x0/〈 1

2 , 1〉]
completes the argument. �

Finally, combining (2.12), Theorems 6.64, 6.66, 6.88, 6.91, 6.97, Lemmas 6.86,
6.95, 6.98 and Corollary 6.51, we get:

Theorem 6.99. Suppose C is [not] non-∼-subclassical [i.e., 2 forms a subalgebra
of A, while K5 is (not) non-A2-closed (in which case ∼A 1

2 6=
1
2 , whereas CINPC+DN

is {not} defined by K5)]. Then, the following hold:
(i) [( {some of })] extensions of C form the (2[+2(+1{+1})])-element chain

C ( CINPC = [Cnω
K6

( (CINPC+DN = {(}Cnω
K5

()]CEM = [CPC = Cnω
A�2 (

] IC [( {others being simultaneously extensions of CINPC+DN and sublogics of
Cnω

K5
})];

(ii) C is [(not) pre]maximally (Y,∼)-paracomplete;
(iii) C [INPC][(∪Cnω

K5
)] is the structural completion of C.

The []-optional ()-non-optional particular case of Theorem 6.99, covering the
both ∼-subclassical and implicative (cf. Example 7 of [22])  L3 [9], equally ensues
from Theorem 3.3 of [20], Corollaries 4.6, 4.12 and 4.13 with Λ = {Z,Y} of [24], the
fact that the poset 〈A,≤A

Z 〉 is a chain, while A is generated by { 1
2 , 1}, for 0 = ∼A1,

and is a (Z,Y)-lattice with unit 1, Remark 5.13(v), Lemma 6.95(v)⇒(iv) and the
following observation:

Remark 6.100. [Suppose 0 ≤A
Z

1
2 , while 2 forms a subalgebra of A (i.e., C is ∼-

subclassical; cf. Corollary 6.51). Then, A is is a (Z,Y)-lattice with unit 1 and
zero 0. Moreover,] Υ , {x0,∼x0} is a unary unitary equality determinant for A,
because ∼A 1

2 6∈ DA = {1} 63 0, while ∼Ai = (1 − i), for all i ∈ 2, in which case,
by Remark 5.13(iv), {φ A ψ | (φ ` ψ) ∈ εΥ} is an axiomatic binary equality
determinant for A, and so is (x0 ↔ x1) , (Z〈Z〈∼ixj A ∼ix1−j〉j∈2〉i∈2), in view of
the Z-conjunctivity of A. Therefore, since A is A-implicative, by Remark 5.13(v),
(x0 ≈ (x0 A x0))[x0/((x0 ↔ x1) A (x2 ↔ x3))] is an implicative system for A.
[And what is more, A, being A-implicative and truth-singular, is ¬-negative, where
(¬x0) , (x0 A ∼(x0 A x0)), while (img¬A) ⊆ 2, for 2 forms a subalgebra of A, in
which case (∼A ◦ ¬A) = χA, and so ((∼¬(x0 ↔ x1) Z x2) Y (¬(x0 ↔ x1) Z x0)) is a
discriminator for A.] �

In this connection, recall that it is this alternative argumentation (more specif-
ically, its “discriminator” particular case based upon Corollary 4.12 of [24]) that
has been invoked therein to find the lattice of extensions of  L3 upon the basis of
Example B.2 therein. On the other hand, the “discriminator” subcase does not
at all exhaust the []-optional ()-non-optional case of Theorem 6.99, in view of the
following double counterexample equally showing the possibility of the []-optional
()-optional case of this theorem:

Example 6.101. Let Σ , (Σ+,∼ ∪ {>}), while A truth-singular with ∼A 1
2 ,

(0[+1
2 ]), >A , 1, Z , ∧, Y , ∨ and 1

2 ≤
A
∧ 0 ≤A

∧ 1 [whereas B the Σ-algebra with
(B�(Σ \ {∼})) , (D2,01�(Σ \ {∼})) and ∼B , ∆2]. Then, 2 forms a subalgebra
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of A, in which case 22 forms a subalgebra of A2, and so K5 = (22 ∪ {〈1
2 , 0〉}),

[though] forming a subalgebra of (A�(Σ \ {∼}))2, does [not] form a subalgebra of
A2, for 〈0[+ 1

2 ], 1〉 = ∼A2〈 1
2 , 0〉 does [not] belong to K5, while, by Theorem 6.50, C

is ∼-subclassical, whereas, by Lemma 6.79(ii)⇒(i), A is implicative, for > ∈ C(∅),
while 〈1, 0〉 = ∼A2

(〈 1
2 , 1〉 YA2 ∼A2>A2

) ∈ K ′
3 ⊇ K3 ⊇ K1. [And what is more,

χ2
A ∈ hom(A,B) is surjective. Therefore, if A had a discriminator, then this would

be a congruence-permutation term for B, being simple, for it is two-element, in
which case, by Lemma 2.2, the subdirect square D , (B2�(22 \ {〈0, 1〉})) of B
would be isomorphic to either B or B2, and so 3 = |D| would be even.] Thus,
anyway, A has no discriminator, in view of Lemma 6.95(iv)⇒(vi). �

This — in addition to Subsection 5.5 of [24] — highlights the “non-discriminator”
advance of the mentioned study.

In this way, Remarks 2.5, 2.7, Corollary 6.29, Lemmas 6.30, 6.79 and Theorems
6.84 and 6.99 exhaust the issue of structural completions of Y-disjunctive (Y,∼)-
paracomplete Σ-logics with subclassical negation ∼.

6.2.2. Three-valued paraconsistent logics with subclassical negation and lattice con-
junction and disjunction. Throughout this subsubsection, it is supposed that:

• A is a (Z,Y)-lattice, in which case 〈A,≤A〉 is a chain poset for |A| = 3, and
so A, being finite, is a distributive (Z,Y)-lattice with zero and unit;

• A is ∼-paraconsistent (and so false-singular) and Z-conjunctive, in which
case [AZ = 0, and so A is Y-disjunctive (in particular, C is maximally ∼-
paraconsistent [cf. Corollary 6.47], while it is ∼-subclassical iff 2 forms a
subalgebra of A, in which case CPC is defined by A�2 [cf. Corollary 6.51]);

• unless otherwise specified, A is the material implication A∼
Y , in which case,

by (2.8) satisfied in C, in view of its Y-disjunctivity, we have CNP ⊆ CMP,
and so C, being ∼-paraconsistent, is not (weakly) A-implicative.

Lemma 6.102. Let I be a finite set, C ∈ S∗(A)I and B a consistent non-∼-paracon-
sistent subdirect product of C. Then, 2 forms a subalgebra of A and hom(B,A�2) 6=
∅.

Proof. First, by Lemma 6.89 with J = I, if 1
2 was in πi[D] = Ci, for each i ∈ I,

then a , (I × { 1
2}) would be in D, in which case (2.16) would not be true in D

under [x0/a, x1/b], where b ∈ (D \DD) 6= ∅, for D is consistent, and so D would be
∼-paraconsistent. Hence, there is some i ∈ I such that 1

2 6∈ B , πi[D] = Ci 6= ∅,
in which case B ⊆ 2 forms a subalgebra of A, and so B = 2, while (πi�D) ∈
hom(D,A�B). �

Theorem 6.103. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A;
cf. Corollary 6.51). Then, CNP is defined by L6 , (A × (A�2)), in which case
CNP(∅) = C(∅).

Proof. Then, by Theorems 6.63 and 2.13 with M , {A} and K , PSD
ω (S∗(M)),

CNP is finitely-defined by the non-empty class S of all consistent members of K ∩
Mod(CNP). Consider any D ∈ S ⊆ Mod (2.16), in which case there are some
finite set I and some C ∈ S∗(A)I such that D is a subdirect product of it, and
so, by Lemma 6.102, hom(D,A�2) 6= ∅. Take any g ∈ hom(D,A�2). Consider
any a ∈ (D \ DD). Then, there is some i ∈ I such that πi(a) 6∈ DA, while
f , (πi�D) ∈ hom(D,A), in which case h , (f × g) ∈ J , hom(D,L6), while
h(a) 6∈ DL6 , and so (

∏
J) ∈ homS(D,LJ

6 ). Thus, by (2.23), CNP is finitely-defined
by the finite L6, in which case it, being finitary, for (2.16) is so, while A is finite,
is defined by L6, and so (2.24) and the fact that (π0�L6) ∈ homS(L6,A) complete
the argument. �
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Theorem 6.104. CMP is consistent iff C is ∼-subclassical, in which case CNP (
CMP = CPC, and so CNP is not Y-disjunctive.

Proof. First, if CMP is consistent, then so is its sublogic CNP (in view of (2.8)
satisfied in C), in which case C is ∼-subclassical, by Theorem 6.63. Conversely,
assume C is ∼-subclassical, in which case, by Corollary 6.51, 2 forms a subalgebra
of A, while CPC is defined by A�2. Then, by Remark 2.9(i)c),(ii), A�2 is A∼

Y -
implicative, and so is CPC, in which case CMP ⊆ CPC. For proving the converse,
consider the following complementary cases:

• CPC(∅) = C(∅).
Then, Lemma 3.28 yields the fact that CPC ⊆ CMP.

• CPC(∅) 6= C(∅).

