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Abstract. The automotive industry is in a rapidly transformation process with 

the influences of the electric mobility and autonomous driving, which has also an 

impact on the knowledge of developers about the behavior of electric motors. In 

order to provide an accurate prediction of efficiency of electric motors and con-

dition monitoring, it is essential to precisely determine the torque of an electric 

motor depending on various influencing factors. In response to this circumstance, 

this paper presents a methodology for the development of a virtual sensor for 

torque prediction. According the state of the art, virtual sensors are a good 

method to handle the challenge for a torque prediction. 

In order to develop a realistic torque prediction, all possible influencing vari-

ables of the electric machine are recorded. In order to eliminate the influences of 

a test specimen, two asynchronous machines with the identical construction (440 

kW nominal power) are braced against each other with a cardan shaft.  

The electrical machines are equipped with a speed sensor on one side and a 

torque sensor on the other side of the machine rotor shaft. 

In order to crystallize an optimal method for developing a virtual sensor, data-

driven AI models were created and discussed in comparison to physical models. 

The results of the individual model approaches are compared with real data and 

discussed in this paper. The black box model has an optimized accuracy in the 

area of torque prediction. 

The significance of this endeavor lies in its potential to revolutionize the field 

of electric vehicle engineering. Traditional physical sensors have limitations in 

terms of cost, complexity, and scalability. Our proposed virtual sensor offers a 

promising alternative, circumventing these constraints while delivering a speci-

fied torque prediction. This innovation represents a substantial step forward in 

the pursuit of efficient and reliable electric propulsion systems. Furthermore, the 

discussion and comparison between the physical and black box approach build 

up a good basement and shows the possibilities of the different methods. 

Keywords: efficiency prediction, electric motors, machine learning, test rig, 

torque prediction, virtual sensor 
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1 Introduction 

This chapter presents the motivation and potential for developing a virtual sensor for 

torque prediction. 

1.1 Motivation 

As the EU's Green Deal leads to a constant increase in the number of electric motors, 

the automotive industry is facing new challenges in the powertrain sector. [1] To meet 

new trends such as autonomous driving and e-mobility, new models and approaches 

are being rapidly developed in all areas. The use of AI is also increasingly being con-

sidered as a solution. Recent global patent applications indicate a growing trend in the 

field of AI. [2] Torque measurement methods are undergoing changes due to the chal-

lenges caused by high rotation speed in the field of electromobility. Additionally, meas-

uring the loads of an electric power train is a new challenge for the automotive industry 

compared to measuring the torque of a combustion engine. [3] In these circumstances, 

precise torque prediction can be helpful. Early estimation of torque is essential for de-

signing drivetrains, safety components, and other system-relevant parts. Real-time 

torque monitoring has been possible using costly and space-intensive sensors that must 

be installed at specific points. [4]  

1.2 Problem definition 

There are different approaches in the literature like the white box modeling and the 

black box modeling. This paper presents and discusses the data-driven modeling ap-

proach so called black box approach. In this approach, correlations are created based 

on collected data and tested cycles to either replace existing systems or create predictive 

models [5]. Physical test setups of the systems to be modeled are required in advance 

for this approach to create the respective database. Finally, it should be noted that im-

porting data and training models for respective variable cases is necessary. [5, 6] 

2 State of the art 

This chapter presents the current state of the art in virtual sensor technology for electric 

motors. In addition, torque prediction is discussed. In [7], a method based on extended 

Kalman filters is proposed for sensorless control of asynchronous motors. The method 

aims to estimate the speed and torque with minimal error for steady-state and transient 

data across a wide speed range. The results demonstrate accurate parameter estimation 

for sensorless control of ASM. [7] The torque of an asynchronous motor drive can be 

estimated using the Model Reference Adaptive System (MRAS), as described in [8]. 

The results indicate that a good dynamic estimation is possible. However, the transient 

state is sensitive to torque changes. [8] Physical models require knowledge of the basic 

physical relationships to achieve good results. Empirical models provide accurate re-

sults without requiring knowledge of the relationships. In [9], a modern approach for 
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predicting torque on permanent magnet synchronous motors is presented. The torque 

and the temperatures on a permanent magnet synchronous motor are estimated. The 

results show a mean square error of 0.0002. The presented work demonstrates success-

ful torque estimation using white box models. Additionally, the prediction of synchro-

nous machines with black box models also shows good results. 

3 Materials and Methods 

This chapter presents the resources and methods used to solve the stated problem. 

3.1 Test bench 

The test setup consists of an asynchronous machine (nominal: 1200 rpm, 3502 Nm, 440 

kW) with an air-cooled rotor and water-cooled stator operating against an identical 

asynchronous machine. One machine is equipped with measuring equipment and is op-

erated in motor mode, while the other is operated in generator mode. A cardan shaft is 

used to connect the two machines. This test setup allows for the complete power spec-

trum of the ASM to be run without any limitations imposed by a test specimen. The 

measurement equipment includes speed and torque sensors, which are also imple-

mented at the test bench. Additionally, three-phase voltage and current signals are rec-

orded on the motorized asynchronous machine using an external data logger. 

