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Abstract. In the last years, System-on-Chip (SoC)-FPGAs have been
widely used in Mixed-Criticality Systems, where multiple applications
with different criticality domains are executed. In these systems, it is
essential to guarantee isolation between the associated memory regions
and peripherals of different application domains. Most high-performance
SoC-FPGAs already provide hardware components for supporting isola-
tion. By contrast, low-cost SoC-FPGAs usually don’t have any mecha-
nism for guaranteeing isolation. In this paper, we investigate the problem
of hardware spatial isolation in low-cost SoC-FPGAs. First, we point out
the issues and the limitations given by the fixed components in the Pro-
cessing System and show how to address them. Second, we propose a
Protection Unit, which is a lightweight hardware architecture for AXI
communication that ensures memory and peripheral isolation between
masters of different protection domains. The proposed architecture can
be instantiated either on the master or on the slave side of an AXI in-
terconnection. In addition, it is scalable from 1 to 16 memory regions,
and application domains and policies are set up at run-time. We imple-
ment our architecture on the SoC-FPGA XC7Z020, where a Microblaze
soft-core and the Arm Cortex-A9 are used simultaneously for different
application domains. In the proposed implementation, the Protection
Unit is implemented in combinatorial logic, and its execution does not
contribute to the critical path. Therefore, it adds zero latency for the
single communication transaction and uses only 0,5 % lookup tables and
0,1 % flip-flops of the target SoC-FPGA.

Keywords: Hypervisor · Mixed-Criticality Systems · Hardware/Software
Co-Design · Edge Computing · Confidential Computing

1 Introduction
With the advent of Industry 4.0 and new computational paradigms, such as
Internet-of-Things and Edge Computing, the focus of real-time processing is
shifting from the cloud to sensors, creating the demand for small, scalable and
energy-efficient processing devices [5,17]. These challenges are frequently tack-
led through the utilization of System-on-Chips (SoCs) that integrate a Field
Programmable Gate Array (FPGA). In many fields, e.g. driver assistance [7],
medical [19,18], railway, or avionic systems, these must adhere to various se-
curity and dependability requirements. At the same time, the same component
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should often be used for the execution of different applications. When multiple
tasks of different application domains must coexist in a system, it is essential
to guarantee spatial and temporal isolation between them, such that they can-
not interfere with each other. This is especially important in Mixed-Criticality
Systems (MCS), where tasks with different criticalities are run together in one
system [6].

Spatial isolation protects shared peripherals or memory regions so that tasks
can access only a part of them freely, or only a subset of existing tasks can access
them [22]. Temporal isolation protects shared peripherals or memory regions so
that only a subset of tasks can access them in a given time [22].

In a SoC-FPGA, the FPGA is also referred to as the Programmable Logic
(PL), whereas the hardwired part, which contains the Application Processing
Unit (APU), the fixed communication infrastructure, hardwired peripherals,
and all other fixed components, is called the Processing System (PS). For high-
performance SoC-FPGAs, vendors usually provide proprietary solutions for the
isolation problem as part of the PS [8,15,23] through protection units. In con-
trast, low-cost SoC-FPGAs, which are mostly used close to sensors for Internet-
of-Things applications, do not have such solutions provided for isolation. In
addition, they have strict limitations in terms of available resources. Hence, the
realization of a robust and flexible isolation mechanism on low-cost SoC-FPGAs
is still an open challenge.

Various solutions have been proposed in literature for generic SoC-FPGAs
[10,13,14]. While these solutions can be adapted for low-cost systems, most of
them use protection units that rely on external memory to implement the mech-
anisms to check access policies. Due to the resource limitation of low-cost SoC-
FPGAs and the usage of external memory, these solutions can lead to resource
problems and severe timing issues. In our work, we point out the isolation chal-
lenges caused by the PS in modern low-cost FPGAs and propose a new isolation
method to resolve these issues.

In our method, we statically associate the masters of the different appli-
cation domains with one or more protection domains (PDs) and the available
memory/peripheral space addresses with memory regions (MRs). Then, at run-
time, dynamic access policies (APs) are set in order to spatially and temporally
isolate masters associated with different PDs and/or MRs, similar to a white
list. With this separation, it is possible to implement the whole decision path for
granting AXI transactions completely with combinatorial logic and to guarantee
isolation through a lightweight Protection Unit (PU). Using this approach, the
proposed PU has an execution time that does not contribute to the critical path
and can be added to the system between two AXI-Interfaces without additional
latency.

