
EasyChair Preprint
№ 2457

Applications of NANO-RK in Internet of Things
(IoT)

V. Chandra Shekar Rao, Chinthapally Akanksha and
Voore Subba Rao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 25, 2020

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075,Volume-X, Issue-X, July 2019

1



Abstract – The IoT is famously known as Internet of Things is a

universal communication for everything can communicate with

Internet sensors. The sensors devices are designed as constrained,

lightweight, minimum energy powered and capacity of minimum

battery life run by Real-time operating systems[6]. The Carnegie

Mellon University designed micro controllers for sensor networks.

NANO-RK is one of the open source Real-time operating system

for to run real-time tasks. The NANO-RK operating system, the

term RK is short for resource kernel. A resource kernel provides

reservations on how often system resources can be consumed and

managed. For example, Using NANO-RK, by applying to set CPU

resource reservations technology, a task might only be allowed to

execute 10 ms every 150 ms.. In the same way another example by

using Nano-Rk by applying Network resource reservations

technology a node might only be allowed to transmit 10 network

packets per minute. The applying these reservations to protect

battery life of a node and also protecting a failed node from

generating excessive messages in network traffic. For this, the

battery life of a node will be minimized. The NANO-RK is open

source and written in C language and runs on the Atmel-based

FireFly sensor networking platform. The goal of this paper is an

overview of NANO-RK. As per operating system capabilities and

also takes part from an open source of ecosystem facilities, the

NANO-RK is the a suitable operating system for constrained and

lower power sensor devices for Internet of Things. In this paper,

the study of the most important features of IOT based Resource

Reservation, Deep sleep mode, Fault management and Routing

features by NANO-RK operating system[3].

Keywords – IoT, Nano-Rk, ROT, microcontroller, resource

reservation, deep sleep mode

I. INTRODUCTION

The Internet is expanding with the advent of the

Internet of Things (IoT)—billions of physical entities on our

planet (and beyond) are expected to be instrumented and

interconnected by open protocol standards. In particular, the

IoT will harness next-generation sensors and actuators to

interoperate with the physical world. Such cyber-physical

systems will not only perform data acquisition and
processing, but are also likely to control more and more

Revised Manuscript Received on July 22, 2019.
* Correspondence Author

Voore Subba Rao, Physics & Computer Science department,Dayalbagh

Educational Institute, Dayalbagh,Agra. Email:vsrao.voore@gmail.com

Dr. Vodithala Chandra Shekar Rao, Computer Science and Engineering

Department, KITS, Warangal E-mail-vcsrao.kitswgl@gmail.com

elements of our environment. IoT devices will not only
interconnect, but also extend communication beyond

gateways, into today’s Internet (e.g., the cloud) which has not

dealt before with so many devices of marginal

intelligence[2].

Every thing in the universe is going to be connect to

the Internet for managing the things. i.e. the scope of

communication by M2M rather than H2M[4]. The human

invention of things like Machines, Internet and

communications are become to M2M interaction for that

Internet of Things becomes Every Thing of Internet[4,5].

The architecture of IOT designed with a specialized
communication of open standard protocols. The design of

architecture and layers of IoT implementing such as the

things which are connected, communicated and managed by

specialized protocols.

In terms of hardware resources, the IOT devices are

very constrained, they are having minimum energy resources,

battery life very low so these are not yet all capability having

enough resources to run traditional operating systems like

Windows, Linux and BSD. As per resource limitations of

these IoT devices the computable operating systems were

designed. All these type of Operating systems NANO-RK is
prominent operating system designed for IoT devices[6]. The

features of NANO-RK runs minimal 2 kb of RAM, supports

C, C++, Multithread support, Resource Reservation

capability.

NanoRK takes advantage of priority-based

pre-emptive scheduling to help honor the real-time factor of

being deterministic thus ensuring task timeliness and

synchronization. Due to the characteristic of limited battery

power on the wireless node, Nano-RK provides CPU,

network, and sensor efficiency through the use of virtual
energy reservations, labeling this system as a resource kernel.

