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David Flores-Peñaloza∗1, Mikio Kano†2, Leonardo Mart́ınez-Sandoval‡3, David Orden§4, Javier Tejel¶5,
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Abstract

Given a planar n-colored point set S = S1∪̇ . . . ∪̇Sn in
general position, a simple polygon P is called a perfect
rainbow polygon if it contains exactly one point of
each color. The rainbow index rn is the minimum
integer m such that every n-colored point set S has a
perfect rainbow polygon with at most m vertices. We
determine the values of rn for n ≤ 7, and prove that
in general 20n−28

19 ≤ rn ≤ 10n
7 + 11.

1 Introduction

The study of colored point sets has attracted a lot of
interest, and particular attention has been given to
2-, 3-, and 4-colored point sets, see [1], [2], and [4].
Let S = S1∪̇ . . . ∪̇Sn be an n-colored point set in the

∗Email: dflorespenaloza@ciencias.unam.mx. Research sup-
ported by the grant UNAM PAPIIT IN117317
†Email: mikio.kano.math@vc.ibaraki.ac.jp. Research sup-

ported by JSPS KAKENHI Grant Number 16K05248
‡Email: leomtz@im.unam.mx. Research supported by the

grant ANR-17-CE40-0018 of the French National Research
Agency ANR (project CAPPS).
§Email: david.orden@uah.es. Research supported by

project MTM2017-83750-P of the Spanish Ministry of Science
(AEI/FEDER, UE).
¶Email: jtejel@unizar.es. Research supported by MINECO

project MTM2015-63791-R and Gobierno de Aragón under
Grant E41-17R (FEDER).
‖Email: csaba.toth@csun.edu. Research supported by NSF

awards CCF-1422311, CCF-1423615, and DMS-1800734.
∗∗Email: urrutia@matem.unam.mx. Research supported by

UNAM project PAPIIT-IN102117
††Email: bvogt@ist.tugraz.at. Research supported by the

Austrian Science Fund within the collaborative DACH project
Arrangements and Drawings as FWF project I 3340-N35.

This project has been supported by the European
Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie
grant agreement No 734922.

plane, where for every 1 ≤ i ≤ n, Si is the set of
elements of S colored with color ci. We assume that
each Si is non-empty and that S is in general position.
All polygons considered here are simple polygons. An
m-gon is a polygon with m vertices, and m-gons for
m = 3, 4, 5, 6, 7 are called triangles, quadrilaterals,
pentagons, hexagons, and heptagons, respectively.

Given an n-colored point set S, a polygon P is
called a perfect rainbow polygon if it contains exactly
one point of each color. We are interested in finding
the smallest number rn such that any n-colored point
set has a perfect rainbow polygon with at most rn
vertices.

It is well know that for every 3-colored point set S,
there exists an empty triangle such that its vertices
are in S and have different colors, that is, r3 = 3.
In this work, we determine the exact values of rn up
to n = 7, which is indeed the first case where rn > n.
Moreover, for general n, we show lower and upper
bounds on rn. Due to space constraints, most proofs
are only sketched or completely deferred to the full
paper.

2 Rainbow indexes for n ≤ 7

Theorem 1 The rainbow indexes for n ≤ 7 are:
r3 = 3, r4 = 4, r5 = 5, r6 = 6, and r7 = 8.

Proof. We sketch the proofs for r6 and r7. Figure 1
illustrates the lower bounds. For the upper bound
of r6, we prove that parallel lines `3 and `4 as in Fig-
ure 2 do exist and we work out the cases there. For r7,
we proceed analogously, constructing the perfect rain-
bow 8-gon by adding two edges to the hexagon in or-
der to capture a point of the seventh color. �
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Figure 1: Lower bound constructions for r6 and r7.
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Figure 2: Cases for the upper bound of r6.

3 Upper bound for rainbow indexes

We show in this section that for any n-colored point
set, there exists a perfect rainbow polygon of size at
most 10n

7 + 11. To that end, we first give a lemma
showing that seven points (without colors) inside a
vertical strip can be always covered by a tree with
four vertices and a segment such that their union is
inside the strip and is non-crossing (see Figure 3b).

