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Abstract. We aim to highlight an interesting trend to contribute to the ongoing
debate around advances within legal Natural Language Processing. Recently, the
focus for most legal text classification tasks has shifted towards large pre-trained
deep learning models such as BERT. In this paper, we show that a more traditional
approach based on Support Vector Machine classifiers reaches surprisingly com-
petitive performance with BERT-based models on the classification tasks in the
LexGLUE benchmark. We also highlight that error reduction obtained by using
specialised BERT-based models over baselines is noticeably smaller in the legal
domain when compared to general language tasks. We present and discuss three
hypotheses as potential explanations for these results to support future discussions.
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1. Introduction

Recently, the state-of-the-art in many Natural Language Processing (NLP) tasks has been
achieved by large pre-trained models such as BERT and its variants [1]. Specialised
BERT-based models have been developed for many fields, establishing the state-of-the-
art in domain specific tasks, as evidenced in the biomedical domain [2].

In legal NLP, recent work has focused on exploring the applications of BERT-based
approaches on a variety of existing tasks and how to best adapt BERT to the legal do-
main [3,4]. These efforts, while successful at establishing state-of-the-art on a variety of
tasks, also reveal an interesting trend: the performance gain between a general language
BERT and a specifically legal-language trained BERT appears to be smaller than in other
specialised domains [4].

A common application of legal NLP is text classification. Text classification tasks
target various kinds of legal insight, such as predicting the outcome of a ruling from a
decision’s body [5], whether a given clause is likely to be unfair to a customer [6] or
identifying the topic of a contract close [7]. Recently, the LexGLUE benchmark has been
released to allow for easier, more transparent benchmarking in legal NLP [8].

Little attention has been given to comparing these new BERT-based approaches
to well-optimised baselines, such as Support Vector Machine (SVM)-based classifiers,
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which historically perform well on text classification tasks, opting instead for compar-
isons with other deep learning-based baselines.

In this short paper, we aim to (A) highlight the very strong performance of optimised
baseline classifiers on multiple legal text classification tasks compared to deep learning
classifiers, (B) show that the gains from BERT-based approaches is noticeably smaller
on legal-domain tasks than on general tasks and (C) discuss three hypotheses to explain
the previous two phenomena.

1.1. General Domain

For all general domain tasks, we use results from BERT-ITPT-FiT [9], which optimises
BERT for text classification, on four common benchmarks. For SVM results, we report
the score of the best performing variant from a large scale comparison [10].

1.2. Legal Domain Experiments & Baselines

For ease of comparison and reproducibility, we benchmark SVM classifiers on LexGLUE
[8]. LexGLUE, is a benchmark suite comprising of commonly studied legal NLP tasks.
For the purpose of this paper, we evaluate our models on all six classification tasks and
leave the QA task aside and focus on the six text classification tasks:

ECtHR A and B [5,11] are multi-label tasks which use facts part of European Court
of Human Rights (ECtHR) rulings and the goal is to predict which article(s) were found
by the court to have been violated (A) and which article(s) were considered by the court
as allegedly violated (B).

SCOTUS [8] is a multi-class task on opinions from the Supreme Court of the United
States which need to be classified into one of 14 issue areas.

EUR-LEX [12] is a multi-label task on EU law documents. The labels are comprised
of 100 common EuroVoc legal concepts. The aim of this task is to identify all relevant
EuroVoc label linked with a document.

LEDGAR [7] is a multi-class task on contract provisions (paragraph) from the US
Securities and Exchange Commission (SEC) where the goal is to detect the main topic
of a given provision.

Unfair Terms of Service (ToS) [6] is a multi-label task with clauses from the Terms
of Services of 50 online plateforms. The aim of this task is to detect if a clause is likely
to violate consumer rights and exactly which right is at risk of being violated.

Further information about the LexGLUE tasks is provided by Chalkidis et al. [8].

On each of the legal tasks, we train and evaluate SVM classifiers with modest optimisa-
tion. Results are reported as the average of ten runs. We also experiment with NBSVM,
an SVM classifier using Naı̈ve Bayes features to represent words [13]. We release the
code used to train all models. 2.