1st argument. Then, by Lemma 6.69b)⇒e), A is implicative. First, we
prove, by contradiction, that there is some ϕ ∈ (Fm1

Σ ∩C(∅)) such that
ϕA( 1

2 ) = 1
2 . For suppose, for all ϕ ∈ (Fm1

Σ ∩C(∅)), ϕA( 1
2 ) 6= 1

2 , in which
case ϕA( 1

2 ) ∈ DA = { 1
2 , 1}, and so ϕA( 1

2 ) = 1. In particular, since A is both
Y-disjunctive and, being false-singular, weakly ∼-negative, it is not (Y,∼)-
paracomplete, in view of Remark 2.9(i)d), in which case (1

2 YA ∼A 1
2 ) = 1,

and so
1
2 ≤

A
Z 1 = ∼A 1

2 , (6.19)

in view of the linearity of the poset 〈A,≤A
Z 〉. Consider any φ ∈ C(∅) and

any h ∈ hom(Fmω
Σ,A). Let Ua , (Vω∩h−1[{a}]), where a ∈ A, and σ the Σ-

substitution extending (U 1
2
×{x0})∪(U1×{∼x0})∪(U0×{∼∼x0}), in which

case, by the structurality of C, we have ψ , σ(φ) ∈ (Fm1
Σ ∩C(∅)), and so,

by (6.19), we get h(φ) = ψA( 1
2 ) = 1. Hence, B , 〈A, {1}〉 ∈ Mod1(C).

Let ⊃ be any (possibly, secondary) binary connective of Σ, such that A is
⊃-implicative, and (x0 A x1) , ((x0 ⊃ x1)Z(x0 A∼ x1)), in which case A is
A-implicative, for it is ⊃-implicative, Z-conjunctive, Y-disjunctive and false-
singular, and so (1 AA 0) = 0. Moreover, (1 ⊃A 1

2 ) ∈ DA = { 1
2 , 1}, in which

case, by (6.19), we have 1
2 ≤

A
Z (1 ⊃A 1

2 ), and so we get (1 AA 1
2 ) = 1

2 , for
∼A1 = 0 ≤A

Z
1
2 . Therefore, (2.11) is true in B ∈ Mod1(C), in which case, by

Lemma 3.28, B ∈ Mod(C) is both finite and, by (6.19), Y-disjunctive, and
so, by Remarks 2.8(ii), 2.9(i)d) and Corollaries 3.20 and 6.36, there is some
h ∈ homS(B,A). Then, h(0) = h( 1

2 ) = 0, in which case 0 = h(0) = h( 1
2 ⊃

A

0) = (h( 1
2 ) ⊃A h(0)) = (0 ⊃A 0) ∈ DA, and so this contradiction shows

that there is some ϕ ∈ (Fm1
Σ ∩C(∅)) ⊆ CMP(∅) such that ϕA( 1

2 ) = 1
2 .

Hence, ∼AϕA( 1
2 ) = ∼A 1

2 ∈ DA, for A is ∼-paraconsistent, in which case
∼ϕY(2.17) is true in A under any [x0/

1
2 , x1/a], where a ∈ A, for A is Y-

disjunctive, and so, since (2.17) is true in A under any [x0/i, x1/a], where
i ∈ 2, ∼ϕY(2.17) is true in A. Thus, (∼ϕY(2.17))∈ C(∅) ⊆ CMP(∅), in
which case, by the structurality of CMP and (2.11)[x0/ϕ, x1/(2.17)], (2.17)
is satisfied in CMP, and so, by Corollary 6.53, CPC ⊆ CMP.

2nd argument. Then, by Lemma 6.69b)⇒c), 〈0, 1〉 ∈ K ′
3,i, for each i ∈ 2, in

which case there is some ϕi ∈ Fm3
Σ such that ϕA

i (0, 1
2 [− 1

2 + i], 1) = (0[+1]).
Moreover, by Theorem 2.13 with M , {A} and K , PSD

ω (S∗(M)), CMP is
finitely-defined by S , (K∩Mod(CMP)). Consider any D ∈ S ⊆ Mod (2.11),
in which case there are some finite set I and some C ∈ S∗(A)I such that
D is a subdirect product of it. Let J , {i ∈ I | 1

2 ∈ πi[D]}. Given any
ā ∈ A2, set (a0‖a1) , ((J ×{a0})∪ ((I \J)×{a1})) ∈ AI . Then, by Claim
6.39, D 3 (a/b) , (0/1‖0/1). Moreover, by Lemma 6.89, D 3 c , ( 1

2‖0|1),
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whenever 1
2 (≤ | 6≤)A

Z∼A 1
2 . Then, D 3 d , ϕD

0|1(a, c, b) = (0‖1), in which
case D 3 e , (c YD d) = ( 1

2‖1), and so (∼De YD d) = (∼A 1
2‖1) ∈ DD 3 e.

Hence, by (2.11) true in D, we have d ∈ DD, in which case J = ∅, and
so D is a subdirect I-power of A�2. Therefore, by (2.23), D ∈ Mod(CPC).
In this way, S ⊆ Mod(CPC), in which case, for all X ∈ ℘ω(Fmω

Σ), it holds
that CPC(X) ⊆ Cnω

S (X) = CMP(X), and so CPC, being finitary, for it is
two-valued, is a sublogic of CMP.

Thus, CMP = CPC is consistent. Moreover, by Theorem 6.103, CNP is defined by
L6, in which (2.11) is not true under [x0/〈 1

2 , 1〉, x1/〈0, 1〉]. Finally, the following
claim completes the argument:

Claim 6.105. Any Y-disjunctive extension C ′ of CNP is an extension of CMP.

Proof. In that case, we have x1 ∈ (C ′({x0,∼x0}) ∩ C ′({x0, x1})) = C ′({x0,∼x0 Y
x1}), as required. �

Next, by CDMP we denote the extension of C relatively axiomatized by the Dual
Modens Ponens rule:

{∼x0, x0 Y x1} ` x1, (6.20)

being actually dual to (2.11) for material implication. Clearly, by (2.8) satisfied in
C, in view of its Y-disjunctivity, CDMP is an extension of CNP.

Lemma 6.106. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A; cf.
Corollary 6.51). Then, the following hold:

(i) CDMP is a proper extension of CNP;
(ii) (A�2) ∈ Mod(CDMP);
(iii) providing L5 , (K3 ∪M2) forms a subalgebra of A2, the following hold:

a) ∼A 1
2 = 1 ≤A

Z
1
2 , that is, ∼(x0 Z∼x0) 6∈ C(∅);

b) A is generated by { 1
2};

c) L6 is generated by L6 \ L5;
d) A is implicative;
e) L5 , (A2�L5) ∈ Mod(CDMP);
f) the logic of L5 is an axiomatically-equivalent to C (and so proper)

sublogic of CPC, and so is its sulogic CDMP.

Proof. (i) Then, by Theorem 6.103, CNP is defined by L6, in which (6.20)
is not true under [x0/〈 1

2 , 0〉, x1/〈0, 1〉], for A is both Y-disjunctive and ∼-
paraconsistent.

(ii) Since ∼A∼Ai = i, for all i ∈ 2, the Σ-rule (x0 Y x1) ` (∼∼x0 Y x1) is true in
A�2, and so is (6.20), for (2.11) for the material implication is so, in view of
Theorem 6.104.

(iii) a) If it did hold that (∼A 1
2 = 1

2 )|( 1
2 ≤

A
Z 1), then we would have (∼A2〈 1

2 , 1〉|
(〈 1

2 , 1〉 ZA2 〈1, 0〉)) = 〈 1
2 , 0〉 6∈ L5, in which case L5 ⊇ {〈 1

2 , 1〉, 〈1, 0〉}
would not form a subalgebra of A2, and so the ∼-paraconsistency of A
and the linearity of the poset 〈A,≤A

Z 〉 complete the argument.
b) Then, by a), we have (∼A)2−i 1

2 = i, for all i ∈ 2.
c) Likewise, by a), we have (∼A2

)2−i〈 1
2 , 0〉 = 〈i, i〉, for all i ∈ 2, while

(〈 1
2 , 0〉 YA2 〈1, 1〉) = 〈 1

2 , 1〉, whereas (∼A2
)2−i〈 1

2 , 1〉 = 〈i, 1− i〉, for all
i ∈ 2.

d) Then, as (L6 \ L5) ⊆ K3,0, by c), we have K ′
3,0 ⊇ L6 3 〈0, 1〉, and so

Lemma 6.69d)⇒e) completes the argument.
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e) Then, by (ii), (6.20) is true in (A�2)2 = (L5�∆2), while (L5 \ ∆2) =
{〈 1

2 , 1〉} ⊆ DL5 , whereas, by a), ∼L5〈 1
2 , 1〉 = 〈1, 0〉 6∈ DL5 , in which

case (6.20) is true in L5, and so (2.23), due to which L5 is a model of
C, for A2 is so, completes the argument.

f) As L5 is both consistent and truth-non-empty, by e), the logic of it
is an inferentially consistent extension of C. Moreover, (π0�L5) ∈
homS(L5,A). In this way, d), e), (2.24), Corollaries 6.29, 6.47, The-
orem 6.64, Remark 6.74 and Lemma 6.69e)⇒b) complete the argu-
ment. �

Lemma 6.107. Let C ′ be an extension of C and L′5 the submatrix of A2 generated
by L5. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A, CPC being
defined by A�2; cf. Corollary 6.51), while (2.11) is not satisfied in C ′. Then,
L′5 ∈ Mod(C ′). In particular, CDMP = CPC, unless L5 forms a subalgebra of A2.

