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Abstract— Autoencoders are widely recognized as non-

probabilistic learning models for extracting useful information 

from data. Most autoencoder models assume a Euclidean 

geometry for the underlying nature of the data. However, recent 

advancements in geometric learning suggest that incorporating 

curvature information of the intrinsic manifold of data may 

yield richer representations. In this work, we investigate the 

performance of a learning method that embeds data under 

curved geometric constraints. Our method assumes that the 

data manifold consists of both curved and Euclidean spaces. 

Experimental results demonstrate that our method achieves 

performance comparable to state-of-the-art techniques 

Keywords—Manifold Learning, Geometric Learning, Auto-

Encoders, Representation Learning 

I. INTRODUCTION  

Autoencoders and manifold learning methods are crucial 

components of machine learning, designed to reduce the 

dimensionality of high-dimensional data points. Existing 

manifold learning methods can be broadly categorized into 

two approaches: global and local [1]. Global methods aim to 

preserve the global geometric structure of the manifold, while 

local methods focus on preserving its local geometric 

structure. Both approaches share the fundamental assumption 

that the input data points lie on a manifold that is either 

globally or locally isometric to a subset of Euclidean space 

[2-4]. 

Recent research suggests that incorporating curvature 

information can improve performance over Euclidean-based 

methods [4,5]. For example, employing spherical spaces 

enhances the discriminative ability of models in zero-shot 

learning for unknown classes. Similarly, hyperbolic spaces 

have demonstrated comparable benefits when used as 

embedding spaces [6]. Curved spaces can effectively encode 

complex data structures by leveraging their discriminative 

capabilities, which allow for more precise decision 

boundaries, especially in low-shot scenarios. 

In this paper, we leverage the curvature information of the 

intrinsic data structure to learn a meaningful latent 

embedding space within an autoencoder framework. Our 

method utilizes two distinct autoencoders with different 

latent spaces: Hyperbolic and Euclidean. Each space is 

governed by a latent-specific manifold regularization term. 

The Riemannian metric enhances the model’s capacity to 

generate more meaningful latent representations. 

Experimental results show that our proposed method 
performs comparably to existing state-of-the-art approaches 

The remainder of this paper is organized as follows: 

Section II provides a brief overview of related work. Section 

III introduces the proposed approach. Section IV presents 

experimental results comparing our method to other feature 

selection techniques. Finally, Section V concludes the paper 

and discusses future directions. 

II. RELATED WORKS 

An Autoencoder (AE) is a type of neural network 

consisting of two parts: an encoder and a decoder. A basic AE 

is an unsupervised model that learns a compact representation 

of data through the hidden layer of the encoder. Several 

modified versions of the basic AE have been introduced [7]. 

Regularized AEs, for example, include additional 

regularization terms to improve the model's generalization 

capability. Denoising AEs [8], a specific type of regularized 

AE, are trained with noise-corrupted input data, enabling the 

model to learn representations that ignore input noise. Other 

notable regularized AEs include HSAE (Hessian Sparse Auto 

Encoder) and LMAE (Large Magin Auto Encoder). HSAE 

focuses on dimensionality reduction while preserving the 

locality of the data, and MRAE [9] employs two 

regularization strategies—linearity and sparsity—to 

encourage sparsity and flexible structure learning. 

In addition to AE models, manifold learning methods are 

often used to uncover the intrinsic structure of data. Manifold 

learning approaches can be categorized into several classes: 

local manifold learning methods, aim to obtain a low-

dimensional representation by preserving the local geometric 

structure of the data [5]. For instance, LLE (Locally Linear 

Embedding) constructs a linear subspace within the 

neighborhood of each data point, while HLLE (Hessian 

(Locally Linear Embedding) assumes that the manifold is 

locally isometric to Euclidean space. LTSA applies PCA for 

dimensionality reduction within local neighborhoods and 

patches of the data. 

Variational autoencoders (VAEs) [11] are generative 

models designed to produce new sample data. As 

probabilistic models, VAEs generate encoded representations 

of features from which new data samples can be created. 

Various extensions of VAEs have been introduced in recent 

research, including Conditional VAE (CVAE), which 

generates new images conditioned on specific features. 

The combination of manifold learning methods and VAEs 

represents a novel extension of VAEs. For example, the Flat 

Manifold VAE learns a smooth latent manifold using a 

Euclidean metric to compute similarity [11]. 