The PU is described in SystemVerilog and is implemented to support up to 16
PDs and 16 MRs per instance. In addition, it is highly flexible in the sense that
it can be instantiated in various parts of the communication infrastructure and
deployed on any SoC-FPGA where the communication infrastructure uses the
AXI-Interface. This flexibility enables a degree of optimization that is essential
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for low-cost SoC-FPGAs. We validate the design using a simulation environment
together with a test design running on the SoC-FPGA XC7Z020 at an AXI clock
speed of 100 MHz.

The rest of the paper is structured as follows: Sec. 2 describes related works
from Industry and Academia, and Sec. 3 discusses the isolation limitations in
low-cost SoC-FPGAs. Sec. 4 describes the proposed isolation method and the
lightweight PU with its micro-architecture, a functional example, and validation.
Sec. 5 presents the implementation and integration of the PU in the target low-
cost SoC-FPGA. Sec. 6 discusses the advantages of the proposed method and
compares it to related works.

2 Related Work
Supporting isolation is a well know problem in both academia [10,13,14,21] and
industry [8,15,20,23]. As mentioned above, most of the proposed methods are
designed for high-performance SoC-FPGAs. In this paper, we mainly consider
related works, where enough information is given to compare them with our
work in terms of functionality and performance.

In industry, one of the most used mechanisms to guarantee isolation in SoC-
FPGAs is the Arm TrustZone [20]. It’s a system-wide security extension, which
provides two execution contexts, secure and non-secure. Memory regions and
peripherals can be configured to allow access to only the secure context. On
the downside, the Arm TrustZone considers only two domains and cannot be
extended. Furthermore, several vulnerabilities and weaknesses have been inves-
tigated in [20], which are the consequence of the lack of robust Trusted Execution
Environments (TEE) runtime implementations, and microarchitectural defects.

Due to these limitations, Xilinx proposed two types of protection units for
high-performance SoC-FPGAs: the Xilinx Peripheral Protection Unit (XPPU),
and the Xilinx Memory Protection Unit (XMPU) [23]. Both protection units
are hardwired and implemented in the Processing System (PS) of Ultrascale+
MPSoC chips. They check the master ID and the accessing address for each
AXI transaction inside the PS and between PS and PL to guarantee spatial
isolation. If the transaction is allowed, then it proceeds normally; otherwise, it’s
invalidated and won’t reach its intended destination. XMPU and XPPU have
two different implementations because they are optimized for memory read/write
and for device control, respectively. These protection units are not implemented
in low-cost SoC-FPGAs.

Sensaoui et al. [21] propose a hardware architecture for isolation in low-cost
SoCs, which is for ASIC. It is compatible with RISC-V and Arm CPUs and con-
siders the bus communication between the different masters and memories, for
which different policies are defined. The hardware architecture is mainly com-
posed of a master "look-side buffer" and their "uCode" block that implements
the logic responsible for checking the communication transactions.

Kumar Saha and Bobda [11] propose a security framework for isolation, which
uses Mandatory Access Control (MAC) based authentication policies. It consid-
ers a fixed subpart of the device ID and the memory address for defining different
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application domains and memory regions. This solution can be used to protect
the different peripherals in the PL. It consists of software and hardware man-
agement modules; therefore, it is suitable only for SoC-FPGAs. The software
manages the policy server that is implemented on the PS, and sets up the Hard-
ware IP management module (HIMM). These are implemented on the PL in
front of each peripheral (slaves in the communication protocol). This method
requires a Linux OS to run the software module, and the policies are read at
run-time from the PS. Due to the delay in reading the policies, this solution adds
to the transaction a delay of 35 microseconds if a new entry has to be fetched.

LeMay et al. [14] propose a hardware-based Network-on-Chip Firewall (NoCF)
that also uses a software and a hardware module. The software configures NoCF
and specifies the policies to enforce isolation between the cores. The policies
are maintained by an integrity kernel that runs on a dedicated integrity core
which is implemented in hardware. The software module can be controlled by a
hypervisor, but the overall NoCF is mainly optimized for NoC communication
infrastructure and uses a big amount of FPGA resources, and it is not suitable
for Low-Cost SoC-FPGAs in most of the cases.

Kornaros et al. [10] propose a memory partition protection unit that isolates
physical memory regions by applying access rules. This unit is implemented in
the PL and is set up by a software driver running on the PS. The driver runs on
Linux. The Memory Partition Protection Unit (MPPU) supports a maximum of
16 application domains. This solution can also be used for Low-Cost SoC-FPGAs
but with a lack of performance, as we will discuss in Sec. 6.