Proof. Then, by Theorem 6.103, CNP is defined by L6. On the other hand, as C ′

does not satisfy the finitary (2.11), by Theorem 2.13, there are some finite set I,
some C ∈ S∗(A)I and some subdirect product D ∈ Mod(C ′) of it not being a model
of (2.11), in which case there are some a ∈ DD ⊆ { 1

2 , 1}
I and some b ∈ (D \DD)

such that (∼Da YD b) ∈ DD, and so J , {i ∈ I | πi(a) = 1
2} ⊇ K , {i ∈ I |

πi(b) = 0} 6= ∅. Put L , {i ∈ I | πi(b) = 1}. Then, given any ā ∈ A5, set
(a0‖a1‖a2‖a3‖a4) , ((((I \ (L ∪K)) ∩ J) × {a0}) ∪ ((I \ (L ∪ J)) × {a1}) ∪ ((L \
J)× {a2}) ∪ ((L ∩ J)× {a3}) ∪ (K × {a4})) ∈ AI . In this way:

D 3 a = ( 1
2‖1‖1‖

1
2‖

1
2 ), (6.21)

D 3 b = ( 1
2‖

1
2‖1‖1‖0). (6.22)

Moreover, by Claim 6.39, we also have:

D 3 f , (0‖0‖0‖0‖0), (6.23)

D 3 t , (1‖1‖1‖1‖1). (6.24)

Consider the following exhaustive (as ∼A 1
2 ∈ D

A = { 1
2 , 1}) cases:

• ∼A 1
2 = 1

2 .
Then, in case 1

2 ≤
A
Z 1, by (6.21) and (6.22), we have:

D 3 e , (a ZD b) = ( 1
2‖

1
2‖1‖

1
2‖0), (6.25)

D 3 ∼De = ( 1
2‖

1
2‖0‖

1
2‖1), (6.26)

D 3 c , (e YD ∼Db) = ( 1
2‖

1
2‖1‖

1
2‖1), (6.27)

D 3 ∼Dc = ( 1
2‖

1
2‖0‖

1
2‖0). (6.28)

Likewise, in case 1
2 (≤Z / ≥)A1, by “(6.21) and (6.25)”/(6.22), we have:

D 3 d , ((e/b) YD ∼Da) = ( 1
2‖

1
2‖1‖

1
2‖

1
2 ), (6.29)

D 3 ∼Dd = (1
2‖

1
2‖0‖

1
2‖

1
2 ). (6.30)

Consider the following complementary subcases:
– L ⊆ J .

Then, since I ⊇ K 6= ∅ = (L \ J), by (6.23), (6.24) and (6.29),
〈g, I × {g}〉 | g ∈ A} is an embedding of A into D, in which case, by
(2.23), A is a model of C ′, for D is so, and so is L′5.

– L * J .
Then, consider the following complementary subsubcases:
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∗ there is some ϕ ∈ Fm2
Σ such that ϕA( 1

2 , 0) = 0 and ϕA(0, 0)
= 1,
in which case, by (6.23) and (6.30), we have:

D 3 ϕD(∼Dd, f) = (0‖0‖1‖0‖0), (6.31)

D 3 ∼DϕD(∼Dd, f) = (1‖1‖0‖1‖1). (6.32)

Then, since (L\J) 6= ∅ 6= K, taking (6.23), (6.24), (6.29), (6.30),
(6.31) and (6.32) into account, we see that {〈〈g, h〉, (g‖g‖h‖g‖g)〉
| 〈g, h〉 ∈ L6} is an embedding of L6 into D, and so, by (2.23),
L6 is a model of C ′, for D is so, and so is its submatrix L′5, for
L6 ⊇ L5 forms a subalgebra of A2, because 2 forms a subalgebra
of A.

∗ there is no ϕ ∈ Fm2
Σ such that ϕA( 1

2 , 0) = 0 and ϕA(0, 0) = 1,
Then, 1

2 ≤
A
Z 1, for, otherwise, we would have 1 ≤A

Z
1
2 , in which

case we would get ϕA( 1
2 , 0) = 0 and ϕA(0, 0) = 1, where ϕ ,

∼(x0 Z ∼x1) ∈ Fm2
Σ. Consider the following complementary

subsubsubcases:
· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) = ∅.

Then, taking (6.25), (6.26), (6.27), (6.28), (6.29) and (6.30)
into account, as K 6= ∅ 6= (L\J), we conclude that {〈〈g, h〉,
( 1
2‖

1
2‖h‖

1
2‖g)〉 | 〈g, h〉 ∈ L6} is an embedding of L6 into D,

and so, by (2.23), L6 is a model of C ′, for D is so, and so
is its submatrix L′5, for L6 ⊇ L5 forms a subalgebra of A2,
because 2 forms a subalgebra of A.

· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Let G be the subalgebra of L6 × A generated by ((L6 ×
{ 1

2}) ∪ {〈〈i, i〉, i〉 | i ∈ 2}). Then, as (((I \ (L ∪K)) ∩ J) ∪
(I \ (L∪ J))∪ (L∩ J)) 6= ∅ 6∈ {K,L \ J}, by (6.23), (6.24),
(6.25), (6.26), (6.27), (6.28), (6.29) and (6.30), we see that
{〈〈〈g, h〉, j〉, (j‖j‖h‖j‖g)〉 | 〈〈g, h〉, j〉 ∈ G} is an embedding
of G , ((L6 × A)�G) into D, in which case, by (2.23), G
is a model of C ′, for D is so. Let us prove, by contradic-
tion, that ((DL6 × {0}) ∩ G) = ∅. For suppose ((DL6 ×
{0}) ∩ G) 6= ∅. Then, there is some ψ ∈ Fm8

Σ such that
ψA(1, 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0) = 0 and ψA(1, 1, 1, 1, 0, 0, 0, 0) = 1,

for π1[DL6 ] = {1}. Let ϕ , ψ(∼x1,∼x0,∼x0,∼x0, x0, x0,
x0, x1) ∈ Fm2

Σ. Then, ϕA( 1
2 , 0) = 0 and ϕA(0, 0) = 1. This

contradiction shows that ((DL6 × {0}) ∩G) = ∅, in which
case (π0�G) ∈ homS

S(G,L6), and so, by (2.23), L6 is a model
of C ′, for G is so, and so is its submatrix L′5, for L6 ⊇ L5

forms a subalgebra of A2, because 2 forms a subalgebra of
A.

• ∼A 1
2 = 1,

Consider the following exhaustive (as 〈A,≤A
Z 〉 is a chain poset) subcases:

– 1
2 ≤

A
Z 1.

Then, by (6.21) and (6.22), we get:

D 3 c′ , (a YD b) = ( 1
2‖1‖1‖1‖

1
2 ), (6.33)

D 3 d′ , ∼Dc′ = (1‖0‖0‖0‖1), (6.34)

D 3 e′ , ∼Dd′ = (0‖1‖1‖1‖0), (6.35)
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D 3 f ′ , (c′ ZD d′) = ( 1
2‖0‖0‖0‖

1
2 ). (6.36)

Consider the following complementary subsubcases:
∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) = ∅.

Then, since I ⊇ K 6= ∅, by (6.23), (6.24) and (6.33), we see that
{〈g, I × {g}〉 | g ∈ A} is an embedding of A into D, in which
case, by (2.23), A is a model of C ′, for D is so, and so is L′5.

∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) 6= ∅.
Then, as K 6= ∅, by (6.23), (6.24), (6.33), (6.34), (6.35) and
(6.36), we conclude that {〈〈g, h〉, (g‖h‖h‖h‖g)〉 | 〈g, h〉 ∈ L6} is
an embedding of L6 into D, in which case, by (2.23), L6 is a
model of C ′, for D is so, and so is its submatrix L′5, for L6 ⊇ L5

forms a subalgebra of A2, because 2 forms a subalgebra of A.
– 1 ≤A

Z
1
2 .

Then, by (6.21) and (6.22), we get:

D 3 c′′ , (a YD b) = ( 1
2‖

1
2‖1‖

1
2‖

1
2 ), (6.37)

D 3 d′′ , ∼Dc′′ = (1‖1‖0‖1‖1), (6.38)

D 3 e′′ , ∼Dd′′ = (0‖0‖1‖0‖0). (6.39)

Consider the following complementary subsubcases:
∗ L ⊆ J .

Then, as K 6= ∅ = (L \ J), taking (6.23), (6.24) and (6.37) into
account, we see that {〈g, I × {g}〉 | g ∈ A} is an embedding of
A into D, in which case, by (2.23), A is a model of C ′, for D is
so, and so is L′5.

∗ L * J .
Then, as K 6= ∅ 6= (L \ J), taking (6.23), (6.24), (6.37), (6.38)
and (6.39) into account, we see that {〈〈g, h〉, (g‖g‖h‖g‖g)〉 |
〈g, h〉 ∈ L′5} is an embedding of L′5 into D, in which case, by
(2.23), L′5 is a model of C ′, for D is so.

In this way, Theorem 6.104 and Lemma 6.106(i,ii) complete the argument, for
L′5 = L6, unless L5 forms a subalgebra of A2, because (L6 \ L5) = {〈 1

2 , 0〉} is a
singleton, while L6 ⊇ L5 forms a subalgebra of A2, since 2 forms a subalgebra of
A. �

Corollary 6.108. Let C ′ be an extension of C. Suppose (6.20) is not satisfied in
C ′. Then, C ′ ⊆ CNP.

