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Abstract

Understanding and anticipating the evolution of vulnerability-related activities is a key challenge in modern cyber
threat intelligence. In this work, we investigate the feasibility of forecasting vulnerability sightings—that is, ob-
servable events reflecting public attention or exploitation potential, such as the appearance of proof-of-concept (PoC)
code, detection templates, or discussions across the Fediverse and other platforms. Building upon our previous contri-
bution, VLAI ([2]), a transformer-based model that predicts vulnerability severity directly from textual descriptions,
we explore how severity information can be incorporated as an explanatory factor in time-series forecasting models.

Our experiments evaluate multiple statistical and probabilistic approaches to short-term forecasting of sightings
per vulnerability. We first assess SARIMAX models, with and without log-transformations and exogenous variables
derived from VLAI severity scores. Despite partial improvements through log(x + 1) normalization and severity
inclusion, SARIMAX proved unreliable in practice due to data sparsity, short time horizons, and high burstiness
typical of real-world vulnerability activity. Confidence intervals frequently expanded unrealistically, and negative
forecasts occasionally appeared. To address these limitations, we explored count-based models (Poisson regression)
which better capture the discrete and event-driven nature of sightings data. Early results show that these models
provide more stable and interpretable forecasts, particularly when data are aggregated weekly.

We also discuss alternative strategies better suited for operational settings, including exponential decay functions
for short-lived forecasting horizons to estimate future activity levels without relying on long historical series. This
study highlights both the promise and the inherent challenges of forecasting rare, bursty cyber events, providing
methodological insights toward integrating predictive analytics into vulnerability intelligence workflows.

Topics: Measuring vulnerabilities, Forecast, Decision

1 Introduction

Vulnerability sightings are reports or observations that a specific vulnerability is being referenced, discussed, or even
exploited in the wild [1]. Such sightings (e.g., exploit proofs-of-concept, scanner detections, or blog references)
provide concrete evidence that a vulnerability is active. Tracking and forecasting sightings can help defenders prioritize
patches and assess risk based on real-world activity. We also leverage our earlier VLAI severity model (Bonhomme
& Dulaunoy 2025 in [2]) which predicts CVSS-like scores from text descriptions. In particular, the VLAI “severity
score” can serve as an exogenous indicator of a vulnerability’s potential impact. In this paper, we present experiments
on forecasting the future number of sightings for individual vulnerabilities using statistical models. We compare
SARIMAX time-series models and Poisson regression approaches, discuss their challenges, and propose alternative
strategies and future directions.
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2 Related Work

The forecasting of vulnerability-related activities remains a relatively unexplored area within cyber threat intelligence
research. Most prior work has focused on the assessment rather than the prediction of vulnerability risk. Traditional
models rely on CVSS scoring systems or manually curated indicators, which, while informative, fail to capture the
dynamic nature of vulnerability exploitation and community attention.

Our previous work, VLAI, introduced a transformer-based model designed to predict software vulnerability sever-
ity directly from textual descriptions. Trained on over 600,000 real-world entries, VLAI provides consistent and
automated severity scoring, offering a robust foundation for downstream analytical tasks. In the present study, we
extend this line of research by integrating the VLAI severity score as an explanatory variable for forecasting future
sightings of vulnerabilities, thus linking semantic severity assessment with temporal activity prediction. We are still
regularly maintaining and improving this model.

In parallel, the Vuln4Cast project (FIRST, 2022, [4]) proposed a data-driven framework for forecasting vulnerabil-
ity publication. While Vuln4Cast emphasizes global trends across large vulnerability datasets, our work operates at a
finer granularity, focusing on individual CVEs and their observable evolution across open intelligence sources.

The Exploit Prediction Scoring System (EPSS) presented in [3] provides another relevant line of work, aiming to
estimate the probability of future exploitation for a given vulnerability based on historical exploitation patterns and
vulnerability metadata. While EPSS and our approach share the goal of improving vulnerability prioritization, the
focus here is different: rather than estimating the likelihood of exploitation, we aim to forecast observable activity
over time (e.g., sightings of PoCs, detection scanner templates, or related discussions). Our models therefore operate
on temporal event data, seeking to understand and anticipate vulnerability attention dynamics rather than discrete
exploitation outcomes.

