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Abstract. Measuring classifier performance is important inchiae learning. Risk charts and
error matrix charts have been developed for thipgee. The strengths and weaknesses of
using these charts are outlined. Challenges witigutiese charts are discussed including how
base rates and using prevalence data for buildindefa and incidence data for evaluating
models affect model performance. A number of sohgifor overcoming these challenges are
covered
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1 Introduction

1.1 Measuring classifier performance

The performance of binary classifier will be illeeted using risk chart [10] and error
matrix charts [4,6] for two types of target variadli.e. binary and continuous varia-
bles. The binary variable, for example, distingashisk cases from non-risk cases,
while the continuous variable represents the madaibf the risk. For example, risk
to revenue with tax collections has dollar amouhilewrisk of rain has the magnitude
of precipitation in either inches or millimetres. dome applications the magnitude of
the risk variable can have “negative or positivellues or “debit or credit” in ac-
counting term. When developing a supervised legrnmiodel, the priority is frequent-
ly aimed at the ranked order of the magnitude ef iikk, e.g. revenue. Hence the
modelling process should take into consideratioth ibe classification of the risk
and the magnitude of the risk.

In order to measure and visualise the performaridieo classifiers using both the
binary and continuous target variables, a revisgdahart and error matrix chart are
proposed in this paper. An example of risk chagiven in Fig. 1, while an example
of error matrix chart is given in Fig. 3. There araumber of reasons for using these
charts. Firstly they are useful for evaluating #ffects of the weighted classification
problem [8]. Some classification problems can béghted based on the importance
of the cases. For example, with a tax avoidanckemasion detection model, some
cases are likely to provide greater revenue tharothers and hence are given greater
weight. In some cases, there will be not muctedéfice in terms of their strike rates,
but there can be significant differences in thisk to revenue. The risk to revenue is
particularly useful if only a portion of the poptitm will be actioned for recovering
the revenue because of limited audit and invesiigaesources.



Both Risk charts and Error Matrix charts are séresib classifiers performance when
compared to receiver operating curve (ROC) cha&is@ne challenge with measur-
ing the performance of classifiers is class imbadéanRecent use of risk charts and
error matrix charts indicate that they are verysgere to class imbalance when com-
pared with ROC. However, ROC charts cannot be tse&vyaluate the magnitude of
the risk where risk chart and error matrix chaas.c

Risk charts and error matrix charts are ideal fpmgasuring classifier performance
including risk which is a measure of the size & tlsk gain or loss associated with
target variable of each observation; (ii) comparatgssifier performance prior and
post intervention (iii) further improving risk chiarand error matrix charts for measur-
ing classifier performance.

1.2 Baseratevariation with prevalence and incidence data

If a sample of siza is drawn for a binary classification problem, thba numbers of
sample instancesy, andn; are respectively in class 0 andn},+ n; = n. The base
rate is the ratio ofiyandn o -n;/ n. When the base rate is not 0.5, then there $scla
imbalance. One of the challenges with assessagsifier performance is on sample
selection bias. This refers to differences inghaportion of cases selected for preva-
lence data when compared to incidence data. Presaaldata is used for model build-
ing, while the incidence data contains the caseshmvere actioned. Selection bias
can distort the assessment of the classifier usénvgral known methods such as mis-
classification rate and cumulative gain chart. Bastes can affect how well a classi-
fier performs with identifying positive and negatieases. If the base rate is low then
the classifier will have a low strike rate althoutjle misclassification rate is high. If
the base rate is high, then the classifier willdhavhigh strike rate although the mis-
classification rate is low. These will be demonsiain section 2 and 3.

The base rate of the prevalence dataset and ir@d#ataset can be very different and
these will cause issues in obtaining accurate measaf comparative model perfor-
mance. Unlike ROC charts, which are not affectedbdse-rates, risk charts and error
matrix charts can be misinterpreted when the baseahanges from the data used to
develop a model compared to the data employed &tuate the performance of a
model. These changes can arise because:

1. Each modeller has a tendency to use different teteefrom prevalence for
sampling prior model building unless each modelks class imbalance
data. Having understood the characteristics &fafigmrts and error matrix
charts, it is likely that the modeller who used Besha base-rate in his/her
sample, will produce smaller error or bigger AUGhaugh their model
performances are the same.