Proof. The case, when CNP is inconsistent, is evident. Now, assume CNP is con-
sistent. Then, by Theorem 6.63, C is ∼-subclassical (i.e., 2 forms a subalgebra of
A, CPC being defined by A�2; cf. Corollary 6.51), in which case, by Theorem 6.63,
CNP is defined by L6. Consider the following complementary cases:

• L5 forms a subalgebra of A2.
Then, as C ′ does not satisfy the finitary (6.20), by Theorem 2.13, there
are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈
Mod(C ′) of it not being a model of (6.20), in which case there are some
a ∈ D and some b ∈ (D \DD) such that (a YD b) ∈ DD 3 ∼Da, in which
case a ∈ { 1

2 , 0}
I , and so J , {i ∈ I | πi(a) = 1

2} ⊇ {i ∈ I | πi(b) = 0} 6= ∅.
Then, given any ā ∈ A2, set (a0‖a1) , ((J×{a0})∪((I\J)×{a1})) ∈ AI . In
this way, D 3 a = (1

2‖0). Consider the following complementary subcases:
– J = I,

Then, D 3 a = (I × { 1
2}), in which case, as I = J 6= ∅, by Lemma

6.106(iii)b), {〈x, I × {x}〉 | x ∈ A} is an embedding of A into D, and
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so, by (2.23), A is a model of C ′, for D is so. In this way, C ′ ⊆ C ⊆
CNP.

– J 6= I,
Then, as J 6= ∅ 6= (I \ J), by Lemma 6.106(iii)c), {〈〈x, y〉, (x‖y)〉 |
〈x, y〉 ∈ L6} is an embedding of L6 into D, in which case, by (2.23),
L6 is a model of C ′, for D is so, and so C ′ ⊆ CNP.

• L5 does not form a subalgebra of A2.
Then, L′5 = L6, for (L6 \L5) = {〈 1

2 , 0〉} is a singleton, while L6 ⊇ L5 forms
a subalgebra of A2, because 2 forms a subalgebra of A. And what is more,
by Theorem 6.104 and Lemma 6.106(ii), we have CDMP ⊆ CPC = CMP, in
which case (2.11) is not satisfied in C ′, and so, by Lemma 6.107, we get
C ′ ⊆ CNP. �

Finally, by Lemmas 6.31, 6.30, 6.69, 6.106, 6.107, Corollaries 6.47, 6.51, 6.53,
6.108, Theorems 6.63, 6.103, 6.104 and Remark 2.9(i)d), we eventually get:

Theorem 6.109. Suppose C is [not] non-∼-subclassical — i.e., 2 is [not] non-A-
closed — and (not) non-implicative [i.e., (n)either K3,0 (n)or K4 forms a subalgebra
of A2, while L5 is ( {not}) non-A2-closed ( {whereas CDMP is 〈not〉 defined by
L5})]. Then, the following hold:

(i) [( {〈some of 〉})] extensions of C form the (2[+2({+1〈+1〉})])-element chain
C ( CNP = [Cnω

L6
(]CDMP = [({〈(〉Cnω

L5
(})](CINP =)CMP = [CPC =

Cnω
A�2 (] IC [( {〈others being simultaneously extensions of CDMP and sublog-

ics of Cnω
L5
〉})];

(ii) C[∪(CPC(∩(CNP{∪Cnω
L5
})))] is the structural completion of C.

6.2.3. Self-extensionality of conjunctive logics.

Lemma 6.110. Let B ∈ Mod(C,A). Suppose C is Z-conjunctive (viz., A is so),
and B is truth-non-empty and consistent. Then, B is ∼-super-classical.

Proof. In that case, by Lemma 2.12, there are some finite set I, some C ∈ S∗(A)I ,
some subdirect product D of it, some Σ-matrix E and some (h|g) ∈ homS

S(B|D, E),
in which case D is truth-non-empty and consistent, for B is so, and so I 6= ∅, while,
by Claim 6.39, {I × {c} | c ∈ 2} ⊆ D. Given any Σ-matrix H, set H′ , (H�{∼}).
In this way, D′ is a submatrix of (A′)I , while (h|g) ∈ homS

S((B|D)′, E ′). And what
is more, 2 forms a subalgebra of A′. Then, as I 6= ∅, e , {〈c, I × {c}〉 | c ∈ 2} is
an embedding of C , (A′�2) into (A′)I , and so into D′, for (img e) ⊆ D, in which
case, by (2.23), C is a ∼-classical model of the logic of B′ (viz., the ∼-fragment of
the logic of B). In this way, Theorem 6.24 completes the argument. �

Since A 1
2 |(0+1) is not ∼-super-classical, because, for all a ∈ ((A\DA 1

2 )|DA0+1) =
2, ∼Aa ∈ 2, by Lemma 6.110, we first have:

Corollary 6.111. Suppose C is Z-conjunctive (viz., A is so). Then, A 1
2 |(0+1) 6∈

Mod(C).

Lemma 6.112. Let B be a three-valued ∼-super-classical Z-conjunctive [and Y-
disjunctive] Σ-matrix. Suppose B is a Z-semi-lattice [resp. (Z,Y)-lattice], in which
case it is that with zero [and unit], for it is finite. Then, [BZ[|Y] 6∈ [| ∈]DB.

Proof. In that case, by the Z-conjunctivity[|Y-disjunctivity] of B, since (0[|1]) 6∈ [| ∈
]DB, we have [BZ[|Y] = ((0[|1])(Z[|Y])B[BZ[|Y]) 6∈ [| ∈]DB, as required. �

Corollary 6.113. Suppose C is Z-conjunctive (viz., A is so), not ∼-classical (i.e.,
A is simple; cf. Corollary 6.36) and self-extensional, in which case A, being finite,
is a Z-semi-lattice (cf. Theorem 5.5(i)⇒(iv)) with zero. Then, the following hold:
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(i) 1
2 ≤

A
Z 1;

(ii) (0 ZA 1) = [AZ .

Proof. (i) By contradiction. For suppose 1
2 6≤

A
Z 1. Then, [AZ 6= 1

2 , in which case,
by Lemma 6.112, [AZ = 0, for 1 ∈ DA, and so 0 ≤A

Z
1
2 . Hence, 1

2 6≤
A
Z 0, in

which case A 1
2

is Z-conjunctive, and so, by Theorem 5.5(i)⇒(iv), A 1
2
, being

truth-non-empty, is a model of C. This contradicts to Corollary 6.111.
(ii) In case A is false-singular, by Lemma 6.112, [AZ = 0, and so 0 ≤A 1, that is,

(0 ZA 1) = 0. Otherwise, A is truth-singular, and so it (viz., C) is not ∼-
paraconsistent, in which case, by the Z-conjunctivity of C, ((x0Z∼x0)Zx1) ≡C

(x0 Z ∼x0), and so, as ∼A0 = 1, Corollary 3.5, the self-extensionality of C
and the simplicity of A complete the argument. �

Theorem 6.114. Suppose C is Z-conjunctive (viz., A is so) and not ∼-classical
(i.e., A is [hereditarily] simple; cf. Corollary 6.36). Then, it is self-extensional
iff, for all distinct a, b ∈ A, there is some h ∈ hom(A,A) such that χA(h(a)) 6=
χA(h(b)).

Proof. The “if” part is by Theorem 5.1(v)⇒(i) with C = {A}. Conversely, assume
C is self-extensional. Consider any ā ∈ (A2 \∆A). Then, in case χA(a0) 6= χA(a1),
it suffices to take h = ∆A ∈ hom(A,A). Now assume χA(a0) = χA(a1), in which
case there is some j ∈ 2 such that aj = 1

2 and a1−j = (1/0), whenever A is false-
/truth-singular. Then, by Theorem 5.5(i)⇒(iv), A is a Z-semi-lattice, in which
case, by the commutativity identity for Z, ai 6= (ai ZA a1−i), for some i ∈ 2, and
so a1−i 6∈ F , {b ∈ A | ai ≤A

Z b} 3 ai. Hence, B , 〈A, F 〉 is a truth-non-empty
consistent Z-conjunctive Σ-matrix, in which case, by Theorem 5.5(i)⇒(iv), it is a
model of C, and so, by Lemma 6.110, it is ∼-super-classical. Then, by Lemma 2.12,
there are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it, some
Σ-matrix E and some (f |g) ∈ homS

S(B|D, E), in which case D is truth-non-empty
and consistent, for B is so, and so I 6= ∅, while, by Claim 6.39, {I×{c} | c ∈ 2} ⊆ D.
Consider the following exhaustive cases:

• A is false-singular.
Then, by Lemma 6.112 and Corollary 6.113(i), we have 0 = [AZ ≤A

Z
1
2 ≤

A
Z 1,

in which case i = (1 − j), and so B = A1 is truth-singular, and so is E .
Consider the following complementary subcases:

– ∼A 1
2 = 0.

Then, A is ∼-negative, in which case, by Remark 2.9(i)a), it, being
Z-conjunctive, is Z∼-disjunctive, and so, by Theorem 5.5(i)⇒(iv), A
is a (Z,Z∼)-lattice. Hence, B, being Z-conjunctive, is Z∼-disjunctive.
Therefore, by Corollary 3.20 and Remark 2.8(ii), there is some h ∈
homS(B,A).

– ∼A 1
2 6= 0.