All analyzed works consider different methods for implementing the policy
rules and policy checking. Yet, they are not flexible for deploying them in differ-
ent parts of the system design, e.g., close to the master side or to the slave side.
We will compare them with the proposed isolation method and the proposed
PU, in Sec. 6.

3 Isolation limitations in low-cost SoC-FPGAs

In this section, we describe the micro-architecture of low-cost SoC-FPGAs, an-
alyze their limitations in terms of spatial isolation, and propose our solution for
isolating the peripherals on the PS.

As mentioned in Sec. 1, SoC-FPGAs generally consist of the PS, contain-
ing hardwired processing units, input / output peripherals and communication
infrastructure, and the PL, comprising programmable look-up tables, memory,
and digital signal processing components. To describe the micro-architecture of
low-cost SoC-FPGAs, we analyzed the Xilinx Zynq-7000 [3] and Intel Cyclone V
SoC [9], which are the low-cost SoC-FPGAs of the two biggest FPGA vendors in
the world. As shown in Fig. 1, these two FPGAs have a similar micro-architecture
at the system level and use the same PS interconnection core link, which is the
Arm NIC-301 [4]. To highlight the similarity between the two chips, we use the
AMD-Xilinx nomenclature in Fig. 1, even though AMD-Xilinx and Intel-Altera
use different names in their reference manuals.
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Fig. 1: Micro-architecture of Zynq-7000 SoC and Cyclone V SoC

As shown in Fig. 1, the Application Processing Unit (APU) is connected to
the PS peripherals through the NIC-301, and there are no hardware protection
mechanisms between them. Hence, malicious applications running on the APU
that try to access PS peripherals can not be blocked, and spatial isolation can
not be guaranteed. Due to the fact that PS components are dedicated physical
components with a fixed implementation, it is not possible to add any protection
units between the APU and PS peripherals. As shown by the red arrow in Fig. 2a
the APU has direct access to PS peripherals without any checks. For this reason,
the PS peripherals usually are exclusively used by the APU, and the connection
between PS peripherals and the PL is not initialized. In addition, if a peripheral
should be shared between the APU and a PL master (e.g. a Microblaze), it has
to be instantiated on the PL where can be protected by a protection unit. This
design is shown in Fig. 2a, where UART0 has exclusive access to the APU and
UART1 is shared between the APU and the Soft CPU.
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Fig. 2: State-of-the-art and proposed communication pattern between APU, PL
and PS peripherals in low-cost SoC-FPGAs
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The design solution in Fig. 2a guarantees the isolation of UART1, with the
additional cost of implementing the UART peripheral on the PL.

In this work, we propose a communication pattern that allows sharing of
PS peripherals between PS and PL masters while guaranteeing their isolation
through a protection unit. In the proposed communication pattern, the APU’s
direct access to PS peripherals over the NIC-301 is disabled. Instead, PS pe-
ripherals are mapped into the APU address space in the same way that GPIO
peripherals are mapped into the PL address space, as shown in Fig. 2b. By this,
the NIC-301 forwards the AXI transactions from the APU to the PL through
the PS-to-PL Master interface. The transactions cross the AXI interconnect bus
which forwards them to the PS peripheral through the protection unit and the
PL-to-PS interface, which is connected to the NiC-301. By sending all transac-
tions between APU and PS peripheral over the PL, we can instantiate a pro-
tection unit that guarantees spatial isolation of the PS peripherals and can also
be accessed from multiple masters, as shown in Fig. 2b. In this way, we have
guaranteed isolation and also reduced the PL resources’ utilization.

To correctly forward AXI transactions from APU to PL and back from PL
to PS peripherals, the following assumptions must be fulfilled:

– PS peripherals can be accessed with their physical addresses only from the
PL. To guarantee that the APU can not access to PS peripherals, they are not
enabled in the PS. They are mapped only to the PL GPIO master interface
instead.

– The PS peripherals are mapped to the APU as GPIO peripherals. In this way,
the GPIO space address represents the virtual address of the PS peripherals,
and the NIC-301 will forward all AXI transactions from APU to PL over the
PS-to-PL interface.

– The AXI transaction coming from the PS that has the GPIO base address
must be translated to the physical address of the PS peripherals and for-
warded to the AXI interconnect component. For that, an AXI address trans-
lator is required.

– The AXI interconnect, which is connected to the AXI address translator, has
to be connected to the PS peripherals through the PS-to-PL GPIO interface.
In this way, the transactions can be forwarded to the PS peripherals

– A protection unit has to be instantiated between the AXI Interconnect and
the PS-to-PL GPIO interface. In this way, the instantiated protection unit
checks all transactions and guarantees isolation of the PS peripherals.