Prior research on time-series modeling in cybersecurity has primarily addressed incident frequency or malware
propagation, rarely addressing sparse event data such as vulnerability sightings. By adapting statistical and proba-
bilistic models to this context, our work contributes a new perspective at the intersection of vulnerability intelligence,
predictive analytics, and cyber situational awareness.

3 SARIMAX Time-Series Forecasting

We first applied classical ARIMA-family models to the daily sighting counts of a given vulnerability. The data are
very sparse (often mostly zeros with occasional small counts), which complicates modeling.

3.1 Seasonal SARIMAX

We attempted SARIMAX model including seasonal terms, with the daily count series log-transformed. However, this
yielded poor results: the fitted model produced nonsensical forecasts (sometimes negative or near-zero far into the
future before the logorithmic transformation) and extremely wide confidence intervals (CI). This is unsurprising given
the data characteristics: SARIMAX assumes a relatively smooth stationary series with clear autoregressive or seasonal
structure, but our sighting data are low-count and burst-like. As a result, the model over-smooths the few spikes and
extrapolates flat or negative trends. Practically, forecasting sighting counts with ARIMA models often requires many
more data points (on the order of dozens or more) than we have. In short time series (< 30 days of data), SARIMAX
is unreliable: it struggles to fit parameters and produces unstable forecasts.

3.2 SARIMAX without seasonal components

We simplified the approach by omitting seasonal components and using a log(x+1) transform on counts. In addition,
we included the VLAI severity score as an exogenous regressor (exog) to capture whether higher-severity vulnerabili-
ties tend to generate more sightings. The VLAI parameter is generally stable over time but may vary following regular
VLAI Severity model updates1. We are currently able to re-train the model in approximately 7 hours2.
The practical workflow was:

• Aggregate daily sightings: Sum all reported sightings for the CVE across sources (e.g. exploit databases,
Fediverse posts) per day.

1https://doi.org/10.57967/hf/5926
2https://github.com/vulnerability-lookup/VulnTrain
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• Compute daily VLAI severity: Take the vulnerability’s VLAI score each day (often nearly constant after publi-
cation).

• Use the daily sighting count (log-transformed) as the target and the daily severity score as an exogenous covari-
ate.

• Predict future counts by feeding the model the average recent severity as the assumed exogenous value (since
severity changes little day-to-day).

This model effectively tests whether severity influences sighting volume. The log(x+1) transform stabilized vari-
ance and prevented fitting errors on zeros. We found marginal improvements: the forecasts were more sensible than
in the first experience with seasonal components, and peak events were captured slightly better.

However, significant issues remained. With only 10–15 days of training data, a SARIMAX model can overfit or
produce negative predictions. In practice, we observed that having around 10 days of sightings for a vulnerability is
already valuable for our analysis, but unfortunately, it is insufficient for reliable SARIMAX forecasting. Sudden
spikes of sightings in the training set caused the model to extrapolate downward into negative territory afterwards.
The confidence interval of the forecast often spans many orders of magnitude, reflecting the model’s high uncertainty
given limited data. In practice, ARIMA-based methods usually require on the order of 50–100 observations for
reliable estimation. In this case, the results can sometimes improve, but requiring such extensive data is impractical
for our purposes. SARIMAX can, however, perform well when forecasting the overall evolution of vulnerabilities, as
demonstrated in [4].

4 Poisson Regression for Count Forecasting

Given the limitations of SARIMAX on sparse counts, we explored count-based regression models. We treated the
number of daily (or weekly) sightings as a Poisson outcome. Poisson regression is designed for non-negative integer
data. It naturally ensures that forecasts remain ≥ 0, unlike linear models. It can also include covariates (e.g. days
since disclosure, severity) and account for overdispersion via a negative binomial variant if needed.

Initial results showed Poisson forecasts more plausibly non-negative. However, like any regression, it still requires
enough data. In practice, we sometimes saw under-dispersion (variance ¡ mean) or over-dispersion (variance ¿ mean)
which violates the basic Poisson assumption.