Then, 1
2 ≤A

Z ∼A 1
2 , in which case ( 1

2 ZA ∼A 1
2 ) = 1

2 , and so ∼A( 1
2 ZA

∼A 1
2 ) = ∼A 1

2 ∈ DA. Moreover, for each k ∈ 2, (k ZA ∼Ak) = 0, in
which case ∼A(k ZA ∼Ak) = 1 ∈ DA, and so ∼(xk Z ∼xk) ∈ C(∅).
Therefore, by Lemma 5.7, 1 = ∼A(1 ZA ∼A1) = ∼A( 1

2 ZA ∼A 1
2 ) =

∼A 1
2 . Hence, B is ∼-negative, in which case, by Remark 2.9(i)a,c),

it, being Z-conjunctive, is A∼
Z∼ -implicative. Consider the following

complementary subsubcases:
∗ B is simple.

Then, by Lemma 6.33(iii)⇒(ii), it is hereditarily simple, so, by
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Theorem 3.11(i)⇒(iii) and Remark 5.13(iv), it, being implica-
tive, has an axiomatic binary equality determinant ε. More-
over, if 2 would not form a subalgebra of A, then there would
be some ϕ ∈ Fm2

Σ such that ϕA(0, 1) = 1
2 , in which case we

would have D 3 ϕD(I × {0}, I × {1}) = (I × { 1
2}), and so, as

I 6= ∅, e , {〈d, I × {d}〉 | d ∈ A} would be an embedding
of A into D, and so, by Remark 2.8(ii), g ◦ e would be that
into the truth-singular E , contrary to the fact that A, being
false-singular, is not truth-singular. Thus, 2 does form a sub-
algebra of A, in which case, by Lemma 3.10, ε is an equality
determinant for (B�2) = C , (A�2). And what is more, by
Remark 2.8, f is injective, in which case g′ , (f−1 ◦ g) ∈
homS

S(D,B), and so there is some a ∈ (D \ DD) such that
g′(a) = 1

2 6∈ (B \ DB), in which case there is some l ∈ I such
that πl(a) = 0. Let F be the submatrix of D generated by {a},
in which case h′ , (πl�F ) ∈ hom(F , C), for h′(a) = 0 ∈ 2, while
f ′ , (g′�F ) ∈ homS

S(F ,B), for A is generated by { 1
2} = f ′[{a}],

because every m ∈ 2 is equal to (∼A)2−m 1
2 , whereas, since ε

is an axiomatic binary equality determinant for both B and C,
by (3.1), we also have (ker f ′) = f ′

−1[∆B ] = f ′
−1[θBε ] = θFε ⊆

h′
−1[θCε ] = h′

−1[∆2] = (kerh′), and so, by the Homomorphism
Theorem, h , (h′ ◦ f ′−1) ∈ hom(B, C). Then, h( 1

2 ) = h′(a) = 0,
in which case h(0) = h(∼A∼A 1

2 ) = ∼A∼Ah( 1
2 ) = ∼A∼A0 = 0,

and so h ∈ homS(B, C) ⊆ homS(B,A).
∗ B is not simple.

Then, by (2.23), Lemma 6.33(ii)⇒(i) and Corollary 6.51, 2 forms
a subalgebra of A, while there is some h ∈ homS(B,A�2) ⊆
homS(B,A).

• A is truth-singular.
Then, so is E , while, by Lemma 6.112, we have the following exhaustive
subcases:

– [AZ = 0.
Then, i = j, in which case, by Corollary 6.113(i), B = A1+, and so f(1)
and f( 1

2 ), being distinguished values of E , for both 1 and 1
2 are those

of B, are equal, for E is truth-singular. Hence, f is not injective, in
which case, by Remark 2.8, B is not simple, and so, by (2.23), Lemma
6.33(ii)⇒(i) and Corollary 6.51 and (2.23), 2 forms a subalgebra of A,
while there is some h ∈ homS(B,A�2) ⊆ homS(B,A).

– [AZ = 1
2 .

Then, by Corollary 6.113(ii), (0 ZA 1) = 1
2 , in which case D 3 ((I ×

{0})ZD(I×{1})) = (I×{ 1
2}), and so, as I 6= ∅, e , {〈d, I × {d}〉 | d ∈

A} is an embedding ofA into D. Then, by Remark 2.8(ii), g′ = (g◦e) is
an embedding ofA into E , in which case 3 = |A| 6 |E| 6 |B| = |A| = 3,
and so |E| = 3 = |A|. Therefore, (img g′) = E, because 3 6 n, for no
n ∈ 3, and so h , (g′−1 ◦ f) ∈ homS(B,A).

Thus, anyway, there is some h ∈ homS(B,A), in which case h(a1−i) 6∈ DA 3 h(ai),
and so χA(h(ai)) = 1 6= 0 = χA(h(a1−i)), as required. �

Theorem 6.115. Suppose both C is both Z-conjunctive (viz., A is so) and not
∼-classical (i.e., A is simple; cf. Corollary 6.36), and A is false-/truth-singular.
Then, the following are equivalent:
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(i) C is self-extensional;
(ii) h0/(1[−]) ∈ hom(A,A);
(iii) A1/(1+)|0) ∈ Mod(C).

Proof. First, assume (i) holds. Then, by Theorem 5.5(i)⇒(iv), A, being finite, is
a Z-semi-lattice with zero. Moreover, as 1

2 6= (1/0), by Theorem 6.114, there is
an endomorphism h of A such that χA(h( 1

2 )) 6= χA(h(1/0)), in which case h( 1
2 ) 6=

h(1/0), and so B , (img e) forms a non-one-element subalgebra of A. Hence, 2 ⊆ B,
while h is a surjective homomorphism from A onto B , (A�B). Then, by Lemma
6.112, we have the following two exhaustive cases:

• [AZ = 0 ∈ B (in particular, A is false-singular).
Then, both A and B are Z-semilattices with zero 0, in which case, by
Lemma 2.3, h(0) = 0 6∈ DA, and so DA 3 1 = ∼A0 = ∼Ah(0) = h(∼A0) =
h(1). Therefore, h( 1

2 ) 6∈ / ∈ DA, in which case h( 1
2 ) = (0/1), and so

hom(A,A) 3 h = h0/1.
• [AZ = 1

2 , in which case A is truth-singular.
Then, by Corollary 6.113(ii), 1

2 ∈ B ⊇ 2, in which case B = A, and
so, by Lemma 2.3, h( 1

2 ) = 1
2 6∈ DA. Hence, h(0) ∈ DA, in which case

h(0) = 1, and so 0 = ∼A1 = ∼Ah(0) = h(∼A0) = h(1). In this way,
hom(A,A) 3 h = h1−.

Thus, (ii) holds. Next, (ii)⇒(iii) is by (2.23), (6.11) and (6.12). Finally, (iii)⇒(i)
is by Theorem 5.1(vi)⇒(i), (6.9) and (6.10). �

Corollary 6.116. Suppose C is Z-conjunctive (viz., A is so), not ∼-classical (i.e.,
A is simple; cf. Corollary 6.36) and self-extensional, in which case A, being finite,
is a Z-semi-lattice (cf. Theorem 5.5(i)⇒(iv)) with zero. Then, the following are
equivalent:

(i) C is ∼-subclassical;
(ii) [AZ = 0 (in particular, A is false-singular; cf. Lemma 6.112);
(iii) ∂(A) ∈ Mod(C);
(iv) h0/1 ∈ hom(A,A), whenever A is false-/truth-singular;
(v) A0 6∈ Mod(C);
(vi) h1− 6∈ hom(A,A);
(vii) ∼A 1

2 6=
1
2 .

Proof. We use Corollary 6.51 tacitly. Then, as 1 ∈ DA, (i)⇒(ii) is by Lemma 6.112
and Corollary 6.113(ii). Next, (iv)⇒(i) is by the fact that (img h0/1) = 2.

Now, assume (ii) holds. Then, A0 is not Z-conjunctive, and so (v) holds, for
C is Z-conjunctive. Likewise, if h1− was an endomorphism of A, then, as, by
(ii), 0 ≤A

Z 1, that is, (0 ZA 1) = 0, we would have 1 = h1−(0) = h1−(0 ZA 1) =
(h1−(0) ZA h1−(1)) = (1 ZA 0), that is, 1 ≤A

Z 0, in which case we would get 0 = 1,
and so (vi) holds.

Further, (vii)⇒(vi) is by the following claim:

Claim 6.117. Suppose h1− ∈ hom(A,A). Then, ∼A 1
2 = 1

2 .

Proof. If ∼A 1
2 was not equal to 1

2 , then it would be equal to some i ∈ 2, in which
case we would have (1− i) = h1−(i) = h1−(∼A 1

2 ) = ∼Ah1−( 1
2 ) = ∼A 1

2 = i. �

Likewise, if it did hold that ∼A 1
2 = 1

2 , while hi ∈ hom(A,A), for some i ∈ 2,
then we would have i = hi( 1

2 ) = hi(∼A 1
2 ) = ∼Ahi( 1

2 ) = ∼Ai = (1− i). Therefore,
(iv)⇒(vii) holds.

Furthermore, (v/vi)⇒(iii/iv) is by Theorem 6.115(i)⇒(iii/ii), respectively.
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Finally, we prove (iii)⇒(iv) by contradiction. For suppose (iii) holds, while (iv)
does not hold. Then, by Theorem 6.115(i)⇒(ii), A is truth-singular, in which case,
by (iii), A1+ = ∂(A) ∈ Mod(C), while h1− ∈ hom(A,A), in which case, by (2.23)
and (6.12), A0+ ∈ Mod(C), and so C is not Z-conjunctive, for A0+ is not so, in
view of Corollary 6.113(i). This contradiction completes the argument. �

Next, A is said to have Dual Truth Closure Condition (DTCC) with respect to
Z, provided (a ZA b) ∈ D∂(A), for all distinct a, b ∈ D∂(A).