2. Once the model has been built, new data is usetttin risk score for in-
dependent evaluation. Cases being selected fenvattion are generally
those which are high risk with those that are eitbe risk or no risk being
excluded from consideration when it comes to evadneof model perfor-



mance. This distorts the results obtained usirlgafrts and error matrix
charts.
Hence, the incidence data for evaluating modeloperince needs to be corrected for
this bias. Solutions for doing this are propose8eation 4 of this paper.

1.3 Objectives

These include (i) to illustrate the development &me usage of risk charts and error
matrix charts for measuring model performance t@ishow how the performance of
models are affected by the samples used to deviedomodels compared to the sam-
ples used to evaluate the models and (iii) to wettiolutions that can be employed to
improve the evaluation of models.

2 Risk charts

Detailed description of risk chart can be found1f]. This chart involves plotting
two variables, i.e. target variable (being 1 oafyl risk variable (see Fig. 1). An ex-
ample is where the data set has two class targeetia, e.g. adjusted or not adjusted
cases when it comes to revenue collection; andiskevariable, e.g. the magnitude
of the adjustment if made to recovery of revenuse adjustment value is a measure
of the size of the risk associated with each olatém. Cases which have no adjust-
ment following an intervention will of course hawme risk associated with them (i.e.
Adjustment ). Cases that do have an adjustmenthaile a risk associated with
them, and for convenience the value of the adjustriseviewed as the magnitude of
the risk.

Gain is a measure of the effectiveness of a claatiin model calculated as the per-
centage of correct predictions obtained with thel@ehoversus the percentage of cor-
rect predictions obtained without a model. It shakes percentage of positive predic-
tions that the model gains with each slice of tlo@uyation. A higher overall gain
indicates better performance. A cumulative gairextc(see Fig. 1) helps visualize the
benefit of using a predictive model. It also allothe effectiveness of different pre-
dictive models to be compared. The information frive cumulative gains chart can
be applied to determine which portion of the ovguapulation is to be targeted.

The advantages of using these charts include to:

i. Investigate why models improve when error increasesto the changes on
base-rate of prevalence and incidence data
ii. Understand the characteristics, strength and weakseof the tools for
measuring classifier performance.
iii. Identify the methods to be used for comparing perémce prior and post
modelling, especially when the base-rate changes



An example of a risk chart in shown in Fig. 1(d).the lowest scores (i.e. the least
risky cases) were removed from the sample, therrdhelts as shown in Fig. 1(b)
could be obtained. Hence, the area under curvéhéorisk chart cannot be used for
measuring the model accuracy unless further fagtargaken onto consideration. A
more realistic measure for visualising the riskrtha proposed as in Fig. 2: this
shows upper and lower limits of maximum area umdeve for the risk chart.

There are three curves in the risk chart in Fig).1{The first is the strike rate for each
risk scored population, with the score going froighhto low (i.e. left to right). The
second shows the cumulative revenue based onstheadres. The third is the cumu-
lative cases based on the risk scores. Fig. 1(&jeiperformance of a classifier for
prevalence data. It is assumed that the performaihttes model is reliable and when
new data is scored, it still produces same perfaoma As noted previously, in prac-
tice only the high risk cases are usually seledtedtargeting to minimize costs.
Hence, by reducing the potential true negative £éag incidence data), the area un-
der risk curves reduces (see Fig. 1(b)). In faetghrformances are the same, but the
area is relative to the upper and lower limit (gapidal shape) of the risk charts,
which are also consistently dependent on the bateetdence, the proposed standard-
isation of the AUC measures is proposed.

In Fig. 2, class imbalance is illustrated and howaffiects the risk chart. The slope of
the dashed line shows the percentage of positisesca he higher the percentage, the
more the gradient of the line decreases. If it W8 percent positive cases, the line
would be a diagonal going from bottom left to taght of the chart. The line would
be vertical if there were very small or no positoases. Fig. 2 can be used for evalu-
ating the risk. The x-axis is the case load whiah be sorted either (1) high-to-low
positive scores from 1 to 0 or (2) low-to-high foegative scores from -1 to 0. The
curves will be reversed if the caseload was sdrtad (i) low-to-high positive scores
from 0 to 1 or (ii) high-to-low negative scoresri® to -1.