Most computer vision tasks traditionally rely on 

Euclidean or spherical embeddings and linear hyperplanes. 

However, the application of curved spaces to improve model 

efficiency is an emerging area of research. Khrulkov [6] 

[citation] proposed hyperbolic image embeddings for 

learning representations, particularly in hierarchical datasets. 

In this work, the network operates in Euclidean space in all 

layers except the final layer, where it transitions from 

Euclidean to hyperbolic space using the exponential map. 

Experiments show that this hyperbolic network outperforms 

other methods by better conforming to the intrinsic geometry 

of image manifolds. Further research has explored the use of 

hyperbolic spaces for various tasks, including visual anomaly 

detection, natural language processing, and identifying out-

of-distribution objects [12]. 

Gulcehre [13] proposed a hyperbolic attention network, 

which modifies the geometry of the embedding space for 

object representations. The results indicate that altering the 

embedding space leads to a more efficient neural network 

without increasing the model's parameter count. 

Few-shot learning is another application that benefits 

from curved geometries, such as spherical spaces. While most 

methods for learning in curved spaces utilize Euclidean-

based optimization methods, there is growing evidence that 

non-Euclidean optimization methods are necessary for 

effectively training models in curved spaces. Several studies 

have shown improvements in model performance when using 

specialized optimization methods. Tabealhojeh [14] 

introduced a new optimization technique for Riemannian 

manifolds based on ADAM, incorporating orthogonality 

constraints into bi-level optimization problems. This method 

uses Riemannian operations such as retraction and parallel 

transport to optimize models while preserving the underlying 

Riemannian geometry. 

III. PROPOSED METHOD 

Inspired by the concept of product spaces [12,15,16], our 

proposed method for representation learning employs two 

individual networks: an autoencoder in hyperbolic space and 

a simple autoencoder in Euclidean space. Each autoencoder 

produces a reduced representation of the input that captures 

specific characteristics of the data. For instance, the 

hyperbolic space effectively uncovers the intrinsic 

hierarchical structure of the input.  

Unlike traditional product models, which combine 

features directly, our method constructs a dynamic product 

input space by training different autoencoders under distinct 

Riemannian manifolds. 

Before training the model, a k-nearest neighbors (KNN) 

graph is used to calculate the similarity between samples and 

the structural relationships within the input data. To transfer 

intrinsic information into the latent embedding space, a 

weight parameter W is introduced. This parameter ensures 

that similar samples are positioned closer together, while 

dissimilar samples are pushed farther apart in the latent space 

To ensure consistency between the two spaces, we 

introduce a regularization term in the loss function that 

minimizes the divergence between the similarity matrices of 

the two spaces, promoting a coherent alignment of their latent 

representations. 

Fig. 1. Shows the overall structure of proposed method. 

𝑧𝑖
′  and 𝑧𝑗

′  are latent representation of inputs. The overall 

representation is concatenated representation of two 

autoencoders.  

Before go further, we provide the a few required 

definitions. 

Exponential and logarithmic maps: to perform operations in 

Riemannian spaces, an exponential map, maps a tangent 

vector in Euclidean space to a manifold. The logarithmic 

map, projects a point on manifold to its tangent vector 

representation. 

 

A. Hyperbolic Autoencoder (HAE) 

Hyperbolic space, characterized by constant negative 

curvature, provides an efficient framework for modeling 

hierarchical and tree-like structures, as well as graph neural 

networks. It offers significant advantages for encoding 

hierarchical relationships and efficiently modeling data with 

exponential growth patterns.  

Several common models exist for hyperbolic space, such 

as the Poincaré Disk Model [6]. In our method, we apply the 

Poincaré model, which represents hyperbolic space within a 

unique disk. The n-dimensional Poincaré ball with curvature 

k, is defined with Eq.1 and Eq.2 is applied to transform an 

embedded 𝑥 ∈   𝑅𝑛  to the Poincare Ball 𝑥 ∈   𝐷𝑛 . To 

calculate the geodesic distance between two points on a 

hyperbolic space, the Eq. 3 and Eq. 4 are used.  