Poisson models handle the discrete nature of sightings well, but still struggle with data scarcity and variability.
They can complement time-series methods: for example, one might fit a Poisson model to the first few weeks after
disclosure and use it for short-term prediction, then switch to another model as more data accumulates.

We applied this technique to the top vulnerabilities—those with a high number of sightings—reported in our
monthly vulnerability reports3 and observed improved results compared to ARIMA-based methods. The outcomes
indicate general trends, but should not be interpreted as precise predictions.

4.1 Issues and Limitations

From the previous experiments based on the Poisson regression, several recurring issues emerged:

• Very short series: With only 10–30 days of data per CVE, most statistical models are at their limits. For
ARIMA/SARIMAX, estimating even a basic model needs on the order of 50 observations (which is a very good
number for us) to constrain parameters. Insufficient data leads to overfitting or unconstrained predictions. We
recommend collecting longer histories (weeks or months) before relying on ARIMA forecasting.

• Spikes and outliers: Sudden jumps in sightings (e.g. a major exploit release) dominate the fit. ARIMA tries to
treat these as trend, resulting in unrealistic subsequent behavior.

• Negative or nonsensical forecasts: Linear extrapolation can drive counts below zero or to implausible values.
This is especially problematic for count data. Using Poisson (or other non-negative) models addresses this.

• Exploding confidence intervals: When a model is highly uncertain (due to short series or high variance), the
predicted range can become absurdly large. This indicates the model “knows” it has too little information.

3https://www.vulnerability-lookup.org/tags/vulnerabilityreport
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• Exogenous variables: Including severity (VLAI or CVSS) as an exogenous regressor is sensible in theory
(higher-severity flaws may draw more attention). However, because the severity score itself is nearly constant
immediately after disclosure, it provides limited variation. In our SARIMAX fits, the severity coefficient was
hard to estimate reliably until many observations accumulated.

5 Exponential Decay Model for short-term forecasting

The function for the decaying exponential is given by:

y(t) = a · e−bt + c (1)
This model is appropriate for vulnerabilities already past their peak. If a vulnerability is still rising (no decay yet),

the fit might look flat or strange.
1 def exp_decay(t, a, b, c):
2 return a * np.exp(-b * t) + c
3

4 t = np.arange(len(daily_series))
5 y = daily_series.values
6

7 popt, pcov = curve_fit(exp_decay, t, y, p0=(max(y), 0.5, min(y)))
8 a, b, c = popt

Listing 1: Fitting the exponential decay model

6 Logistic Growth

The function for the logistic growth is given by:

y(t) =
L

1 + e−k(t−t0)
(2)

where:

• L: Maximum expected number of sightings (plateau)

• k: Growth rate

• t0: Day of inflection (midpoint of growth)

This model is relevant for “burst-and-fade” dynamics such as CVE mentions, social signals, etc. This model is
more fitted for newly published or trending vulnerabilities. It captures what we typically observe: a rapid increase in
reports just after disclosure, then a plateau and slow decay as attention fades.

1 def logistic(t, L, k, t0):
2 return L / (1 + np.exp(-k * (t - t0)))
3

4 L0 = max(y) * 1.5 # estimated upper bound
5 k0 = 0.3 # moderate growth rate
6 t0 = np.median(t) # inflection around middle
7

8 popt, _ = curve_fit(
9 logistic, t, y, p0=[L0, k0, t0],

10 bounds=([0, 0, 0], [np.inf, np.inf, np.inf]),
11 maxfev=10000
12 )
13

14 last_date = daily_series.index.max()
15 t_future = np.arange(len(daily_series), len(daily_series) + future_steps) # days after last

observation
16

17 forecast_values = np.maximum(logistic(t_future, L, k, t0), 0)

Listing 2: Fitting the logistic model with initial guess for parameters

curve fit bounds ensures sensible and non-negative parameters (L, k, t0).
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7 Adaptive Logistic or Exponential Decay Forecast

Another alternative is to detect based on the sigthings repartition which strategy is the best.

• Trend detection: Checks if recent sightings are increasing or decreasing (via linear slope)

• Model selection: Uses logistic if slope is positive, else exponential decay.

• Curve fitting: To estimate parameters.

• Forecasting: Extends the model 10 days into the future.