In order to improve the usage and utilise the cis&rt for model comparison, the risk
chart illustrated in [9] need to be revised. Th® twain characteristics are used to
revise risk charts, i.e. establishing risk chamitiand standardising AUC, i.e. (1)
introducing risk chart limit. Let’s definell = caseload or percentile of population

sorted by its ranked scoresgQ <1; A; = Z?’ﬂ%. Let's also defin® = The cumula-
tive gain or risk, &0 <1,

(@) Forr;is binary (1 or 0) then the following formula apmgdi
(%) =% N .7 wherel=1,...., Nand n = count ef whenr; =1.
(b) For quantifying the magnitude of, m(;) continuous variable is used:

o(4;) =$ N.m(r) wherel=1,....,Nand M EX, m(r)



Let's definea is the base rate, = n/N; where n = count of) when r;=1and N =
count of (r;) when ;=1 or r;= 0 (N = total number of instances).
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Fig. 1. Risk charts of classifier model performance p(&rand after selecting scored.5 (b)

The risk chart limit consists of
(a) upper boundary of the instances which are ifiken highest to the lowest.
(b) lower boundary of the instances which are rdrfkem lowest to the highest.

In order to obtain consistent measure of AUC fek hart, the standardised AUC is
proposed as : AUC — min(AUC)/[max(AUC) — min(AUChjs will give the range of
standardised AUC between 0 and 1. In classificatiom risk chart limit of the binary
target variable has the following upper boundaaies

max

Fig. 2. Upper and Lower limit of Maxi-
mum Area Under Curve of Risk Chart
wherea is the base rate of binary classifi-
cation

(@) e=% forh<a
(b) ©=1fork=0a



And lower boundaries are:
(@ ©=0fork < 1-a
_A 1
() =2+ (1-2) forrz1a
The performance measure of classifier with binarget variable can be simply ex-

pressed as the standardized AUC :

a.
(AUC-7)  2AUC-a
1-a  2(1-a)

Q= 1)

It must satisfy Q<1 (2)

Where © = performance). = CaseloadQ2 = Standardised AUC (Area Under Curve).
There are two properties can be derived from egndfi) and (2):

2 AUC —a > 0, sou < 2 AUC 3)
2(1w) > 0, sou < 1 (4)

The performance measure of classifier with binamgét variable for balance class
distribution can be derived by substituting 0.5 in equation (1), to giveQ =2AUC
—0.5. and for random performance where the aalghtC is the lower triangle. The
standardized AUC can be obtained by substitutingCAQ.5 to equation (1), to give
Q =0.5. Hence, both AUC ard are symmetrical at the diagon&l:= AUC = 0.5.
The performance measure of classifier with binarget variable for class Imbalance,
in particular applying to rare case problems:

Asa — 0, the equation (1) gived =~ AUC

As a — 1, the performance becomes less reliable, asrnbtisatisfy the
condition in equation (1). Whenever possible, it is suggested to constueicon-
version ofa and scores by using (@-and (1-scores) if the condition in equation (2)
and (3) cannot be achieved.

3 Risk and error matrix charts

A confusion matrix [7] or also known as an errortmxacontains information about
actual and predicted classifications provided kglassification model. Performance
of such models is commonly evaluated using the uathe matrix. The construction
of the error matrix chart is based on the genematioproportion score function (PSF)
[5] which was developed from [4]. The algorithm fgenerating a PSF is in Algo-
rithm 1.

Error matrix chart is, as indicated previouslyystrated in Fig. 3. It is called by this
name because of the characteristics of the chaxtdich the area can be represented
as an error matrix. The vertical dash lines whilcistrates the cut-off points and the
horizontal curve line which represent as PSF. Téey used to divide these charts
onto four regions of the upper right hand of thartltontaining the false positives
(FP) and the lower right hand of the chart contajnithe true positives (TP). The



upper left hand of the charts contains the falggmtiees (FN), the lower left hand of
the chart contains the true negatives (TN). Therematrix can be represented as:

[FN FP
TN TP

Let's consider introducing low, medium and higtkrsy the low risk vertical line and
the high risk vertical line.