These energy reservations can enforce energy and

communication budgets to minimize the negative impact on

the node’s operational lifetime from unintentional errors or

malicious behavior by other nodes within the network. It

supports packet forwarding, routing and other network

scheduling protocols with the help of a light-weight wireless

networking stack. Compared with other current sensor

operating systems, Nano-RK provides rich functionality and

timeliness scheduling with a small-footprint for its embedded

resource kernel (RK).[6]

APPLICATIONS OF NANO-RK IN

INTERNET OF THINGS (IoT)

Dr.V.Chandra Shekar Rao,Associate Professor at CSE,Kits Warangal,

Gmail:vcsrao.cse@kitsw.ac.in

 Chinthapally.Akanksha ,Student, btech ECE 2
nd

 year.

Voore Subba Rao,Research Scholar.

Applications of Nano-RK in Internet of Things (IoT)

II- AN OVERVIEW OF REAL-TIME OPERATING

SYSTEM (RTOS)

The real-time applications are run by real-time

operating systems. These operating systems knows as RTOS

and guarantees executing the real-time applications in a

consistent timing to meet high degree of control over tasks

and allow to meet dead lines. In hard-real times operating

system completion of a task beyond its deadline it is

considered as useless. The soft real time systems tolerate

latency and use up unused slack cycles of other processes.

The basic difference of using a GPOS or an RTOS

lies in the nature of the system – i.e whether the system
is “time critical” or not! A system can be of a single purpose

or multiple purpose. Example of a “time critical system” is –

Automated Teller Machines (ATM). Here an ATM card user

is supposed to get his money from the teller machine within 4

or 5 seconds from the moment he press the confirmation

button. The card user will not wait 5 minutes at the ATM

after he pressed the confirm button. So an ATM is a time

critical system. Where as a personal computer (PC) is not a

time critical system. The purpose of a PC is multiple. A user

can run many applications at the same time. After pressing

the SAVE button of a finished document, there is no
particular time limit that the doc should be saved within 5

seconds. It may take several minutes (in some cases)

depending upon the number of tasks and processes running in

parallel.

Nano-RK, a embedded real-time operating system

with networking support. Nano-RK supports many sensor

networking applications such as surveillance and

environmental monitoring are time-sensitive. To support

such type of applications, the implementation of Nano-RK,

having best features like reservation-based real-time

operating system (RTOS) with multi-hop networking support

for the wireless sensor networks[7].

Since sensor nodes are resource-constrained and

energy constrained, the Nano-Rk provide functionality

enforce limits on the resource usage of individual

applications and on the energy budget used by individual

applications. Nano-Rk having best capability of CPU

reservations and Network Bandwidth reservations wherein

dedicated access of individual application to system

resources is guaranteed.. The CPU, network and sensor

reservation values of tasks can be iteratively modified by the

system designer until the battery lifetime requirements of the
node are satisfied.

III- LITERATURE SURVEY

Infrastructural software support for sensor networks

was introduced by Hill et al. in [8]. They proposed TinyOS, a

low-footprint component-based operating system that

supports modularity and concurrency using an event-driven

approach. TinyOS 1.0 supports an event-driven model

wherein interrupts can register events, which can then be

acted upon by other nonblocking functions. We believe that
there eare several drawbacks to this approach. The TinyOS

design paradigm is a significant departure from the traditional

programming paradigm involving threads, making it less

intuitive for application developers.

In contrast, there must be a support a traditional

multitasking paradigm retaining task abstractions and
multitasking. Unlike TinyOS, where tasks cannot be

interrupted, we support priority-based pre-emption.

Nano-RK provides timeliness guarantees for tasks with

real-time requirements. We provide task management, task

synchronization and high-level networking primitives for the

developers use. While our footprint size and RAM

requirements are larger than that of TinyOS, the requirements

are consistent with current embedded microcontrollers. A

sensor network microcontroller may typically have32-64KB

of ROM and 4-8KB of RAM. Therefore, Nano- RK is

optimized primarily for RAM and secondarily for

ROM.SOS[9] is architecturally similar to TinyOS with the
additional capability for loading dynamic runtime modules.

In contrast to SOS, we propose a static, multitasking

paradigm with timeliness and resource reservation support.

The Mantis OS [10] is the most closely related work

to ours in the existing literature. In comparison to Mantis, this

paper provide explicit support for periodic task scheduling

that naturally captures the duty cycles of multiple sensor

tasks. This paper support real-time task sets that have be in

deadlines associated with their data delivery. This paper use

the mechanisms of CPU and network reservations to enforce
limits on the resource usage of individual tasks. With respect

to networking we provide a rich API set for socket-like

abstractions, and a generic system support for network

scheduling and routing. Nano-RK supports power

management techniques and provides several power-aware

APIs for system use.