 

()              𝐻𝑘
𝑛 = {𝑥 ∈   𝑅𝑛 ∶ ||𝑥|| <  −1

𝑘⁄ } 

() 

            𝑋𝐻 = {

X, 𝑖𝑓 ||𝑥|| <  1
𝑘⁄

1 − 𝜀

|𝑘|

𝑥

||𝑥||
, 𝑒𝑙𝑠𝑒

 

 

()            𝑑𝐺𝑒𝑜(𝑥, 𝑦) = 
2

√|𝑘|
𝑡𝑎𝑛ℎ−1(√|𝑘||| − 𝑥 ⊕ 𝑦) 

() 𝑥 ⊕ 𝑦  

=
(1 + 2|𝑘| < 𝑥, 𝑦 >  +|𝑘|||𝑦||2)𝑥 + (1 − |𝑘|||𝑥||2)𝑦

1 + 2|𝑘| < 𝑥, 𝑦 > +|𝑘|2||𝑥||2||𝑦||2
 

The Hyperbolic Autoencoder (HAE) is designed to handle 

non-Euclidean manifolds for the input data. In this 

framework, the Euclidean input is projected into a non-

Euclidean space to serve as the input to the encoder. Both the 

encoder and decoder in our model are constructed using 

hyperbolic layers. Specifically, the encoder receives non-

Euclidean input and uses Eq. (1) to project this input onto a 

point in the Poincaré ball. The output of the encoder is a non-

Euclidean latent representation, which is then processed by 

the decoder, also operating in a non-Euclidean space. 

To compute the reconstruction error, the decoder's output 

is projected back to the original input space, and the mean 

squared error (MSE) is used to measure the discrepancy. To 

preserve the local geometry of the input KNN graph in latent 

space of HAE, the geodesic distance, as defined in Eq. (6), is 

calculated within a neighborhood of a central point. 



Eq. (5) presents the overall loss function for the two 

autoencoders. The first term represents the reconstruction 

error, while the second term is a manifold regularization term 

that preserves the local intrinsic geometry of the manifold. 

The loss function is composed of both Euclidean and non-

Euclidean terms. As a result, gradient descent optimization is 

employed, rather than Riemannian optimization methods, to 

efficiently minimize the loss. 

B. Euclidean Autoencoder(EAE) 

Another component of our proposed method is a 

Euclidean autoencoder. The structures of the two networks 

are similar, with the key distinction being that the mapping 

between Euclidean and non-Euclidean spaces is not required 

in the Euclidean network. Similar to the Hyperbolic 

Autoencoder (HAE), a regularization term is incorporated 

into the Euclidean network to preserve the local intrinsic 

geometry. This regularization term is shown in Eq. (7) 

() 

𝑙𝑜𝑠𝑠 = ∑(||𝑥𝑖 − 𝑧𝑖|| + ∑ 𝑊𝑖𝑗(||𝑧𝑖
′ − 𝑧𝑗

′||)

𝑁𝑚𝑖

𝑗=1

𝑁

𝑖=1

)

+ 𝛼||𝐴𝐸𝑢𝑐𝑙𝑢𝑖𝑑𝑒𝑎𝑛 − 𝐴𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐||  

() ||𝑧𝑖
′ − 𝑧𝑗

′|| =  𝑑𝑔𝑒𝑜(𝑧𝑖
′, 𝑧𝑗

′)  

() ||𝑧𝑖
′ − 𝑧𝑗

′|| =  𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑧𝑖
′, 𝑧𝑗

′)  

C. Experiments 

We investigate the efficiency of our proposed methods in 

comparison with traditional manifold learning techniques and 

state-of-the-art autoencoders. To assess the performance of 

our model, we conduct experiments in two phases. In the first 

phase, we compare the proposed method with traditional 

manifold learning approaches, and in the second phase, we 

evaluate the performance of our model against other 

autoencoders. To ensure a fair comparison, we use datasets 

based on the results reported in [7]. Since no performance 

data for autoencoders on the USPS dataset is available, we 

compare our method with traditional manifold learning 

methods using the results reported in [5]. 

In the second phase of the experiments, to achieve a fair 

comparison with other autoencoders, we configure our model 

following the setup described in [7,17]. 

The datasets used in each phase are as follows: 

• YaleFace B: 2,414 source images resized to 32x32. 

• USPS: 9,298 images resized to 16x16 grayscale. 

• MNIST: 70,000 28x28 grayscale handwritten digits 

(0–9). 

• Fashion-MNIST: A dataset similar to MNIST, 

containing 70,000 28x28 grayscale images across 10 

fashion product categories. 