Lemma 2 Let {p1, . . . , p7} be the seven points of a
point set S, ordered from left to right. Let B be the
strip defined by the two vertical lines passing through
p1 and p7, respectively. Then, there exist two non-
crossing trees T1 and T2, the first one of order 4 and
the second one of order 2, such that:

(i) The union of T1 and T2 covers the points of S, is
inside B and is non-crossing.

(ii) For every Ti, i = 1, 2, there exists a special leaf vi
such that the extension of the edge in Ti incident
to vi goes to the left. Moreover, if the extension
at vi hits Tj , then the extension at vj does not
hit Ti, that is, the two trees and the two exten-
sions do not create cycles.

Theorem 3 For any n-colored point set S, there is a
perfect rainbow polygon of size at most 10n

7 + 11.

Figure 3 illustrates the method to obtain such a
perfect rainbow polygon. Assume that n = 7k. We
choose n points such that each point has a different
color. We divide the n points from left to right into
k groups of seven points each and apply Lemma 2
to each group to cover the seven points by two trees.
Then we join all trees to a long vertical segment P ′

placed to the left, by extending the edge adjacent to
the special leaf of each tree. Finally, we build a per-
fect rainbow polygon by surrounding the edges of the
obtained tree.

(a) (b)

P ′

(c) (d)

Figure 3: (a) Dividing the n points into groups of
size 7. (b) Applying Lemma 2 to each group. (c)
Joining all trees to the segment P ′. (d) Building the
perfect rainbow polygon.

4 Lower bound for rainbow indexes

For every k ≥ 3, Dumitrescu et al. [3] constructed
a set S of n = 2k points in the plane such that ev-
ery noncrossing covering path has at least (5n− 4)/9
edges. They also showed that every noncrossing cov-
ering tree for S has at least (9n − 4)/17 edges. Fur-
thermore, every set of n ≥ 5 points in general position
in the plane admits a noncrossing covering tree with
at most dn/2e noncrossing segments, where a segment
is defined as a chain of collinear edges, and this bound
is the best possible.

In this section, we use the point sets constructed
in [3] to derive a lower bound for the complexity of
a covering tree under a new measure that we define
here. This bound, in turn, yields a lower bound on
the complexity of simple polygons that contain the
given points and have arbitrarily small area.

Covering Trees versus Polygons. Let T be a non-
crossing geometric tree (i.e., plane straight-line tree).
Similarly to [3], we define a segment of T as a path
of collinear edges in T . Two segments of T may cross
at a vertex of degree 4 or higher; we are interested in
noncrossing segments. Any vertex of degree two and
incident to two collinear edges can be suppressed; con-
sequently, we may assume that T has no such vertices.

Let M be a partition of the edges of T into the
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minimum number of pairwise noncrossing segments.
Let s = s(T ) denote the number of segments in M.
A fork of T (with respect to M) is a vertex v that
lies in the interior of a segment ab ∈ M, and is an
endpoint of another segment in M; the multiplicity
of the fork v is 2 if it is the endpoint of two segments
that lie on opposite sides of the supporting line of ab,
otherwise its multiplicity is 1. Let t = t(T ) denote
the sum of multiplicities of all forks in T with respect
to M.

We express the number of vertices in a polygon that
encloses a noncrossing geometric tree T in terms of
the parameters s and t. If all edges of T are collinear,
then s = 1 and T can be enclosed in a triangle. The
following lemma addresses the case that s ≥ 2.

Lemma 4 Let T be a noncrossing geometric tree and
M a partition of the edges into the minimum number
of pairwise noncrossing segments. If s ≥ 2 then for
every ε > 0, there is a simple polygon P with 2s + t
vertices such that area(P ) ≤ ε and T lies in P .

Proof. Let δ > 0 be the sufficiently small constant
(specified below). For every vertex v of T , let Dv

be a disk of radius δ centered at v. We may assume
that δ > 0 is so small that the disks Dv, v ∈ V (T ),
are pairwise disjoint, and each Dv intersects only the
edges of T incident to v. Then the edges of T incident
to v partition Dv into deg(v) sectors. If deg(v) ≥ 3, at
most one of the sectors subtends a flat angle (i.e., an
angle equal to π). If deg(v) ≤ 2, none of the sectors
subtends a flat angle by assumption. Conversely, if
one of the sectors subtends a flat angle, then the two
incident edges are collinear; they are part of the same
segment (by the minimality of M), and hence v is a
fork of multiplicity 1.