While low-footprint operating systems such as

μC/OS, OSEK and Emeralds[11] supportreal-time

scheduling, they do not have support for wireless networking.

Our networking stack is significantly smaller in terms of foot

print as compared to existing implementation of wireless
protocols like Zigbee(around 25 KB ROM and 1.5 KB RAM)

and Bluetooth (around 50KB ROM).We also provide

high-level socket-type abstractions, and hooks for users to

develop custom MAC protocols.

This research paper provides system infrastructure

can be used to complement distributed sensor applications

such as an energy-efficient surveillance system ([12, 13]).

Study the literature on real-time networking/ resource

allocation protocols [14,15], energy-efficient routing/

scheduling schemes [16, 17] , data aggregation schemes [18],
energy efficient topology control [20] and localization

schemes [21, 22]. Nano-RK can be used as a software

platform for building higher-layer middleware abstractions

like [23]. The study of energy reservation mechanism can

also be used to prevent the type of energy DoS attacks

described in [24].

Finally, our work complements [25] in extending

the Resource Kernel (RK) paradigm to energy-limited
resource constrained environments like sensor networks (and

hence the name“Nano-RK”).

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075,Volume-X, Issue-X, July 2019

3

IV - FEATURE OF NANO-RK

A.The Design of A Resource Kernel

Nano-RK was developed by Carnegie Mellon
University. The design paradigm is to meet multi-hop

networking for wireless sensor network.

The Real Time Operating Systems like Tiny Os,

MantisOs having dis-advantages like timeliness guarantee for

the process of task completion with a real time environments.

Low level capability of high level networking premitivies

and task management support.

Due to the characteristic of limited battery power on

the wireless node, Nano-RK provides CPU, network, and

sensor efficiency through the use of virtual energy
reservations, labeling this system as a resource kernel. These

energy reservations can enforce energy and communication

budgets to minimize negative impact on the node’s

operational lifetime from unintentional errors or malicious

behavior by other nodes within the network. It supports

packet forwarding, routing and other network scheduling

protocols with the help of a light-weight wireless networking

stack. Compared with other current sensor operating systems,

Nano-RK has optimized its microcontroller for current trends

in hardware configuration of larger ROM (32-64KB) and

smaller RAM (4-8KB)[3]. Thus, it provides rich functionality
and timeliness scheduling with a small-footprint for its

embedded resource kernel (RK).

B.The features of Nano-RK

Memory management

Nano-RK uses a static design-time approach for

energy usage control. Dynamic task creation is disallowed by

Nano-RK requiring application developers to set both task

and reservation quotas/priorities in a static testbed design.

This design allows the developers to create an energy budget

for each task in order to maintain application requirements as

well as energy efficiency throughout the system’s lifetime.
Using a static configuration approach, all of the runtime

configurations as well as the power requirements are

predefined and verified by the designer before the system is

deployed and executed in the real world. This approach also

helps to guarantee the stability and small-footprint

characteristics when compared with traditional RTOSs.

Fault management system

To manage fault management system, in Nano-Rk

posses Watchdog mechanism that triggers a system reset

action if the system hangs on for a critical faults. The
Watchdog is a software timer, that brings the system back

from nonrepective state into normal operation by waiting

until the timer goes off and reboot the device. In Nano-Rk

the watchdog timer is connected directly to the processor’s

reset signal reboot on error. Default it is put into enabled state

when the system boot and reset each time the scheduler

executes.

Power management

Deep Sleep Mode is one of the feature of Nano-RK.

It is the best method energy saving. For saving energy
efficiency, if there are no eligible tasks to run, the system can

be powered down and given the option to enter deep sleep

mode. When the system is in deep sleep mode, only the deep

sleep timer can wake the system up with a predefined latency

period. After waking up from the deep sleep mode, the next

context swap time is set to guarantee the CPU wakes up in

time. If a sensor node does not wish to perform deep sleep, it
also is presented with the choice to go into a low energy

consumption state while still managing its peripherals.