• CIFAR-10: 60,000 32x32 color images categorized 

into 10 classes. 

 

Fig. 1. Architecture of Proposed Method 

As outlined in [7], the number of hidden neurons in each 

layer of the compared methods is typically selected to be 

between 100% and 200% of the input dimension. However, 

our experiments demonstrate that the hyperbolic space 

outperforms the Euclidean network in lower-dimensional 

spaces. While using two autoencoders may initially appear 

more complex than employing a single autoencoder, a single 

autoencoder with a higher number of neurons per layer will 

have more parameters than two parallel autoencoders. To get 

close to fair comparison, in our method, both the EAE and 

HAE models consist of three fully connected layers with 

[256, 64, 32] hidden neurons, and an output layer with 16 

neurons for the MNIST and Fashion-MNIST datasets. For the 

CIFAR-10 dataset, the autoencoder architectures are [512, 

256, 64]. The activation function used in each hidden layer of 

both autoencoders is ReLU. We used fewer neurons in each 

layer compared to other methods mentioned in [7]. Moreover, 

we include a regularization term to maintain consistency 

between the two spaces. However, this may lead to 

performance trade-offs due to the heterogeneity between the 

spaces. To mitigate this, we set a small value for α=0.001 to 

regulate the information transfer between the spaces. 

Table 1 presents the results on the USPS and Yale 

datasets. For USPS, our method outperforms the others in 

terms of classification accuracy, demonstrating its superior 

ability to uncover and preserve the local structure of the input 

data. While the YaleFace dataset is a flat Riemannian space 

that is locally isometric to Euclidean space, our model still 

achieves better performance than CA-LLE, a curvature-

aware manifold learning method. This highlights the 

advantage of employing a model that considers a mixed 

intrinsic structure, especially when prior knowledge of the 

underlying data structure is unavailable. 

As confirmed by the results in Tables 2 and 3, the 

proposed method achieves comparable classification 

performance. Since MNIST is not characterized by a curved 

space, only marginal improvements are observed compared 

to a simple autoencoder. However, Fashion-MNIST, with its 

more curved structure, shows a significant performance gain 

from the proposed method, outperforming all other 

approaches. For the CIFAR-10 dataset, which exhibits an 

 



 
Table 1- Classification Accuracy on YaleFace and USPS datasets 

 

 
Table 2-Classification Accuracy comparison with other 

Autoencoders 

 

 
Table 3-AUC comparison with state-of-the-art Autoencoders 

 

even more pronounced curvature, our proposed method 

delivers the best performance. 

Given the use of a mixed model, we utilized the Adam 

optimization method. While Adam is efficient for input 

spaces with lower curvature, for higher curvature spaces, a 

Riemannian optimization method or a hybrid approach may 

be more effective. 

IV. CONCLUSION 

In this paper, we introduced a mixed autoencoder 
consisting of two independent components: a Hyperbolic 
Autoencoder (HAE) and a Euclidean Autoencoder (EAE). 
The HAE is designed to capture the hierarchical structure of 
data within a non-zero curvature space, while the EAE 
represents a conventional model assuming zero curvature for 
the input space. To construct the HAE, a Riemannian metric 
is employed to map the input data to a Riemannian space. In 
the HAE, the similarity between points is computed using 
geodesic distance, whereas in the EAE, Euclidean distance is 
used. Experimental results demonstrate that the mixed model, 
incorporating different Riemannian manifolds, performs 

comparably to other existing methods. Future work will focus 
on developing deeper mixed networks that combine the 
advantages of convolutional networks with the benefits of 
mixed manifold models. 
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YaleFace USPS  

70.29 90.14 LLP 

68.62 92.81 LEP 

60.42 92.48 LLE 

73.87 94.52 CA-LLE 

83.56 95.68 AE 

84.48 97.14 Proposed Method 

Proposed  

Method 
DMRAE RAE HSAE AE  

98.55 98.99 98.96 98.95 98.22 MNIST 

55.34 54.06 54.06 53.57 44.53 
CIFAR-

10 

90.76 90.24 90.06 90.04 89.16 
MNIST-

Fashion 

Proposed  

Method 
DMRAE RAE HSAE AE  

99.43 98.98 98.21 98.95 98.22 MNIST 

87.45 84.63 84.67 83.76 78.92 
CIFAR-

10 

99.50 99.70 99.63 99.65 99.42 
MNIST-

Fashion 