Algorithm 1 : Generation of PSF
1. Input(score, predictedClass, trueClass, numberBin)
2. rankedScore— rank(score, by numberBin)
3. Fori=1to numberBin
4 sortedRSJ[i] < get(rankedScore,i)
5 binSize[i]« count(sortedRSJi])
6. correct[i]« count(sortedRS]i], if predClass = trueClass)
7 psf[i] < correct[i]/binSize[i]
8 lambda][i]« i/numberBin;
9. End;
10. plot(psf,lambda)

Let’s consider the y-axi®, and the x-axi&. The four quadrant which formed by
proportion score functio®(A) and the cut-off point ¢, in the Fig. 3, represhe
error matrix, hence it is called as error matriathwhere:

TP=(1-D- [ 6 dl (5)

FP =/ 8(1) da (6)

FN =[5 6(2) di (7)

TN=1-f;6(1) dA (8)
Hence other characteristics such NPV and PPV calebeed:

NPV =1 % Jy 8(2) da Q)

PPV =1— [8(1) dA (10)

In order to obtain error matrix decomposition, lanedium and high risk lines were
introduced in Fig. 3 and the error matrix decomfimsiwas obtained. The objective
of the error matrix decomposition is to enable latassifier performance analysis of
for example either high, medium or low risk cases.

Error Matrix charts enables the examination of sifasation hits and errors. It pro-
vides different measures than AUC in ROC or revisis#t chart. Some of the
measures produced in the error matrix chart andoitsposition can be useful in cer-
tain applications. An example is where the predéctnodel was intended to identify
rare cases of serious non-compliance. If the tangetas based on the overall model
performance, then it means the intention is to mé&e the strike rate of the non-risk
(compliant) cases as they are the majority in thpufation. In error matrix charts,
the matrix can be decomposed into areas of intaresthe region of various compo-



nents in the error matrix charts can be comparestfiect which model’s performance
is relevant to identifying rare cases of non-coaudie.

Misclassification Rate=0.30

{False negative)

Fise pusltraa].""l. i FN FP
" TN TP

b

B Error Matrix
e

Risk

. Post Prob Decomposition
|
e g e 1 |0 ~ [LFN MFN [M FP HFP
ol ={.50 : (Trge Positve} —_— TN MTN] luTP  HTP
" Low Risk Medium i High Risk

I." "| False Positive

True Negative

Fig. 4. Error Matrix with gain and loss risk for descrigitwo stage model.

There are many binary classification models whighraquired to measure ‘gain’ and
‘loss’ associated to the classifications. Gain rigkiable is the magnitude of the risks
when the prediction is correct and has positivedaotr value, while loss risk varia-

ble is the magnitude of the risk when the predici®incorrect and has negative im-
pact or value. When an instance is predicted pesithe actual can be either (a) posi-
tive, then it has gain risk variable and (b) negatthen it has loss risk variable. Simi-
larly when the instance is predicted negative gitteal can be either (a) positive, then
it has loss risk variable and (b) negative, thdrag gain risk variable.

A detection model can be used to illustrate then gaid loss risk in revenue. Each
outcome of the detection would produce positive@gative revenue. This problem
can also be considered as two-stage modellingT[i3. first stage is to predict if a



case will result positive or negative outcome. $heond stage is to predict the reve-
nue gain for both positive and negative outconfeSF has been used to demonstrate
the first stage, i.e. the measure for false pasitikue positive, false negative and false
negative as in Fig. 4. In order to provide a mmwmprehensive view of the classifier
performance, the ‘gain’ and ‘loss’ chart shouldpgazet of the PSF. The ‘gain’ and
‘loss’ chart is also demonstrated in Fig. 4.

Another example of misleading or biased resulta/iere the sample of prevalence
and the sample of incidence cases are different:

i. Let’s consider sample with 41 is true negativealSd positive, 3 false nega-
tive, 5 true positive.

ii. In order to minimise the intervention cost, theetnegative cases being re-
duced, by reducing the true non-risk cases fronto4h, it saves 35/58 =
35.185% resources.

iii. The representation of error matrix are changinghasvn below:

[3 5]_)[3 5

41 5 55

The initial misclassification error which is e =18814815 becomes =
0.444444,

The approach to deal with these issues will beudised on next section.