Scheduling tasks-

The core of Nano-RK is a static preemptive

real-time scheduler which is priority-based and energy

efficient. For priority-based preemptive scheduling, the

scheduler always selects the highest priority task from the

ready queue. To save energy, tasks do not poll for a resource

but rather tasks will be blocked on certain events and can be

unlocked when the events occur. When there is no task in the

ready queue, the system can be powered down to save
energy. When the system is working, one and only one task

(current task), signified by the nrk cur task tcb, is running for

a predefined period. So the most important job of the

scheduler is to decide which task should be run next and for

how long the next task should be run until the scheduler is

triggered to run again.

Network management & Communication Protocol Support

For sensor networks the primary goal in network

management is minimizing energy use and the main means

for doing this is by reducing the amount of communication
between nodes, because more energy is utilized for data

transfer during the communication between nodes.

Nano-RK supports multi hop networking &

provides a lightweight networking protocol stack that

provides a communication abstraction similar to sockets. To

handle memory more efficiently, transmit and receive buffers

are managed by the application. OS copies the received data

into the application buffers. Once the data is placed into the

application buffer, the application is notified accordingly.

A Time Synchronized Link Protocol, RT-Link
provides support for real-time applications through bounded

endto-end delay across multiple hops using Scheduled slots,

and collision free transmission [7]. It is implemented over a

TDMA link layer protocol, where each node transmits the

data in predefined time slots, allowing for energy savings. In

case of new mobilenode, contention slot is assigned to it

using which it makes a reservation request to a gateway. Its

membership keeps on changing with time.

V-RELATED WORK

By using Nano -RK, the following real-time problem solving

in Internet of things as follows.

A Resource Reservation

B. Deep Sleep Mode

C. Fault management

D. Routing

A. Resource Reservations

Applications of Nano-RK in Internet of Things (IoT)

The best feature of NanoRK is Resource

Reservations. This paradigm, as implemented in a Resource

Kernel [21], is a practical paradigm for guaranteeing

timeliness in real-time operating systems.

The NanoRK enforces guaranteed access to system

resources and also the scheduling tasks for that reason the

satisfaction of application timeliness requirements. The

resource reservation paradigm is desirable for dynamic and

as well as static setting. A sensor application task can specify

its requirement of CPU cycles, network bandwidth and

network buffers over fixed periods which will be enforced by

the NanoRK kernel. The sensor nodes have some constraints

that exactly a single task is associated with a reservation.

The important design aspects of Nano-RK supports

CPU reservations, sender/receiver network bandwidth
reservations and sensor/actuator reservations[6]. All of these

reservations can be combined to enforce a virtual node-wide

energy reservation[25].

Experimental scenario 1

In constrained nodes, the battery life saving is

increase the life time of sensor nodes. To maximize the

battery life time, the proper utilization of energy reservations

and network bandwidth reservation is important. To pushes

the sensor data to gateway, the sensor nodes topological

organized to form a forwarding tree. The duty cycles of
individual nodes are chosen for life time of sensor networks.

The energy reservations are remains connected upto over its

operational life time to manage is continuously energy in a

distributed sensing system The experimental setup consisted

of a sensor network that was arranged as shown in figure with

a target lifetime of 2 years.

Fig1.

Energy reservation experiment

The sensor networks are topologically organized to

form a forwarding tree that pushes sensor data to one or more

gateway. The guarantee the lifetime requirements of sensor

network depend upon the duty cycles of each node. The

distributed systems concept, applications are configured in

sensor nodes energy non-friendly status for that the

transmitting of number packets to the gateway. In that
manner energy will be consuming and the lifetime of sensor

nodes will be shorten. In this paper, the sensor nodes in a

network are arranged for getting target life time of atleast 2

years. Here the NANO-Rk is realtime operating system to

handle the packets. If resource reservations not used, then

operating system transford these packets up the tree. For that

energy efficinet forwarding packets aggregated as single

packet, then this aggregated packet forwarding upto the tree.

Why because thethe payload data is range 2-4 bytes only. In

this type of scenario the duty cycles of all nodes are equal in

the network. In this table the node d was configured
incorrectly for that reason, the d node send500 packets every

10 senconds rather than 1 packet per every 10 seconds.