For the best of our knowledge, the proposed communication pattern has not
been discussed in other related works that simply assume that PS peripherals are
accessible only by the APU. But reserving PS peripherals only for APU accesses
can lead to an under-utilization of the PS peripherals and an over-utilization of
the PL, where additional peripherals have to be instantiated, instead. In low-
cost FPGAs the distribution of resources is essential, therefore this peripheral
distribution can limit the overall system design. We tested the utilization of PS
peripherals from the PL side with a soft-processor as master and the protection
unit without sharing the peripherals with the APU. The details on the proposed
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isolation method, the protection unit, and its features and configuration will be
presented in detail in the following section.

4 Proposed method
This section clarifies our terminology, presents our proposed method for sup-
porting isolation based on Protection Domains, Memory Regions, and Access
Policies, and describes the architecture and validation of the introduced Protec-
tion Unit.

In our work, a Protection Domain (PD) consists of a set of master com-
ponents of the same application domain. A master component can be part of
multiple PDs at the same time. A PD is defined by a domain ID and a domain
mask. These two parameters are used to derive the association of its master
with one or more PDs in the AXI transaction. This is possible because each AXI
transaction contains an AXI ID, which is related to the master that generates
the transaction.

Table 1: Example of Domains and AXI ID relations
Domain Mask Domain ID exemplary IDs

Domain 0 1100 1000 1011, 1000
Domain 1 1110 1000 1000
Domain 2 1110 1010 1011

The matching between an AXI ID and its PDs is done by comparing the bits
of the available domain IDs, which are selected by the mask, to the corresponding
bits of the transaction’s AXI ID. If all of the bits are equal, the transaction
belongs to the current PD. Table 1 shows a simple example, where the master
ID 1011 is part of the domains 0 and 2. To associate multiple masters with
one of the PDs, the designer has to extract the common subpart of the master
IDs to determine the domain ID. To make this step easy and to determine a
domain ID, when there are no common subparts between different master IDs,
we propose an ID-manipulating component, which adds or modifies the AXI-ID.
It will be described in Sec. 5. The main advantage of this solution is that its
implementation requires only few resources to match the master component ID
with the domain IDs at run-time. In particular, it is possible to determine the
domain associations of each AXI transaction with simple combinatorial logic.

A Memory Region (MR) is an aligned address space. A peripheral and a
memory address can be part of multiple MRs, in the same way that masters can
be part of multiple PDs. We define a MR by using a starting address and its most
significant bits, which contain the addresses of the whole MR. Consequently, a
MR always consists of continuous addresses. To optimize the execution time
and resource utilization of the MR matching component, we use the position of
the Least Significant Bit (LSB) of the MR as a parameter. The LSB position
determines the size of the memory region that is equal to 2LSB pos.. By using it
as a parameter, the PU has to check only the range of bits between the MSB
and the LSB per input address. An example of MR matching is given in Sec. 4.1.
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An Access Policy (AP) describes which protection domain may access
which memory region, i.e., it consists of a set of “PDX may read/write MRY ”
rules. A transaction may pass if any of these rules gives it permission to do so.
If there is no rule for a master because it is not associated with any PD or MR,
all its requests will be denied. In this work, each protection unit has their own
dedicated APs for read and write access.

PDs, MRs and their parameters are set at design time, while APs are de-
fined at run-time. In this way, it is possible to optimize each PU instance at
synthesis time and implement the whole decision path as a fixed combinatorial
logic component, where the input is the AXI-transaction and the rules of the
AP. Only the APs are set at run-time; otherwise, temporal isolation can not be
guaranteed.

4.1 Protection Unit Architecture
The Protection Unit (PU) restricts traffic through an AXI connection based on
the given policy. An overview of the architecture is shown in Fig. 3. A PU has
three AXI instances. The two red interfaces are complementary, pass-through,
full AXI interfaces and identically parameterized. These are transparent for all
allowed transactions. The orange AXI-Lite interface provides access to status,
control, and policy configuration registers.

Protection Unit

Policy Check

Error
Generation

0

1

S0

Demux

Permission
Granted

ID
ADDR
LEN
SIZE

Policy Check
Policy

Configuration

Full AXI AXI-Lite

Fig. 3: Architecture of the Protection Unit

The APs are stored in a configuration module in the PU. Each PU contains
its own APs, one for reading and one for writing transactions. This module
forwards the policies as signals to the Policy Check module that is the core of
the PU. In this way, every clock cycle, all current APs are read from the Policy
Check. This last component is responsible for matching the master ID (AXI-ID)
and the incoming memory address with the PDs and the MRs available. Then it
checks the defined policy and the signal’s permission to read/write. In each PU,
there are two instances of the Policy Check module, one for the read channel
and the other for the write channel.