Corollary 6.118. Suppose A is [both] Z-conjunctive (viz., C is so) [and not ∼-
negative, unless C is ∼-classical]. Then, C is both self-extensional and ∼-subclas-
sical [if and] only if both C has PWC w.r.t. ∼ and either C is ∼-classical or both
A is a Z-semilattice and A has DTCC w.r.t. Z.

Proof. First, assume C is both self-extensional and ∼-subclassical. Consider the
following complementary cases:

• C is ∼-classical,
in which case, by Remark 2.9(i)b), C has PWC w.r.t. ∼.

• C is not ∼-classical.
Then, by Corollaries 6.113(i) and 6.116(i)⇒(ii), A is a Z-semi-lattice with
0 ≤A

Z
1
2 ≤A

Z 1, in which case A has DTCC w.r.t. Z, while ∼A is anti-
monotonic with respect to ≤A

Z , and so, by Theorem 5.5(i)⇒(ii), C has
PWC w.r.t. ∼.

[Conversely, assume both C has PWC w.r.t. ∼ and either C is ∼-classical or both A
is a Z-semi-lattice andA has DTCC w.r.t. Z. Consider the following complementary
cases:

• C is ∼-classical.
Then, it is both ∼-subclassical and, by Example 5.2, self-extensional.

• C is not ∼-classical.
Then, A is a Z-semi-lattice, while A has DTCC w.r.t. Z as well as is both
non-∼-negative and false-/truth-singular, in which case ∼A 1

2 6= (0/1), and
so D∂(A) = (∼A)−1[A \ DA]. Consider any φ ∈ Fmω

Σ, any ψ ∈ C(φ), in
which case ∼φ ∈ C(∼ψ), and any h ∈ hom(Fmω

Σ,A) such that h(φ) ∈
D∂(A), in which case h(∼φ) 6∈ DA, and so h(∼ψ) 6∈ DA, that is, h(ψ) ∈
D∂(A). Thus, ∂(A) is a (2\1)-model of C. In particular, for each i ∈ 2, the
unary Σ-rule (x0 Z x1) ` xi, being satisfied in C, for this is Z-conjunctive,
is true in ∂(A). Conversely, consider any ā ∈ (D∂(D))2. Then, in case
a0 = a1, by the idempotencity identity for Z, we have (a0 ZA a1) = a0 ∈
D∂(A). Otherwise, since A has DTCC w.r.t. Z, we have (a0 ZA a1) ∈ D∂(A)

too. Thus, ∂(A) is Z-conjunctive, in which case, by Lemma 5.3, it, being
truth-non-empty, is a model of C, and so, by Theorem 6.115(iii)⇒(i) and
Corollary 6.116(iii)⇒(i), C is both self-extensional and ∼-subclassical.] �

6.2.3.1. Self-extensionality of both conjunctive and disjunctive logics.

Lemma 6.119. Suppose C is both Z-conjunctive and Y-disjunctive (viz., A is so;
cf. Lemma 6.30) as well as both non-∼-classical (i.e., A is simple; cf. Corollary
6.36) and self-extensional. Then, A is a distributive (Z,Y)-lattice with zero 0 and
unit 1.

Proof. Then, by Theorem 5.5(i)⇒(iv), A, being finite, is a distributive (Z,Y)-lattice
with zero and unit, in which case, as |A| = 3, 〈A,≤A

Z 〉 is a chain, and so (0 ZA

1) ∈ 2. In this way, as 1 ∈ DA, Lemma 6.112 and Corollary 6.113 complete the
argument. �
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As for negative instances of Lemma 6.119, as a first one, we should like to high-
light P 1 [26] (cf. [15]), in which case A has no semi-lattice (even merely idempotent
and commutative) secondary operations, simply because the values of primary ones
belong to 2 63 1

2 , in which case 2 forms a subalgebra of A, and so A, being ⊃-
implicative, is both ]⊃-disjunctive and ¬-negative, where (¬x0) , (x0 ⊃ ∼(x0 ⊃
x0)) (in particular, this is ]¬⊃-conjunctive; cf. Remark 2.9(i)a)). Likewise, three-
valued expansions of HZ [6] are not self-extensional, because, in that case, though
A, being false-singular, is neither ∧-conjunctive nor ∨-disjunctive, simply because
A is a (∧,∨)-lattice but with distinguished zero 1

2 , A is a (∨∼,∧∼)-lattice with zero
0 and unit 1

2 6= 1, in which case A is both ∨∼-conjunctive and ∧∼-disjunctive. On
the other hand, arbitrary three-valued expansions of both P 1 and HZ are covered
by the next subsection as well, the latter ones being equally covered by the following
characterization (more precisely, some of its consequences, as we show below):

Theorem 6.120. Suppose C is both Z-conjunctive and Y-disjunctive (viz., A is
so; cf. Lemma 6.30) as well as both C is not ∼-classical (i.e., A is simple; cf.
Corollary 6.36) and A is false-/truth-singular. Then, the following are equivalent:

(i) C is self-extensional;
(ii) h0/1 is an endomorphism of A;
(iii) ∂(A) ∈ Mod(C);
(iv) A is a [distributive] (Z,Y)-lattice {with zero 0 and unit 1} having a non-

singular non-diagonal (partial) endomorphism.

Proof. First, (i)⇒(ii) is Corollary 6.116(ii)⇒(iv) and Lemma 6.119. Next, (ii)⇒(iii)
is by (2.23) and (6.11). Further, (iii)⇒(i) is by (6.9) and Theorem 5.1(vi)⇒(i) with
S = {A, ∂(A)}. Thus, we have proved the equivalence of (i,ii,iii). Furthermore,
(i,ii)⇒(iv) is by Lemma 6.119 and the fact that h0/1( 1

2 ) ∈ 2 63 1
2 , while (img h0/1) =

2 is not a singleton.
Finally, assume (iv) holds. Then, there are some subalgebra B of A and some

non-diagonal non-singular h ∈ hom(B,A), in which case D , (img h) forms a non-
one-element subalgebra of A, and so does B = (domh). Hence, 2 ⊆ (B ∩ D),
in which case, by Lemma 6.112, both B and D , (A�D) are (Z,Y)-lattices with
zero/unit 0/1, and so, as h ∈ hom(B,D) is surjective, by Lemma 2.3, h(0/1) =
(0/1), in which case (1/0) = ∼A(0/1) = ∼Ah(0/1) = h(∼A(0/1)) = h(1/0), and so
h�2 is diagonal. Therefore, B = A, while h( 1

2 ) 6= 1
2 . In this way, if h( 1

2 ) was equal to
1/0, then h would be a non-injective strict homomorphism from A to itself, in which
case, by Remark 2.8(ii), A would not be simple. Thus, hom(A,A) 3 h = h0/1, so
(ii) holds, as required. �

First, by Lemma 5.14 and Theorem 6.120(i)⇔(iv), we immediately have:

Corollary 6.121. Suppose A is both Z-conjunctive and Y-disjunctive (viz., C is
so; cf. Lemma 6.30) as well as either ∼-paraconsistent or (Y,∼)-paracomplete (in
which case C is so, and so is not ∼-classical, while {x0,∼x0} is a unary unitary
equality determinant for A). Then, C is self-extensional iff the following hold:

(i) A has no equational implication;
(ii) A is a {distributive} (Z,Y)-lattice [with zero 0 and unit 1].

In view of Theorems 10, 13 and Example 10 of [22], this positively covers [the
implication-less fragment of] Gödel’s three-valued logic [4] as well as their “∼-
paraconsistent counterparts” resulted from lattice duality — viz., using dual (rela-
tive) pseudo-complement(s) instead of the direct one(s). As to negative instances
of Theorem 6.120, we need some its generic consequences.

First, by Corollary 6.116(ii)⇒(i) and Lemma 6.119, we immediately have:
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Corollary 6.122. Suppose C is both Z-conjunctive and Y-disjunctive (viz., A is
so; cf. Lemma 6.30) as well as self-extensional. Then, C is ∼-subclassical.

Then, by Corollaries 6.118, 6.122 and Lemmas 6.112 and 6.119, we get:

Corollary 6.123. Suppose A is both Z-conjunctive and Y-disjunctive (viz., C is so;
cf. Lemma 6.30) [as well as not ∼-negative (in particular, either ∼-paraconsistent
or (Y,∼)-paracomplete {viz., C is so}), unless C is ∼-classical]. Then, C is self-
extensional [if and] only if both C has PWC with respect to ∼ and either C is
∼-classical or A is a (Z,Y)-lattice.

Likewise, by Corollaries 6.116(i)⇒(vii), 6.122, Remark 2.9(ii), Lemma 6.33(ii)⇒
(i) and Corollary 6.36, we also get:

Corollary 6.124. Suppose C is both Z-conjunctive and Y-disjunctive (viz., A is
so; cf. Lemma 6.30) as well as self-extensional. Then, ∼A 1

2 6=
1
2 .

These negatively cover arbitrary three-valued expansions (cf. Corollary 6.40 in
this connection) of both Kleene’s three-valued logic [7] (including those of  Lukasi-
ewicz’ one  L3 [9]) and LP [14] (including those of the logic of antinomies LA [1])
as well as of HZ. On the other hand, three-valued expansions of  L3, LA and HZ
are equally covered by the next subsubsection.