In every sector that does not subtend a flat an-
gle, choose a point in Dv on the angle bisector.
By connecting these points in counterclockwise or-
der along T , we obtain a simple polygon P that con-
tains T . Note that P lies in the δ-neighborhood of T ,
so area(P ) is less then the area of the δ-neighborhood
of T . The δ-neighborhood of a line segment of length `
has area 2`δ + πδ2. The δ-neighborhood of T is the
union of the δ-neighborhoods of its segments. Con-
sequently, the area of the δ-neighborhood of T is
bounded above by 2Lδ + sπδ2, which is less than ε
if δ > 0 is sufficiently small.

It remains to show that P has 2s+ t vertices, that
is, the total number of sectors whose angle is not flat
is precisely 2s + t. We define a matching between
the vertices of P and the set of segment endpoints
and forks (with multiplicity) in each disk Dv inde-
pendently for every vertex v of T . If v is not a fork,
then Dv contains deg(v) vertices of P and deg(v) seg-
ment endpoints. If v is a fork of multiplicity 1, then
Dv contains deg(v) − 1 vertices of P and deg(v) − 2

segment endpoints. Finally, if v is a fork of multi-
plicity 2, then Dv contains deg(v) vertices of P and
deg(v)− 2 segment endpoints. In all cases, there is a
one-to-one correspondence between the vertices in P
lying in Dv and the segment endpoints and forks (with
multiplicity) in Dv. Consequently, the number of ver-
tices in P equals the sum of the multiplicities of all
forks plus the number of segment endpoints, which is
2s+ t, as required. �

Next, we relate point sets to covering trees.

Lemma 5 Let S be a finite set of points in the plane,
not all on a line. Then there exists an ε > 0 such that
if S is contained in a simple polygon P with m vertices
and area(P ) ≤ ε, then S admits a noncrossing cover-
ing tree T and a partition of the edges into pairwise
noncrossing segments such that 2s+ t ≤ m.

Proof. Let m ≥ 3 be an integer such that for every
k ∈ N, there exists a simple polygon Pk with precisely
m vertices such that S ⊂ int(Pk) and area(Pk) ≤ 1

k .
The real projective plane PR2 is a compactification
of R2. By compactness, the sequence (Pk)k≥3 con-
tains a convergent subsequence of polygons in PR2.
The limit is a weakly simple polygon P with precisely
m vertices (some of which may coincide) such that
S ⊂ P and area(Pk) = 0. The edges of P form a
set of pairwise noncrossing line segments (albeit with
possible overlaps) whose union is a connected set that
contains S. In particular, the union of the m edges
of P form a noncrossing covering tree T for S. The
transitive closure of the overlap relation between the
edges of P is an equivalence relation; the union of each
equivalence class is a line segment. These segments
are pairwise noncrossing (since the edges of P are
pairwise noncrossing), and yield a covering of T with
a set M of pairwise nonoverlapping and noncrossing
segments. Analogously to the proof of Lemma 4, at
each vertex v of T , there is a one-to-one correspon-
dence between the vertices in P located at v and the
segment endpoints and forks (with multiplicity) lo-
cated at v. This implies 2s + t = m with respect
to M. �

Construction. We use the point set constructed by
Dumitrescu et al. [3]. We review some of its proper-
ties here. For every k ∈ N, they construct a set of
n = 2k points, S = {ai, bi : i = 1, . . . , k}. The pairs
{ai, bi} (i = 1, . . . , k}) are called twins. The points ai
(i = 1, . . . , k) lie on the parabola α = {(x, y) : y =
x2}, sorted by increasing x-coordinate. The points bi
(i = 1, . . . , k) lie on a convex curve β above α, such
that dist(ai, bi) < ε for a sufficiently small ε, the lines
aibi are almost vertical with monotonically increasing
positive slopes (hence the supporting lines of any two
twins intersect below α). For i = 1, . . . , k, they also
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define pairwise disjoint disks Di(ε) of radius ε cen-
tered at ai such that bi ∈ Di(ε). Furthermore, (1)
no three points in S are collinear; (2) no two lines
determined by the points in S are parallel; and (3)
no three lines determined by disjoint pairs of points
in S are concurrent. Finally, the x-coordinates of ai
(i = 1, . . . , k) are chosen such that (4) for any four
points c1, c2, c3, c4 from S, labeled by increasing x-
corrdinate, the supporting lines of c1c4 and c2c3 cross
to the left of these points.