4 Perfor mance of models using prevalence and incidence data

When comparing classifier performance of prevaleand incidence data are re-
quired, it is important to make sure the resuls @mparable. There are several is-
sues when the sampling used for model buildingargimpling of model evaluation
are not randomly drawn. These issues are illestraext.

4.1 Reasons

Comparisons of classifier performance utilisingyatence and incidence data is nec-
essary for several reasons:

i. Improving model deployment. Constructing the risk and error matrix chartgsi
the incidence data are required for analysing ffezts of changing the threshold/cut-
off points and case-load selection for model demleyt.

ii. Monitoring model performance. One question that often needs resolution is “Has
there been any concept drift with model performambere for example it strays from
detecting fraud?” If there is concept drift and thedel performance is not at an ac-
ceptable level, then the model should be rebuilt.

iii. Businessreporting and analysis evaluation. Model/classifier performance using
incidence data is frequently requested for busipesformance analysis and report-

ing.
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4.2  Prevalence and incidence sampling

In order to achieve the objectives for comparingleigerformance using prevalence
and incidence data, the sampling selected for tytbs of data needs to be from the
same distribution. For example, if the prevalesampling is drawn from accidental
sampling (see below), then the incidence samplmaulsl be the same as used in
prevalence sampling. The focus of this paper isneasuring classifier performance
where the base-rate of prevalence and incidenaeidaignificantly different. This
issue is generally due to the method of sampliregl s build the model (prevalence)
and the sampling used to analyse the modellingoougtc(incidence) are frequently
different in practice. In order to compare the parfance of prevalence and incidence
data, the sampling used for building the model khdne the same as that used for
model evaluation. Generally a model can be coastdiusing:

Accidental sampling. This is the most applicable solution for many data-
ing applications especially for detecting fraudeTmown cases of fraud are
usually rare in terms of their occurrence and eexpensive to obtain. Hence
the need to maximise the data set used for trajmimgoses. The sample used
will often be what is readily available and conwanti This is known as grab,
convenience or opportunity sampling. It involvies sample being drawn
from that part of the population which is closédand. The model developer
using such a sample cannot scientifically make ggizations about the total
population from this sample because it would notdmresentative. This type
of sampling can be useful for initial model builgin

Non-Accidental sampling The most common forms of non-accidental sam-
plings are random sampling, systematic samplimgtiBed sampling, cluster
sampling and probability-proportional-to-size saimgl While these are the
preferred methods for building models, they carettire disadvantages that
the positive cases included in these samples mialyeneadily apparent to
those who develop models. That is, those who Haise¢sponsibility may not
identify all the true positive cases. This is aeotivay of saying some true
positive cases remain invisible in the selectedpdantf the non-accidental
sample contains a limited number of positive caiggs,can undermine model
performance

As has been emphasized incidence data usuallyds&s ¢hat have high risk scores
and have been actioned. Therefore, the outcomésthése cases are known. Hence,
this accidental sample is very different from taenple used to develop the model.

Here the distribution of incidence data has sigaiitly changed from the distribution
of prevalence data. There are three possible mettwwdiealing this challenge. They
are:
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i. Oversampling — where all the cells/clusters/strata and scopergentiles
have at least ‘minimum’ required number of subjeuaisile several others
have more data than what is required. The “camecdampling incidence
data” proposed in this paper can be utilised aigdstmould provide a reliable
correction sampling.

ii. Under Sampling — There are two scenarios: (i) One or more of the
cells/strata/cluster have less data than whateapained by the threshold of
the sampling. The correction sampling incidenda dan be employed,
however, the result may generally be less relittide the one with over-
sampling. (i) One or more of the cells/strata/tdnhave no samples or
missing data. Here the accuracy of the corredetpiing for these entries
depends on the accuracy of the assumptions apgdbedt the distribution
they were drawn.

iii. Same sampling — This sampling usually occurs when the prevalemzkin-
cidence data are drawn using the same methods.