The condition of the Y-disjunctivity of A/C can not be omitted in the formula-
tions of Corollaries 6.122 and 6.124, as it is demonstrated by:

Example 6.125. Let A be truth-singular, Σ , {∧,∼}, ∼A , h1− and ∧A ,
((π0�∆A) ∪ ((A \ ∆2) × { 1

2})). Then, A is ∧-conjunctive, while 〈∼A0,∼A 1
2 〉 =

〈1, 1
2 〉 6∈ θA 3 〈0, 1

2 〉, in which case θA 6∈ Con(A), whereas (0 ∧A 1) = 1
2 6∈ 2, in

which case 2 does not form a subalgebra of A, and so, by Theorem 6.35(i)⇒(v) [and
Corollary 6.51], C is not ∼-[sub]classical. On the other hand, h1− ∈ hom(A,A), so
by Theorem 6.115(ii)⇒(i), C is self-extensional. �

6.2.4. Self-extensionality of implicative logics.

Lemma 6.126. Suppose C is A-implicative (viz., A is so; cf. Lemma 6.31) and
not ∼-classical. Then, hi ∈ hom(A,A), for no i ∈ 2.

Proof. By contradiction. For suppose hi ∈ hom(A,A), for some i ∈ 2, in which
case (kerhi) ∈ Con(A), and so, if i was equal to 1/0, whenever A was false-
/truth-singular, then θA would be equal to (kerhi) ∈ Con(A), contrary to Theorem
6.35(v)⇒(i), while 2 = (img hi) forms a subalgebra of A, and so ((0/1) AA 0) =
(1/0), whenever A is false-/truth-singular. Therefore, i = (0/1), whenever A is
false-/truth-singular, in which case ( 1

2 AA 0) = (0/1), and so (0/1) = hi(0/1) =
hi( 1

2 AA 0) = (hi( 1
2 ) AA hi(0)) = ((0/1) AA 0) = (1/0). This contradiction

completes the argument. �

By Theorem 6.120(i)⇒(ii) and Lemma 6.126, we immediately have:

Corollary 6.127. Suppose A is both implicative (and so disjunctive) and conjunc-
tive (in particular, negative; cf. Remark 2.9(i)a)) [in particular, both disjunctive
and negative; cf. Remark 2.9(i)c)]. Then, C is not self-extensional, unless it is
∼-classical.

This immediately both shows that Gödel’s three-valued logic [4], though being
weakly implicative, is not implicative, and covers three-valued expansions of  L3,
LA, HZ and P 1, those of the former being equally covered by:

Corollary 6.128. Suppose A is both truth-singular (in particular, both Y-disjunc-
tive and (Y,∼)-paracomplete) and A-implicative. Then, C is not self-extensional,
unless it is ∼-classical.
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Proof. Then, (a AA a) = 1, for all a ∈ A, in which case A is ¬-negative, where
(¬x0) , (x0 A ∼(x0 A x0)), and so Corollary 6.127 completes the argument. �

The “false-singular” case is but more complicated. First, we have:

Corollary 6.129. Suppose A is both false-singular and A-implicative. Then, C is
not self-extensional, unless it is either ∼-paraconsistent or ∼-classical.

Proof. If C is not ∼-paraconsistent, then ∼A 1
2 = 0, in which case A is ∼-negative,

and so Corollary 6.127 completes the argument. �

Theorem 6.130. Suppose A is both A-implicative (viz., C is so; cf. Lemma 6.31),
hereditarily simple (i.e., C is not ∼-classical; cf. Corollary 6.36) and false-singular
(in particular, ∼-paraconsistent [i.e., C is so]). Then, the following are equivalent:

(i) C is self-extensional;
(ii) A 1

2
∈ Mod(C);

(iii) ∼A is a bijective endomorphism of A;
(iv) h1− is an endomorphism of A;
(v) A+0 is isomorphic to A;
(vi) C is defined by A0+;
(vii) A0+ ∈ Mod(C);
(viii) A is an A-implicative inner semilattice having a non-singular non-diagonal

{partial} endomorphism.

Proof. First, assume (i) holds. Then, as 1
2 6= 1, by Theorem 5.10, there is some

h ∈ hom(A,A) such that χA(h( 1
2 )) 6= χA(h(1)). Moreover, by (2.12), a , ( 1

2 AA

1
2 ) ∈ DA = { 1

2 , 1}. If a was not equal to 1
2 , then it would be equal to 1, and so

would be (b AA b), for any b ∈ A, in view of (2.12) and Lemma 5.7, in which case
A would be ¬-negative, where (¬x0) , (x0 A ∼(x0 A x0)), contrary to Corollary
6.127. Therefore, a = 1

2 , in which case (b AA b) = 1
2 , for any b ∈ A, in view

of (2.12) and Lemma 5.7, and so h( 1
2 ) = (h( 1

2 ) AA h( 1
2 )) = 1

2 ∈ DA. Hence,
h(1) 6∈ DA, in which case h(1) = 0, and so h(0) = h(∼A1) = ∼Ah(1) = ∼A0 = 1.
Thus, hom(A,A) 3 h = h1−, and so (iv) holds.

Next, (iv)⇒(v/iii) is by the fact that h1− : A→ A is bijective and (6.12)/“Claim
6.117”.

Conversely, assume (iii) holds. Then, ∼A[A/2] = (A/2), in which case ∼A 1
2 = 1

2 ,
and so h1− = ∼A ∈ hom(A,A). Thus, (iv) holds.

Further, (v)⇒(vi) is by (2.23), while (vii) is a particular case of (vi), whereas
(vii)⇒(ii) is by the fact that D

A 1
2 = (DA ∩ DA0+). Furthermore, (ii)⇒(i) is by

(6.10) and Theorem 5.1(vi)⇒(i) with S = {A,A 1
2
}. Thus, we have proved the

equivalence of (i-vii).
Finally, (i,iv)⇒(viii) is by Theorem 5.9 and the fact that h1−(0) = 1 6= 0,

while (img h1−) = A is not a singleton. Conversely, assume (viii) holds. Then,
A is an A-implicative inner semi-lattice, while there are some subalgebra B of A
and some non-singular non-diagonal h ∈ hom(B,A), in which case (img h) 6= ∅
is not a singleton, and so is B = (domh) 6= ∅. Hence, 2 ⊆ B, in which case,
a , (1 AA 1) ∈ B, and so, by (2.3), h(a) = (h(1) AA h(1)) = a. Moreover, by
(2.12), a ∈ DA = { 1

2 , 1}. Therefore, if a was not equal to 1
2 , then it would be equal

to 1, in which case we would have h(1) = 1, and so would get h(0) = h(∼A1) =
∼Ah(1) = ∼A1 = 0, in which case, by the non-diagonality of h, we would have
1
2 ∈ B and h( 1

2 ) = i, for some i ∈ 2, and so h = hi would be an endomorphism
of A, contrary to Lemma 6.126. Thus, B 3 a = 1

2 , in which case B = A, while
h( 1

2 ) = 1
2 , and so, by the non-diagonality of h, there is some i ∈ 2 such that h(i) 6= i.
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Let us prove, by contradiction, that h(i) 6= 1
2 . For suppose h(i) = 1

2 . In that case,
if h(1 − i) was not equal to 1

2 , then it would be equal to some j ∈ 2, and so we
would have 1

2 = h(i) = h(∼A(1 − i)) = ∼Ah(1 − i) = ∼Aj = (1 − j) ∈ 2. Hence,
h(1− i) = 1

2 , in which case, as (domh) = B = A and {i, 1− i} = 2 = (A \ { 1
2}), we

get (img h) = { 1
2}, contrary to the non-singularity of h. Thus, h(i) 6= 1

2 , in which
case h(i) = (1 − i), and so h(1 − i) = h(∼Ai) = ∼Ah(i) = ∼A(1 − i) = i. Thus,
hom(A,A) 3 h = h1−, and so (iv) holds, as required. �

First, by Remark 5.13(v),(iii)a), Lemma 5.14, Corollary 6.128 and Theorem
6.130(i)⇔(viii), we immediately have:

Corollary 6.131. Suppose A is A-implicative (viz., C is so; cf. Lemma 6.31) as
well as either ∼-paraconsistent or both Y-disjunctive and (Y,∼)-paracomplete (in
which case C is so [cf. Lemma 6.30], and so is not ∼-classical, while {x0,∼x0}
is a unary unitary equality determinant for A). Then, C is self-extensional iff the
following hold:

(i) A has no equational implication;
(ii) A is an A-implicative inner semi-lattice.

Next, as opposed to Corollary 6.124, by Remark 2.9(ii), Corollaries 6.36, 6.128,
Lemma 6.33(ii)⇒(i), Theorem 6.130(i)⇒(iv) and Claim 6.117, we have:

Corollary 6.132. Suppose C is both A-implicative (viz., A is so; cf. Lemma 6.31)
and self-extensional. Then, the following are equivalent:

(i) A 1
2

is ∼-paraconsistent;
(ii) ∼A 1

2 = 1
2 ;

(iii) C is not ∼-classical;
(iv) A is not ∼-negative.