Table 1: Energy statistics for current Enforcement from

Energy Reservations Hardware setup

Table 2- Enforcement from Energy Reservations

In table 1 shows the details of power characteristics

of sensor node. In table 2 shows, counter values of each node
as per characteristics to calculate mean power of every node

with maximum mean power. The network lifetime was found

to be 30 days with reserve reservations and 33 months

without reserve reservations.

Experimental scenario 2

This research paper highlight the Nano-Rk to make

reserve reservation to make increase of lifetime of nodes in a

network. The nodes of lifetime of a node without

reservations and the node with reservation is experimentally

shows the details in table. The deployed node becomes faulty

during its lifetime by broadcasting messages without a

constraint. For this result, the listening nodes like node4,

node5 forward unwanted packets from the node 2 gateway

node i.e. node6.The Nano-Rk uses resource reservation

protocol for increase the lifetime of a node using reservation
of resources. Without reservation-based protocol the number

of packets unwontedly transferring by nodes, these nodes

shorten their lifetime from 3-5 years down to 3-4 days. With

this concept, Nano-Rk shows managing energy efficiency by

resource reservations strategy.

Node Reserve
[TX pkt/10

sec.
RX ptk/10

sec.

TX
Rate
[pkt.10
sec]

Total
packets
handled
without
reserve

Total
packets
handled

with
reserve

1 [1,2] 1 500 500

2 n/a 500 175000 1750

00

3 [1,2] 1 1150 1350

4 [1,2] 1 175000 1250

5 [1,2[1 185600 2120

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075,Volume-X, Issue-X, July 2019

5

Fig2 – nodes in a network

Fig3. Without using energy reservation

2. Deep Sleep Mode

Deep sleep mode is the important feature of Nano-Rk to

manage energy efficiency resources. The sensor nodes

having the limited battery resources. The battery life is short

period. The Nano-Rk using energy saving method by using

deep sleep mode.

Fig4. Energy efficiency system managed by Nano-rk using

Deep sleep mode

In this scenario, If the sensor node, no tasks to run,

then the status of the system will be powered down and
entering into deep sleep mode. In this status, the deep sleep

timer can wake the system up with a predefined latency

period. The swap time is set to guarantee the CPU wakes up

in time after waking up from deep sleep mode. It is a choice

to sensor node, to go into a low energy consumption state

when the sensor node does not wish to in deep sleep status.

This way, the Nano-Rk perform energy management by deep

sleep mode of any sensor node in a network[27].

3.Fault management

Watchdog is a software timer that triggers a system
reset action if the system hangs on crucial faults for an

extended period of time. The watchdog mechanism can bring

the system back from the nonresponsive state into normal

operation by waiting until the timer goes off and

subsequently rebooting the device. In Nano-RK, the

watchdog timer is tied directly to the processor’s reset signal

REBOOT ON ERROR. By default, it is enabled when the

system boots and reset each time the scheduler executes. If

the system fails to respond within the predefined time period,

the system will reboot and run the initialization instruction

sequence to hopefully proper control.

Fig5. Watch dog timer in ATM

A practical scenario by Nano-Rk operating system to manage

constrained devices properly. It is an experimental scenario

by Nano-Rk os using Watch dog timer for ATM ATM

timeout using a watchdog timer. In this scenario, a watchdog

timer is used to implement a timer out for an automatic teller

machine (ATM). ATM session introduces a user inserting a

bank card, the user typing in a personal identification number

(PIN), and then answering questions about whether to

balance enquiry or withdraw money, while selecting this

option by the user, immediately the user chooses the required

amount to withdraw from ATM. We want to design the ATM

such that it will terminate the session if at any time the user
does not press any button for a minute. In this case, the ATM

will eject the bank card and terminate the session.

Working procedure–

As oscillator signal, OSC is connected to prescaler that

divides the oscillator frequency by 12 (OSC/12) to generate a

signal clk. The signal clk is connected to an 11-bit up counter
scalereg. When scalereg overflows, it rolls over to "o", and its

overflow output causes the 16-bit up counter timer reg to

increment. If timing overflows, it triggers the system reset or

an interrupt. To reset the watchdog timer, checkreg must be

enabled. Then a value can be loaded into timereg.When a

value is loaded into timereg, the checkreg register is

automatically reset.