There are two possible methods with same samptirgekect the incidence data for
model evaluation: (i) Non-Accidental Sampling sashrandom sampling can be used
for measuring classifier performance; (b) Accidés@mpling. This is not recom-
mended for model evaluation as it will cause errors

If prevalence data is drawn using accidental sargpéind is used for building the
model, then there is a need to reconstruct thelémcie data prior measuring model
performance. This can be called ‘corrected sampiieglence data”.  The recon-
struction or correction of the incidence data cardbne by “substitution sampling”.
Substitution sampling is a sampling algorithm usedeconstruct the prevalence data
using the incidence data. The main characteristicgibstitution sampling is “draw-
ing a random sample” from prevalence data, therstgubng each instance using
incidence data. The substitution of the prevalénstances which are the same strata
or cluster or cell as the incidence data is beirgs8tuted. The sample size of preva-
lence data is not the same as incidence data atiggaThere are three possible sce-
narios of sampling being over, under or the sare siith the ‘random sample’
drawn from prevalence data. If the data in eadtasor cluster or cell are either over
or under sampling, then bootstrap or jackknife métfB] can be utilised for substi-
tuting instances in each strata or cluster or ceitil all instance from “substitution
sampling” comes from incidence daldne main advantage with substitution sampling
is how it captures key population characteristitplievalence data, the sample col-
lected for model building and the data drawn fraocidental sampling’. This meth-
od of sampling produces characteristics in the $artipat are proportional to the
prevalence data. The detail is provided in nextisec

4.3  Corrected Sampling Incidence Data

Substitution sampling is a method of sampling thablves the substitution and divi-
sion of a population into smaller groups known taata or cluster or cell. The strata
and cluster are formed based on members' shardaliggs or characteristics. A ran-
dom sample from each stratum or cluster is takea mumber proportional to the
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stratum'’s or cluster’s size when compared to thmifadion. These subsets of the stra-
ta or clusters are then pooled to form a randonpgantig. 5 illustrates the descrip-

tion of “substitution sampling” when the sample loedy two strata or cluster. The

bigger data set (LHS) indicates the sample drawmfprevalence data, while the

smaller data set (RHS) is the sample belongs fdence data.

Fig. 5. Substitution sampling, the bogger data
set (LHS) indicates the sample drawn from
prevalence data, while the smaller one (RHS)
is the sample belongs to incidence data.

There are two substitution sampling strategies whie described below.

Mixed Resampling procedure. Let’s define the prevalence stratified data is
X1, Xy, .., X, Wherex,, is the number of cell size af'eell. The incidence stratified
data is isy;, y,, ..., V», Wherey, is the number of cell size af gell. The stratified
sampling need to be carried out and the incideata should be added by a number
of sample in order to match with some proportioprEvalence data which can be
formulated as:

Vi + Ai = ax; (11)

In order to minimise the increase of the overathgke size:

Minimise Y1, 4; (12)
Y.i=14; = 0 for increasing the overall sample size. (13)
Equation (11) can be expressed As= ax; — y; (14)
Substituting (14) onto expression (13) and (12)

MinimiseY X ax; —y; andYi-,ax; —y; =0. (15)
Let us minimisef(a) =a Y, x; — Xy yiand f(a) =0
Hencea = g%ﬁ and4; = (%) X — Vi (16)

There are 3 possibilities of cell sampling required
If y; <x; then use; plus additional re-sampling;with replacement frony;
If v, = x; thenuse;
If y; >x; ,then use sampling without replacement fngm
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Over Re-sampling procedure. For over re-sampling procedure applied, the follow-
ing condition applies:Vi: 4; = 0 then we need to introdudeadjustment, so that
all sample are not being reduced, but being inetkas We need to substitule with

(B + 6;) whereVi: A; = 0, substituting this to equation 11 in order to get

yi+ (B+ 6;) = ax (17)
Equation (17) is used the same way as in expre¢s®yrto (15) in order to obtain
_ Gy +B
a= —22121 - (18)
and substituting. onto equation (17) to give:
6= (Be2l)x— - p (19)
Substituting equation (18) #y = (8 + 6;) gives:
4; = (%) Xi— Vi (20)

Hence, we need to minimigewith the following constraint:
Vi:A(B)=4; =20 (21)
The search the value Bfis required in order to
minimise4; and A4; =0forl=1,...,n
where n is the number of stratified cells as inckithm 2.