Analysis. Let S be a set of n = 2k points defined
in [3] as described above, for some k > 1. LetM be a
set of pairwise noncrossing line segments in the plane
whose union is connected and contains S.

In particular, if T is a noncrossing covering tree
for S, then any partition the edges of T into pairwise
noncrossing segments could be taken to be M.

A segment in M is called perfect if it contains two
points in S; otherwise it is imperfect. By perturbing
the endpoints of the segments in M, if necessary, we
may assume that every point in S lies in the relative
interior of a segment inM. By the construction of S,
no three perfect segments are concurrent; so we can
define the set Γ of maximal chains of perfect segments;
we call these perfect chains. We rephrase two lemmas
from [3] using this terminology.

Lemma 6 [3, Lemma 7] Let pq be a perfect segment
in M that contains one point from each of the twins
{ai, bi} and {aj , bj}, where i < j. Assume that p is
the left endpoint of pq. Let s be the segment in M
containing the other point of the twin {ai, bi}. Then
one of the following four cases occurs.

Case 1: p is the endpoint of a perfect chain;

Case 2: s is imperfect;

Case 3: s is perfect, one of its endpoints v lies in
Di(ε), and v is the endpoint of a perfect chain;

Case 4: s is perfect and p is the common left endpoint
of segments pq and s.

Lemma 7 [3, Lemma 9] Let pq be a perfect segment
in M that contains a twin {ai, bi}, and let q be the
upper (i.e., right) endpoint of pq. Then q is the end-
point of a perfect chain.

Denote by s0, s1 and s2, respectively, the number
of segments in M that contain 0, 1, and 2 points
from S. A careful adaptation of a charging scheme
from [3, Lemma 4] yields the following result, where
t is the number of forks (with multiplicity) in M.

Lemma 8 s2 ≤ 8s0 + 9s1 + 4(t+ 1).

The combination of Lemma 8 and n = s1 + 2s2
yields the following lemma.

Lemma 9 Let S be a set of n = 2k ≥ 4 points
from [3]. Then every covering tree T of S satisfies
2s+ t ≥ (20n− 8)/19.

We are now ready to prove the main result of this
section.

Theorem 10 For every odd integer m ≥ 5, there
exists a finite set of m-colored points in the plane
such that every perfect rainbow polygon has at least
(20m− 28)/19 vertices.

Proof. Let n = m − 1. We construct the point set
S = S1∪̇S2 in general position as follows. Let S1 be
the set of n = 2k ≥ 4 points from [3], where each
point has a unique color. We can prove that there
is an ε > 0 such that if there is a simple polygon
of area at most ε with (20m − 8)/19 vertices that
contains S1, then S1 admits a noncrossing spanning
tree and a partition of its edges into segments such
that 2s+ t ≤ (20m− 8)/19.

Let S2 be the union of two disjoint ε/(2n)-nets for
the range space of triangles, that is, every triangle
of area ε/(2n) or more contains at least two points
in S2. All points in S2 have color m. Now suppose,
for the sake of contradiction, that there exists a per-
fect rainbow polygon P with x vertices where x <
(20m − 28)/19. Triangulate P arbitrarily into x − 2
triangles. The area of the largest triangle is at least
area(P )/(x− 2). Since this triangle contains at most
one point from S2, we have area(P )/(x−2) ≤ ε/(2n),
and so area(P ) ≤ ε. By the choice of ε, S1 admits a
noncrossing spanning tree and a partition of its edges
into segments such that 2s+ t < (20m− 8)/19. This
can be proved to be a contradiction, which completes
the proof. �
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