If the checkreg

register is not

enabled. a value can

not be loaded into
timereg. This is to

prevent erroneous

software from

unintentionally

resetting the

watchdog timer.

node Reserve
[TX pkt/10

sec.
RX ptk/10

sec.

TX
Rate

[pkt.10
sec]

Lifetime
without

reserve

Lifetime
with reserve

1 [1,2] 1 5 years 5 years

2 n/a 200 3 days 3 years

3 [1,2] 1 5 years 5 years

4 [1,2] 1 4 days 5 years

5 [1,2[1 4 days 4 years

Reset

mode

normal

mode

Deep

sleep

mode

standby

mode Idle

mode

Low energy

consumption

state

No tasks to run

No

Yes

Watchdog

timer
Processor

reset

clock

prescaler scalereg

timereg checkreg

Applications of Nano-RK in Internet of Things (IoT)

to system reset/

 overflow interrupt

Fig6: ATM timeout using a watchdog time structure

Scenario 2 Example

Battery life mange for mobile phone display screen using
Nano-RK -

 Applications of watch dog timer is also implement in

mobile phones. An application in mobile phone is that

display is off in case no GUI interaction takes place within a

watched time interval. This will save good amount of battery

power.

4. Packet Routing

Nano-RK is a fully preemptive reservation-based

real-time operating system (RTOS) with multi-hop

networking support for use in wireless sensor networks.

Nano-RK currently runs on the FireFly Sensor Networking
Platform as well as the MicaZ motes.

The FireFly 3 is an ATmega128rfa1 powered

wireless sensor device with the following specifications such

as 16MHz with 32KHz low-power clock, Integrated 802.15.4

compatible 2.4GHz radio,16KB RAM, 128KB FLASH, and

4KB EEPROM and 2 UARTS, I2C, SPI, GPIO, ADC.

It includes a light-weight embedded resource kernel

(RK) with rich functionality and timing support using less

than 2KB of RAM and 18KB of ROM. Nano-RK supports
fixed-priority preemptive multitasking for ensuring that task

deadlines are met, along with support for CPU, network, as

well as, sensor and actuator reservations. The important

features of Nano-Rk is the tasks can specify their resource

demands and the operating system provides timely,

guaranteed and controlled access to CPU cycles and network

packets. Together these resources form virtual energy

reservations that allows the OS to enforce system and task

level energy budgets.

This paper connects the full IPv6 stack to the

nano-rk operating system by
implementing 6LoWPAN. It guarantee to which enables the

use of IPv6 over wireless embedded

systems. The benefits of using 6LoWPAN include Open,

long-lived, reliable standards,Easy learning curve,

Transparent Internet integration, Network maintainability,

Global scalability, End-to-end data flows

Architecture of 6lowpan –

Overall, there are two main parts in implementing the

network and the Edge Router.

Fig7. Architecture of 6LoWPAN

Node architecture

The routing is one of the primary aspects of wireless

networks system. As per specification of 6LoWPAN to

implement the Routing Protocol (RPL) from the Routing

Over Low Power and Lossy Networks (ROLL) work group.

Routing protocols perform well for adhoc networks.

The network is ad hoc because it does not rely on a

pre-existing infrastructure. The routing protocol is optimized
for up/down stream routing to and from a root node. This type

of RPL paradigm is very closely aligned to networks

connected to the super netting i.e. Internet.

The routing packets of Routing Protocol (RPL) are sent via

Internet Control Message Protocol (ICMPV6) packets. The

packet is not belonging a particular nodes and this node

receives a packet then automatically communicate Routing

Protocol (RPL) for where to transfer this received packet.

Here the implementation is to transfer of this packet route

over IP Address instead of forwarding with Media Access

Control (MAC) address. This is recommendation of
6LoWPAN specifications.

Edge router architecture

The main process of edge router is accepting any incoming

IPV6 packets and convert it to 6LoWPAN packets and take

any outgoing 6LoWPAN packets and converts it to IPV6
packets. This is a strong recommendation of edge router and

integration with ipv6 and necessary to implementation a

6LoWPAN network driver.

 6lowpan node

 bmac

tcp udp icmp

Ipv6
 netlink

slipstream

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075,Volume-X, Issue-X, July 2019

7

 Fig 8: Edge router architecture

The edge router logic running in user space for that

reason did not crash the kernel whenever a bug occurred.