 

Fig. 1. Test bench setup 

The load collective used for the experiments consists of 400 random load points. 

This collective is defined with the load points with limit values of 3000 rpm, 3000 Nm 

and 440 kW. Each load point is approached for 20 s and held for 50 s. The measurement 

is 30 s long and recorded during the end of the static area. This is necessary to avoid 

deviations of the control of the induction motors. In preliminary tests the time was de-

termined and defined with a factor in security. The load points are run at random in 

order to minimize the influence of temperature and to prevent machine learning algo-

rithm from recognizing patterns that could result from an ordered sequence of load 

points. 
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3.2 Data preprocessing 

This chapter presents a review of the collected data in order to gain some initial insight 

into the interdependencies of the database. A correlation analysis is conducted to com-

pare the measured variables including current, voltage, speed, electrical frequency, 

phase shift, slip, and torque. In addition, the correlation matrix is employed for purposes 

of data verification, with the objective of ensuring accurate assessment of the physical 

correlations. The input form of the mechanic data is a mean over each load point. The 

feature form of the current and voltage is an RMS value of the deep pass filtered data 

for each load point. The slip, phase delay and electrical frequency are the mean value 

of calculated measurement data as a result of the mechanic and electric raw measure-

ments. The consideration of the phase delay and the slip are a result of the physical 

calculations on the basis of the power loss and efficiency. The results of the correlation 

analysis are shown in figure 2. 

 

Fig. 2. Correlation matrix 

The data shows a strong correlation between various variables. Specifically, the 

speed, electrical frequency, and voltage are closely related due to the mathematical re-

lations. Additionally, the current heavily influences the torque to be predicted later, 

while the slip and phase shift also have a major impact. Although the voltage, speed, 

and electrical frequency have a reduced influence. Consequently, all these variables are 

used as input variables in the black box approach to predict torque, which is shown in 

the following sections. 

A physical model will be employed to calculate torque, which is intimately con-

nected to the formula for determining mechanical power. The mechanical power can 

be determined by calculating the power in the air gap, which results from the rotor 

losses. The calculation of electricity heat loss is dependent upon the number of strands, 

the resistance of the rotor, and the square of the rotor current. This implies that both 

mechanical power and torque are directly proportional to the square of the rotor current. 

These methodological approaches provide a comprehensive understanding of the un-

derlying physical processes. 

The machine learning system XGBoost, which stands for "Extreme Gradient Boost-

ing", was originally developed by Tianqi Chen and described in a paper by Chen and 
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Carlos Guestrin. The way XGBoost works is to iteratively build models, with each new 

tree attempting to correct the errors of the entire previous ensemble of trees. This is 

achieved by minimizing a loss function that takes into account both the prediction error 

and the complexity of the model to avoid overfitting. [10] 

In the model selection process, where the DecisionTreeRegressor, XGBRegressor 

and CatBoostRegressor models were trained on a training dataset, the XGBRegressor 

model proved to be the best performer when further analyzed on an independent test 

dataset. The XGBRegressor model uses the previous shown variables as input to predict 

torque as the target variable. The hyperparameter optimization with the following pa-

rameters is generated the best results: maximum depth of six, regression alpha of four, 

the number of estimators of 150 and a learning rate of 0.1 achieved the best result. 

4 Results and Outlook 

This chapter presents and discusses the results of the black box modeling approach. It 

concludes with an outlook for further in-depth steps. 

4.1 Model discussion and result 

The different white box model approaches in the state of the art with specified limita-

tions can achieve a relative error in the area of 0.25 to 0.40. [11, 12] The black box 

model approach of this paper has a maximum absolute prediction error of 141 Nm. On 

average, the absolute error is 15.25 Nm, and the relative error is 0.026. Figure 3 shows 

the relative prediction error of the black box model against the real torque. It is evident 

that the relative error is high in the lower torque area and diverges rapidly with an in-

crease in torque towards zero. The reasons for the high relative error values in the lower 

torque area is the low real torque and the challenges at the measurement and calculation 

of the slip and the phase delay as a result of the complex equipment and the high fre-

quency changes of the electric values. 

 

Fig. 3. Relative error of black box model 

In addition, the predicted torque over the test torque is shown in figure 4.  
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Fig. 4. Predicted torque over real torque of black box model 

As described, the predicted torque follows a normal curve as an angle bisector. This 

shows the high accuracy of the prediction of the black box approach. 

4.2 Conclusion and Outlook 

This paper discusses the concept of virtual sensors and their implementation in electri-

cal machines. It describes the test setup, sensor concept, and data pre-processing meth-

odology. The paper concludes by comparing and discussing prediction errors based on 

various parameters and limitations of the white box and black box approach. The white 

box approach with specified restrictions can achieve a relative error between 0.25 to 

0.40, while the presented black box approach can achieve 0.026. 

The conclusion is, that the presented black box approach has a ten times smaller 

error in compare to the white box model. So, the presented virtual sensor can be an 

effective substitution or extension for physical torque sensors. 

This approach can serve as a foundation for further research, including analyzing the 

adaptability of results to transient data conditions and optimizing the model's accuracy 

by using a broader database.  
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