For BERT-based models, we report the benchmark results from the LexGLUE paper [8].
Following their nomenclature, we refer to the legal Legal-BERT model from Chalkidis
et al. [3] as Legal-BERT and the Legal-BERT model from Zheng et al. [4], trained on
US case law documents, as CaseLaw-BERT.

2Code available at https://gitlab.com/jusmundi-group/public/Legal-svm-baselines

https://gitlab.com/jusmundi-group/public/Legal-svm-baselines
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1.3. Metrics and Evaluation

In line with the nature of this paper, all metrics reported follow the existing literature.
For all General Domain tasks, the metric used is accuracy over the test set. As these
tasks can be multi-class but not multi-label classification tasks, accuracy is identical to
micro-averaged F1 score. [14]

For all legal tasks, we report both micro-averaged (µF1) and macro-averaged (mF1)
F1 score for all tasks to allow for easier comparison with both other models evaluated on
LexGLUE and results from general domain tasks.

In all cases, we report the error reduction between the best performing BERT-based
model and SVMs as the percentage decrease in error rate between models to simplify
evaluating the impact of using a different model over multiple tasks. The error rate is
calculated as 100−Score.

2. Classification Results

Table 1 gives an overview of the various classification results on General Domain tasks
and presents the error reduction obtained by using the a fine-tuned BERT model over the
best SVM classifier in the literature.

Table 2 presents the classification results on the 6 LexGLUE classification tasks.
We report the results for our best performing SVM as well as the results from BERT-
Base, Legal-BERT and CaseLaw-BERT from the existing LexGLUE benchmark. We
also compute the error reduction between the SVM classifier and the best performing
BERT-based model for each task.

The error reduction between SVM and BERT models in the general domain is high,
at 85.1% on average over the four tasks, with the lowest reduction being 77.2%.

The difference is much less stark within the legal domain. BERT-based models do
obtain the best results on all six takss, with Legal BERT models reaching the best per-
formance on five out of the six tasks and a general domain BERT slightly outperforming
them on ECtHR (A). However, in all cases, the performance increase is much less pro-
nounced than in other domains, with an average micro-F1 error reduction across all six
tasks of just 18.1%.

The average reduction in macro-F1 is overall similar, with an average reduction of
18.3%. However, is noticeable that this reduction in is considerably more pronounced
on both ECtHR tasks. The ECtHR dataset is rather imbalanced, with all both tasks con-
taining labels with very few examples and others covering a large proportion of the data
[8]. This seems to point towards the BERT models’ ability t oget better performance with
lower quantities of data.

3. Discussion

The results highlight an interesting phenomenon: while the average micro-F1 error re-
duction on general domain benchmarks is 85.1%, it is only 18.1% on legal text classifi-
cation tasks.
It is worth noting that the performance increases for BERT-based models is larger on
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Table 1. Results for the best performing model of each kind on a variety of General Domain (GD). Error
reduction is calculated between the Best SVM and the best BERT variant.

Model AGNews IMDB Yelp! DBPedia Average
Best SVM 75.3 80.7 84.0 87.1 81.78

BERT 95.2 95.6 98.1 99.3 97.0

Error Reduction 80.6% 77.2% 88.1% 94.6% 85.1%

Table 2. Results for the various models on the 6 LexGLUE classification tasks. µF1 refers to micro-averaged
F1-score and mF1 to macro-averaged F1 score.Error reduction is calculated between the Best SVM and the
best BERT variant.