Here the debugging tools gbd used for debugging in user

space. The user-space process which communicates with the

6LoWPAN network driver via a netlink sockets. The heavy

router responsible is user-space process. The router

recommends features like compression/decompression,

fragmentation/defragmentation, routing tables, acting as the

root RPL node and bootstrapping.

The edge router communicates with nodes by

setting up a slipstream communication link with a spare node

from user-space mod. All packets which the edge router

wants to send to the network are just sent to this spare node

over slipstream. The spare node then sends the packets over

Berkeley MAC (bmac) on behalf of the edge router. Any

packets received by the node via bmac are forwarded to the

user-space process. In this way edge router is encapsulated in

the user-space process

CONCLUSION

In this paper, we described Nano-RK, a

reservation-based energy-aware real-time operating system

with wireless networking support for resource-constrained

sensor network environments. We support a classically

structured multitasking OS with API support for task

management, synchronization, IPC and high-level

networking abstractions, with these functions specifically

tailored to the constrained sensor network environments. We

enforce limits on CPU, bandwidth and sensor usage of
individual tasks by using a reservation-based approach to

enforce bounds on timeliness, QoS and node lifetime. We

adopt a static design-time approach as compared to a

dynamic run-time approach for creating an embedded sensor

taskset. OurOS design uses several optimizations for memory

and energy-efficiency reasons while retaining a richest of

capabilities. Nano-RK will be made available for public use

in the near future.

ACKNOWLEDGEMENTS

Thanks to the God for His showers of blessings
throughout my research paper work to complete the research

successfully. I would like to express my deep and sincere

gratitude to management, Director of Dayalbagh Educational

Institute, Agra providing computer systems, infrastructure

and giving valuable guidance time-to-time in complete my

research paper.

REFERENES

[1]. Kevin Ashton: That 'Internet of Things' Thing. In: RFID

Journal, 22. July 2009. Abgerufen am 8. April 2011.

[2]. G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy, “ Smart

Objects as Building Blocks for the Internet of Things,” IEEE

Internet Computing, pp. 30-37, Jan/Feb 2010.

[3]. Anand Eswaran and Anthony Rowe and Raj Rajkumar,

“Nano-RK: an Energy-aware Resource-centric RTOS for

Sensor Networks,”,2005

[4]. D. Boswarsthick, O. Elloum and O. Hersent, M2M

Communications a System Approach, 1st ed., West Sussex:

John Wiley & Sons Ltd., 2012, pp. 26-32.

[5]. European Telecommunication Standard Institute,

"Machine-to-Machine communications (M2M); Definitions,"

2013

[6]. Anand Eswaran and Anthony Rowe and Raj Rajkumar,

“Nano-RK: an Energy-aware Resource-centric RTOS for

Sensor Networks,”,2005

[7]. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

“Wireless sensor networks: a survey,” Computer networks, vol.

38, no. 4, pp. 393– 422, 2002

[8]. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David

Culler, Kristofer Pister System architecture directions for

network sensors ASPLOS 2000, Cambridge, November 2000.

[9]. Simon Han, Ramkumar Rengaswamy, Roy S Shea, Eddie

Kohler, Mani B Srivastava SOS : A Dynamic Operating System

for Sensor Nodes In Third International Conference onMobile

Systems, Applications and Services (Mobisys) June 2005.

[10]. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B.

Shucker, J. Deng, R. Han MANTIS: System Support For

MultimodAl NeTworks of In-situ Sensors 2nd

ACMInternationalWorkshoponWirelessSensorNetworksandAp

plications(WSNA) 2003

[11]. Zuberi, K. M., Pillai, P., and Sin, K. G. EMERALDS: A

small-memory real-time microkernel In Proceedings of the 17th

ACMSymposium on Operating SystemPrinciples ACM Press,

pp. 277–291. June 1999.

[12]. Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek

Abdelzaher, Liqian Luo, Radu Stoleru, Ting Yan, Lin Gu,

Jonathan Hui, Bruce Krogh. Efficient Surveillance System

Using WirelessSensor Networks MobiSys’04, Boston,

MA,June 2004.

[13]. Juang P, Oki H, Wang Y, Martonosi M, Peh L-S, Rubenstein D

Energy-efficient computing for wildlife tracking: design

tradeoffs and early experiences with zebranet In Proceedings of

ACMASPLOS Conf, 2002.