8 Experiences

This section presents a few experiments with the different models, illustrating and supporting our conclusions. We
used both recent vulnerabilities and vulnerabilities with a long history of recorded sightings (often exploited vul-
nerabilities detected via the Shadow server). The experiments can be reproduced using the project code at commit
8678ab6a4e7a036eb578f1310b42aa3a22c686ea4

8.1 CVE-2025-61932

Figure 1: Observed sightings over time for CVE-2025-61932

Figure 2: SARIMAX with Log-transform counts without seasonal components

4https://github.com/vulnerability-lookup/TARDISsight/tree/8678ab6a4e7a036eb578f1310b42aa3a22c686ea
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Other tests produced results similar to fig. 2, with notably wide confidence intervals. Without the logarithmic transfor-
mation, the forecasted sighting counts can occasionally become negative.

Figure 3: Poisson regression

Figure 4: Exponential decay

With a sufficient number of sightings, the Poisson regression typically produces results comparable to the expo-
nential decay method, as illustrated in fig. 3 and fig. 4.
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Figure 5: Logistic model

The fig. 6 was produced with the same logistic model, excluding all observations of the vulnerability after 2025-
11-01, in order to assess the accuracy of its forecast.

Figure 6: Logistic model with sigthings up to 2025-11-01
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8.2 CVE-2025-59287

Figure 7: Observed sightings over time for CVE-2025-59287

Once again, the SARIMAX forecast (fig. 8) is largely unsuitable for our case, even with the logarithmic transformation.
The confidence intervals remain very wide, regardless of the distribution of sightings.

Figure 8: SARIMAX with Log-transform counts without seasonal components
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Figure 9: Poisson regression

Figure 10: Poisson regression

The figure fig. 10 was generated using the same Poisson model as fig. 9, but with all observations after 2025-11-01
removed to evaluate the forecast’s accuracy. We observe that the growth appears stronger in fig. 10, which is expected,
but the final prediction overestimates the reality.

Another observation is that a sudden drop in sightings collection is often not visible with the Poisson regression.
As explained in the previous section, a practical solution is to detect which model to use based on the linear slope
(analysis of recent trends). In this case the exponential decay would have made more sense (fig. 11).
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Figure 11: Exponential decay

The adaptive solution would have selected the exponential decay model.5

8.3 CVE-2022-26134

Figure 12: Observed sightings over time for CVE-2022-26134

5
https://github.com/vulnerability-lookup/TARDISsight/blob/8678ab6a4e7a036eb578f1310b42aa3a22c686ea/tardissight/decay/adaptive.py#L75
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Figure 13: Poisson regression

Figure 14: Logistic model

While the decay model proves inadequate here, the logistic model appears largely unaffected by recent bursts of
sightings for vulnerabilities monitored over an extended period (several months or years) with regular observations.
We confirmed this behavior using sightings primarily sourced from the Shadowserver project.

9 Practical suggestions

Based on our experience, we suggest:

• Prioritize gathering more data per vulnerability (e.g. combine multiple sources, extend the observation window).

• Use simple models initially. For very short windows, even a rolling average or exponential decay will outperform
SARIMAX.

• Check for data quality issues (missing days, duplicate reports, extreme spikes) and handle them before modeling
(clamping, logarithmic transformation).

• If negative forecasts appear, switch to a count-based approach like Poisson.
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• Detecting bursts of sightings immediately after a vulnerability’s publication can help in selecting a more appro-
priate model and in setting the initial growth rate and upper bound for the logistic approach.

• Reserve SARIMAX with seasonality only for much longer series (e.g. if a vulnerability activity remains visible
for months). We need to test more in the future SARIMAX for vulnerabilities with observations from the
Shadowser foundation.

10 Future work

Real-time updating. In a production system (such as Vulnerability-Lookup), a forecasting module could update pre-
dictions daily as new sightings arrive. This would allow forecasts to be adjusted on the fly.
Detecting unusual spikes and missing days of sightings to select the most appropriate model.
Currently, all sightings are treated as equivalent, regardless of their type (Seen, Confirmed, Exploited, etc.). We aim
to incorporate both the different types of sightings and the severity scores from our VLAI model. It could help us
establish a link with the actual exploitation of a vulnerability.
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