Further, by Lemma 6.44, Corollaries 6.128, 6.129, Theorems 6.42(i)⇔(viii), 6.130
(i)⇔(ii) and (2.12), we have:

Corollary 6.133. Suppose C is both A-implicative (viz., A is so; cf. Lemma 6.31).
Then, it has a proper ∼-paraconsistent extension iff it is self-extensional and not
∼-classical.

Then, by Corollaries 6.29, 6.47 and 6.133, we first get the following rather minor
enhancement of Corollary 6.127:

Corollary 6.134. Any weakly conjunctive implicative three-valued Σ-logic with
subclassical negation ∼ is not self-extensional, unless it is ∼-classical.

And what is more, as opposed to Corollary 6.122, by Corollaries 6.58 and 6.133,
we have:

Corollary 6.135. Suppose C is both A-implicative (viz., A is so; cf. Lemma 6.31)
and self-extensional. Then, it is ∼-subclassical iff it is ∼-classical.

Likewise, by (2.12), Theorem 6.45(iii)a)⇒d) and Corollary 6.133, we get the
following enhancement of the latter:

Corollary 6.136. Suppose C is both A-implicative (viz., A is so; cf. Lemma
6.31), self-extensional and not ∼-classical. Then, C 1

2
is the only proper (∼-

para)consistent extension of C.

Furthermore, as opposed to Corollary 6.123, we get:
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Corollary 6.137. Suppose A ∈ Σ and C is A-implicative (viz., A is so; cf. Lemma
6.31). Then, C has PWC w.r.t. ∼ iff A is ∼-negative. In particular, [providing C
is self-extensional] C has PWC w.r.t. ∼ if[f ] it is ∼-classical. Moreover, any three-
valued implicative ∼-paraconsistent/“both Y-disjunctive and (Y,∼)-paracomplete”
Σ-logic with subclassical negation ∼ does not have PWC w.r.t. ∼.

Proof. The “if” parts of the both second and third sentences are by Remark
2.9(i)b). The converse ones are proved by contradiction. For suppose C has
PWC w.r.t. ∼ but A is not ∼-negative (in particular, C is self-extensional but
not ∼-classical; cf. Corollary 6.132(iv)⇒(iii)). Let Σ′ , {A,∼} ⊆ Σ, in which
case A′ , (A�Σ′) is both three-valued, ∼-super-classical, canonical, A-implicative
and non-∼-negative as well as defines the Σ′-fragment C ′ of C, and so C ′ is both
A-implicative and, by Remark 2.9(ii), Corollary 6.36 and Lemma 6.33(ii)⇒(i),
non-∼-classical, for A′ is non-∼-negative, as well as has PWC w.r.t. ∼. In par-
ticular, for any 〈φ, ψ〉 ∈ ≡ω

C′ and any ϕ ∈ Fmω
Σ, we have both ∼φ ≡ω

C′ ∼ψ,
(φ A ϕ) ≡ω

C′ (ψ A ϕ) and (ϕ A φ) ≡ω
C′ (ϕ A ψ). Therefore, C ′ is self-

extensional. Hence, as (2.12) is a theorem of C ′, by Corollary 6.128 and Theorem
6.130(i)⇒(ii), for every a ∈ A, (a AA a) = 1

2 , in which case, by Corollary 6.129,
∼A(a AA a) = ∼A 1

2 ∈ DA, and so both x0 A x0 and ∼(x0 A x0) are theorems of
C ′. Then, we have (x0 A x0) ∈ C ′(∅) ⊆ C ′(x0), in which case, by PWC w.r.t. ∼,
we get ∼x0 ∈ C ′(∼(x0 A x0)) ⊆ C ′(∅) ⊆ C ′(x0), and so, by (3.11) with n = 0 and
m = 1, ∼ is not a subclassical negation for C ′. In this way, Corollary 6.29 /“and
Lemma 6.30” does/do yield the fourth sentence, completing the argument. �

Finally, existence of a self-extensional implicative ∼-paraconsistent three-valued
Σ-logic with subclassical negation ∼ is due to Corollary 6.29 and:

Example 6.138. Let A be false-singular, Σ , {⊃,∼} with binary ⊃, ∼A , h1−
and ⊃A , ((∆A × { 1

2}) ∪ (π1�(A2 \ ∆A))). Then, A is both ⊃-implicative and
∼-paraconsistent, and so is C. And what is more, h1− ∈ hom(A,A), and so,
by Theorem 6.130(iv)⇒(i), C is self-extensional. In particular, by Corollaries
6.133 and 6.135, it has a proper ∼-paraconsistent extension but no ∼-classical
one. On the other hand, let B be any more canonical three-valued ∼-super-
classical ⊃-implicative Σ-matrix, the logic of which is self-extensional and not ∼-
classical, in which case, by Corollary 6.128, B is false-singular, while, by Corollary
6.132(iii)⇒(ii), ∼B 1

2 = 1
2 , and so ∼B = ∼A. Then, by Theorem 6.130(i)⇒(ii,iv,viii)

and (2.12), B is an A-implicative inner semi-lattice, being a ]⊃-semilattice with
zero 1

2 = (a ⊃B a), for all a ∈ A, and endomorphism h1−. In particular, by (2.4),
( 1
2 ⊃

B i) = i, for all i ∈ 2. Moreover, by the ⊃-implicativity of B, we have (1 ⊃B

0) = 0, in which case 1 = h1−(0) = h1−(1 ⊃B 0) = (h1−(1) ⊃B h1−(0)) = (0 ⊃B

1), and b , (1 ⊃B 1
2 ) ∈ DB = { 1

2 , 1}, in which case, if b was not equal to 1
2 , then it

would be equal to 1, in which case we would have 1
2 = (1]B

⊃
1
2 ) = (b ⊃B 1

2 ) = b = 1,
and so b = 1

2 . Hence, 1
2 = h1−( 1

2 ) = h1−(b) = (h1−(1) ⊃B h1−( 1
2 )) = (0 ⊃B 1

2 ).
Thus, (c ⊃B d) = ( 1

2/d), for all c, d ∈ B such that c = / 6= d, in which case
⊃B = ⊃A, and so B = A. In this way, by Corollary 6.29 and Lemma 6.31,
the above C is a unique three-valued ⊃-implicative self-extensional non-∼-classical
(in particular, ∼-paraconsistent) Σ-logic with subclassical negation ∼. In particu-
lar, given any signature Σ′ ⊇ Σ, any self-extensional non-∼-classical ⊃-implicative
three-valued Σ′-logic C ′ with subclassical negation ∼, in which case, by Corol-
laries 6.29, 6.132(iii)⇔(iv) and Theorem 6.38, the characteristic matrix of C ′ is
not ∼-negative, and so is its Σ-reduct (in particular, this, being three-valued, ⊃-
implicative, ∼-super-classical and canonical, is characteristic for the Σ-fragment C ′′

of C ′, C ′′, being self-extensional, is not ∼-classical), is an expansion of C. �
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This definitely shows that the justice is, at least, in that, when crooks (like Avron
and Beziau et al.) plagiarize somebody else’s labor (mine, in that case) and rewrite
the genuine history of science for their exclusive benefit (in particular, by means of
publishing plagiarized work backdating), they inevitably lose the capability (if any
was at all ever) of obtaining and publishing new and correct results.

7. Conclusions

Aside from quite useful general results and their equally illustrative generic appli-
cations (sometimes, even multiple ones providing different insights, and so demon-
strating the power of unversal tools elaborated here) to infinite classes of particular
logics, the paper demonstrates the value of the conception of equality determinant
going back to [21, 22].

Among other things, profound connections between the self-extensionality of
unitary finitely-valued logics with unary unitary equality determinant as well as
“lattice conjunction and disjunction”/“implicative inner semi-lattice implication”
and the algebraizability (in the sense of [18]) of two-side sequent calculi (associated
according to [21]) and equivalent (in the sense of [18]) many-place ones (associated
according to [23]) /“as well as the logics themselves” discovered here are especially
valuable within the context of General Algebraic Logic going back to [15, 18, 19, 22].
In this connection, the “implicative” analogue of Theorem 15 of [22] — Lemma
5.14 — being essentially due to that of Lemma 11 therein — Lemma 5.12 — looks
especially remarkable.

Likewise, deep connections between the self-extensionality/“absence of classical
extensions”/“structural completeness” of implicative/“non-maximally paraconsis-
tent”/ paraconsistent|”disjunctive paracomplete” three-valued logics with subclas-
sical negation and their ([pre]maximal) paraconsistency|paracompleteness discov-
ered here deserve a particular emphasis within the context of Many-Valued (more
generally, Non-Classical) Logic.

Perhaps, a most acute problem remained still open is whether Theorem 6.114 is
extendable beyond conjunctive and/or unitary three-valued logics with subclassical
negation.

Likewise, within the framework of those ∼-paraconsistent/ “implicative (Y,∼)-
paracomplete” three-valued ∼-subclassical Σ-logics with lattice conjunction and
disjunction Y, (L/K)5 forms a subalgebra of the direct square of the underlying
algebra of the characteristic matrices of which, the following quite non-trivial uni-
versal problems remained open:

(1) What is a relative axiomatization of the logic of (L/K)5?
(2) What is the lattice of those extensions of CDMP/(INPC+DN), (L/K)5 is a

model of which?
(3) What is a class of matrices defining CDMP/(INPC+DN)?

We conjecture that CDMP/(INPC+DN) is defined by (L/K)5. On the other hand,
though being technically quite non-trivial, these problems are not especially acute
logically, because they deal with rather extraordinary algebraic stipulations not
typical of any already known instances.
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