[14]. John A. Stankovic, Tarek Abdelzaher, Chenyang Lu, Lui Sha,

Jennifer Hou RealTime Coomunication and Coordination in

Embedded Sensor Networks Proceedings of the IEEE,Vol.91,

No. 7, July2003.

[15]. Simone Giannecchini, Marco Caccamo, Chi-Sheng Shih

Collaborative Resource Allocation in WirelessSensor Networks

ECRTS2004: 35-44

[16]. Hyung Seok Kim, Tarek Abdelzaher, Wook Hyun Kwon

Minimum-Energy Asynchronous Dissemination to Mobile

Sinks in Wireless Sensor Networks ACM SenSys, Los

Angeles,CA, November, 2003

[17]. Wei Ye, John Heidemann, and Deborah Estrin. An

Energy-Efficient MAC protocol for Wireless Sensor Networks.

In Proceedings of the IEEE Infocom, pp. 1567-1576 June, 2002.

[18]. Chalermek Intanagonwiwat, Ramesh Govindan and Deborah

Estrin Directed diffusion: A scalable and robust communication

paradigm for sensor networks In

ProceedingsoftheSixthAnnualInternationalConferenceonMobil

eComputingandNetworking (MobiCOM ’00), August2000.

[19]. TarekAbdelzaheretal EnviroTrack:

TowardsanEnvironmentalComputingParadigm for Distributed

SensorNetworks IEEEInternational Conference on

DistributedComputing Systems, Tokyo, Japan, March2004.

[20]. NingLi,JenniferC.HouandLuiSha

DesignandanalysisofaMST-baseddistributed topology control

algorithm for wireless ad-hoc networks IEEE Trans. on

Applications of Nano-RK in Internet of Things (IoT)

Wireless Communications, Vol. 4, No. 3, pp. 1195–1207,

May2005.

[21]. Tian He, Chengdu Huang, Brian Blum, John Stankovic, Tarek

Abdelzaher RangeFree LocalizationSchemes for Large Scale

Sensor Networks The 9th Annual

InternationalConferenceonMobileComputingandNetworking(

Mobicom), SanDiego,CA, September 2003.

[22]. Wei-PengChen,JenniferC.Hou,andLuiSha Dynamic

clusteringforacoustictarget trackingin wirelesssensornetworks

IEEETrans.onMobileComputing, Specialissue in

self-reconfiguring sensornetworks, Vol. 3, Number 3,

July-September 2004.

[23]. D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc

Wireless Networks. In T. Imielinsinki and H. Korth, Editors.

Mobile Computing. Kluwer Academic Publishers, 1996.

[24]. A.D.WoodandJ.Stankovic DenialofServicein SensorNetworks

IEEEComputer, 35(10):54-62, 2002.

[25]. R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource

kernels: A resourcecentric approach to real-time and multimedia

systems. In Proc. of the SPIE/ACM Conference onMultimedia

Computing and Networking. January1998.

[26]. Huang, R.; Li, H.; Mohanty, S. Reducing Power Consumption

for M2M Communications in Wireless Networks. U.S. Patent

20130336223 A1, 19 December 2013.

[27]. R. Jurdak, A.G. Ruzzelli, and G.M.P. O’Hare, “Adaptive Radio

Modes in Sensor Networks:How Deep to Sleep?” Proc. IEEE

Comm. Soc.Conf. Ad Hoc and Sensor Networks (SECON ’08),

June 2008

AUTHORS PROFLE

 Dr.V.ChandraShekarRao, completed his PhD in

computer science and engineering, M.Tech, in CSE from

JNTU, Hyderabad, Telangana, India.He published 25

journals,10 international conferences. His area of research

interest is DataScience, DataMining, IOT, Blockchain

Technbology and BigData.

 Ch.Akanksha, pursing Btech ECE 2nd year,KITSW. Her

area of interest Blockchain Technology, Python, Internet of things,

Robotics.

Voore Subha Rao, educational qualifications with

MCA,M.TECH(JNTUH).At present pursing Ph.D in

Dayalbagh Educational University,Agra.His area of interest

Operating Systems,Computer Networks.Internet of

Things,5G Technologies. He has published research paper

in renowed journals.

	I. INTRODUCTION
	AUTHORS PROFLE