Algorithm 2: Corrected Sampling

1. B<absElL, f(4)); wheref(4;) = 4;ifd; <0and f(4;) =0if 4;=0
2. g0=0;0=0;0 =0;r=(1+sqgrt(5))/2; converge = false;

3. Evaluatea(p); if A(B) <0Otheng=0;elseg=1;

4. While convergence eq false then

5. Q=(1-r)*(p-po);

6. ifgeq 1theB0l =p0+Q; B11 = B —

7. Evaluate:A(01); if: A(B01) < 0then g01 = 0; else g01 = 1;
8. EvaluateA(p11); if: 4(B11) <0 then gl1 =0; else g11 = 1;
9. if g01 eq 1 and g11 eq 1 then

10. Diff =p01 —p0; B = p01; g=g01;

11. If g01 eq 0 and g11 eq 1 then

12. Diff =p11 —p01; 80 =p01; B = B11;90=g01;9=g11;

13. If g01 eq 0 and g11 eq O then

14. Diff =g —11; B0 =p11;90=g11;

15. If diff < 3 then converge = true

16. elsef0= B, =L+ 0+ 6; ©6=Q;

17. Evaluated(B); if: A(B) <0Otheng=0;elseg=1;

18. EndWhile;

19. B = round@); A =4(8)

20. WhileA<0

21. B=p+1;A=4(B)

22. endWhile;

23. Outputp)
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The white wine data from UCI data repository [1]swesed for the experiment using
mixed resampling procedure and over resamplingquhoe. The data was clustered
into seven clusters. One of the clusters consittsnly one instance and was re-
moved. The random sample of 200 instances wastsdlas incident data, while the
remaining 4697 instance was selected as prevatatee The results of experimenta-
tion using the methods illustrated above for optadi mixture sample is shown in
Table 1 while optimized over sampling is shown able 2.

Tablel. Optimised mixture sampling of incidence data

Prevalence Incidence Adjusted Incidence Sample
Cluster  n, % n % A Vi (n+A)/n
1 675 14.3678 26 13.0 2.7356 3 1.1052:
2 1227  26.1175 56 28.0 -3.7650 -4 0.9327
3 101 2.1499 5 25 -0.7003 -1 0.8599:
4 1309 27.8629 66 33.0 -10.2742 -10  0.8443:
5 948 20.1788 35 17.5 5.3576 5 1.1530°
6 437 9.3018 12 6.0 6.6037 7 1.5503:

Table 2. Optimised over sampling of incidence data

Prevalence Incidence Adjusted Incidence Sample
Cluster n, % n % A 4 (n+A)/n %
1 675  14.367! 26 13.0 7.9080 8 1.30416 17.0
2 1227  26.117 56 28.0 56373 6 1.10067 31.0
3 101 2.149¢ 5 2.5 0.0736 0 1.01473 2.5
4 1309  27.862 66 33.0 -0.2435 0 0.99631 33.0
5 948  20.178t 35 17.5 12,6220 13 1.36063 24.0
6 437 9.301¢ 12 6.0 9.9523 10 1.82936 11.0

5 Conclusion and Future Directions

Error Matrix charts enables the visualisation afssification errors and their compo-
sition. It provides different measures from AUCR®C or AUC in Revised risk
chart. The measures from error matrix chart agad@mposition can be very useful
for many applications especially class imbalancd eare-cases where the overall
measure such as the AUC in ROC may not be a usBiuth risk chart and error ma-
trix charts are very sensitive to base-rates whitnally occur when class-imbalance
data are used for modelling. Two approaches haen lsuggested for comparing
classifier performance with risk and error matrhads as both approaches provides
different types of measures of model performance.

When evaluating model performance of prior and pagrventions, it is important
to make sure the same sampling strategy is applidibth prevalence and inciden-
tence datasets, otherwise it can bias the measumedel performance. Although the
sampling of incidence data can be corrected wighailjorithm proposed in this paper;
the severe under-sampling of incidence data stifinot be solved with any re-
sampling methods. This is due to mainly the samsjde being too small or alterna-
tively due to data being missing in each cell. Feinesearch of the proposed methods
need to be directed towards understanding furtreeptoperties and characteristics of
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risk charts, error matrix charts and their compaeaperformances with respect to
sampling for prevalence and incidence data.
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