Model ECtHR SCOTUS EUR-LEX LEDGAR Unfair Average
A B Tos

µF1 mF1 µF1 mF1 µF1 mF1 µF1 mF1 µF1 mF1 µF1 mF1 µF1 mF1

SVM 66.3 55.0 76.0 65.4 74.4 64.5 65.7 49.0 88 82.6 95.1 75.9 77.6 65.4

BERT 71.4 64 79.6 78.3 70.5 60.9 71.6 55.6 87.7 82.2 97.3 80.4 79.7 70.2

Legal
BERT

71.2 64.9 80.6 77.2 76.2 65.8 72.2 56.2 88.1 82.7 97.4 83.4 81.0 71.7

CaseLaw
BERT

71.2 64.2 79.7 76.8 76.4 66.2 71 55.9 88 82.3 97.4 82.4 80.6 71.3

Error
Red. %

15.1 22 19.2 37.3 7.8 4.8 19.0 14.1 0.8 0.6 46.9 31.1 18.1 18.3

the LexGLUE tasks with more pronounced label imbalance, with just a few labels repre-
senting the vast majority of a dataset and certain classes having very few examples. This
is also noticeable with a much larger increase in macro-F1 score when compared to the
increase in micro-F1 score on the same tasks. This highlights the increased robustness of
the BERT-based models, whose use of pre-training and transfer learning techniques al-
low them to reach certain levels of performance performance with much fewer examples
than traditional methods such as SVM. As training in the legal domain can be difficult to
acquire and label, this is an important step towards democratising legal NLP.

Despite this and their impressive performance in both the general domain and other
specialised domains, it is still apparent that in the legal domain, BERT-based models,
even with specific domain pre-training, produce only a modest improvement on the 6
evaluated LexGLUE tasks.

There is no clear explanation for this phenomenon, but we discuss multiple hypothe-
ses (a, b, c). The first (a), initially proposed by Zheng et al. [4] to explain the mild im-
provements from Legal-BERT, is that the tasks on which we evaluate legal NLP algo-
rithms are not suitable, either due to them being too simple or their language not be-
ing sufficiently domain-specific to take advantage of the models’ pretraining. However,
this does not provide a clear explanation for the overall weak improvement from deep
learning over SVM classifiers.

A similar potential explanation (b) could be that simple mono-lingual text classifi-
cation is not enough to truly take advantage of the possibilities offered by more powerful
BERT-based models. This would indicate that the powerful language representation of
Legal-BERT models could be key to tackling more complex tasks. Such tasks have now
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started being explored, such as legal rationale extraction [11] or textual entailment in the
form of a multiple choice QA task [4]. This QA task, CaseHold, is the final task of the
LexGLUE benchmark, and shows a noticeably better increase in performance of Legal
BERT models over General Domain BERT models, which supports the interest of further
studies towards validating this hypothesis.

However, this explanation does not fully address the weak performance gains on
text classification. A final hypothesis (c) we propose is that large language models, even
when trained on legal language, still lack the ability to capture the depth of legal language
and its specific vocabulary. These models could also fail to properly weigh the meaning
of multiple legal concepts being mentioned together. This hypothesis would suggest the
need to develop a way to integrate sources of legal information, such as knowledge-bases
or ontologies, within deep learning models to truly take advantage of their potential.

4. Conclusion and Future Work

We experimentally confirm the intuition that SVM classifiers perform remarkably well
on multiple legal text classification benchmarks. We notably highlight that the relative
performance improvement between BERT-based models and SVM models is consider-
ably smaller within the legal domain than on general domain classification tasks, even
with BERT models specifically trained for the legal domain.

We propose and discuss three potential explanations for these results. Future work
will focus on exploring the limits of BERT models within the legal field, both by explor-
ing more complex tasks and integrating existing knowledge bases with them.

We believe our results do not indicate the unsuitability of BERT-based approaches,
but rather show that they have shortcomings and that they are perhaps better suited to
more complex tasks. We also show that in the case of imbalanced datasets with very
few examples for some of their classes, BERT-based models result in bigger increases in
macro F1-score than in micro-F1 score, showcasing their ability to reach better results in
low-data downstream tasks.

Future work will focus on exploring and pushing the limits of BERT models (and
variants) within the legal domain, both by exploring more complex tasks and attempting
to integrate external knowledge bases within them to improve performance on tasks such
as text classification.

We hope our work will help support future work on Legal NLP focusing on ex-
ploring the specificities of legal text and better taking them into account. We make our
experiments’ code available to support future work.
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