As shown in Fig. 4, the Policy Check contains PD matching and MR match-
ing components. These two components are instantiated once for each PD and
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MR, respectively. They check the AXI ID of the transaction for corresponding
domains and the incoming address for corresponding memory regions. Matched
domains and memory regions are then used to determine which entries in the
policy to check. In the example, shown in Fig. 4, the input address is associated
with MR0 and MR1, and the AXI-ID with PD0 and PD1. Because the AP for
PD1 and MR1 is equal to 1, the transaction is granted. To sum it up, the Policy
Check grants or denies permission based on the PDs and address ranges, current
APs and the ID, ADDR, LEN and SIZE signals of the transactions.

The decision of the Policy Check is sent to an AXI demultiplexer which for-
wards the transaction. If the transaction is granted, it is forwarded downstream
to its intended destination. If the transaction is denied, it is forwarded to an
internal error-generating slave, which asserts errors as defined by the AXI stan-
dard without having a stall in the communication. For the implementation of
the prototype, both the AXI demultiplexer and the error generator are taken
from the PULP-platform AXI library [12].

4.2 Example
Here, we describe a concrete example of an Access Policy to give a better idea
of what they look like and how a decision is inferred. For simplicity, a system
with two masters, two slaves, and a single PU is considered.

The first master is included in the PD1 and the second one in the PD2. PD0

includes both. Analogously, the first slave is associated with MR1, the second
one with MR2, and both are part of MR0. For access to slaves, masters must
be included in PDs, and slaves must associate their memory space address to
MRs. These parameters have to be set before synthesis. During run-time, read
access is given to PD0 for the MR0, in this way both masters can read from to
both slaves. Instead, write access is given to PD1 for the MR1 and PD2 for the
MR2. This results in the APs shown in Fig. 5a
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Fig. 5: Exemplary Policy Configuration and Decision

If the first master tries to write on the first slave, PD0 and PD1 are matched
as well as MR0 and MR1 are matched as shown by green boxes in Fig. 5b. The
matched PDs and MRs represent the eligible PDs and MRs that are considered
for making the decision. These entries are marked red in Fig. 5b. In this specific
case, the access is given because the policy states that PD1 has write access to
MR1, indicated by the red 1. If the first master tries to obtain write access on
the second slave, MR0 and MR2 are matched instead of MR0 and MR1, as
shown in Fig. 5c, but in the AP there is no value equal to 1, so the access is
denied. No access is given if none of the rules in the policy allows it.

4.3 Validation
Before integrating the PU with a running design, it has been tested in simulation,
using Xilinx Vivado 2020.2 and the AXI Verification IP (VIP) [2]. The VIP is
used for generating traffic on master and slave sides as well as for checking the
AXI protocol compliance.

Three scenarios have been considered. In the first one, two masters, one PU,
and one slave have been instantiated. The first master has been used for the
run-time configuration of the PU, and the other master communicates to the
slave through the PU itself. In this way, we have tested the correct functionality
of the PU, when correct and illegal transactions are generated from the master
to the slave. In the other two cases, we increase the masters, the PUs, and the
slave to validate the behavior of the system when multiple requests arrive from
different masters. In the second configuration, we have instantiated the PU on
the master side (as shown in Fig. 7a), while in the third, we have instantiated
them on the slave side (as shown in Fig. 7b). In all these scenarios, the generated
traffic consists of typical transactions, edge cases, and random traffic. The traffic
has been checked for being compliant with AXI and the configured policy.

5 SoC-FPGA Implementation

In this section, we describe the implementation of the hardware and software
modules for integrating the PU in the target SoC-FPGA C7Z020 and for setting
the desired APs. In addition, we introduce the AXI-ID Manipulator, which is an
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additional hardware component required for supporting masters/slaves that do
not have defined AXI-IDs.

The PU and the AXI-ID Manipulator, as well as the internal modules, which
are taken from the PULP-platform AXI library [12] are implemented in Sys-
temVerilog. To simplify the integration of these components in a system design,
we pack them as IP Core modules compatible with any Xilinx FPGAs of the 7
series family [1]. The designer can add them to the IP repository and instantiate
them either in HDL entities or into a block design. As explained in Sec. 4, each
PU has an AXI-Lite interface used for setting up the policies. In the system
design, the AXI-Lite interface of all PUs is connected to a dedicated control bus
as a slave peripheral. The master that starts up the whole system (setting up the
PS and programming the PL) and manages the temporal domains at run-time
is the only master which is physically connected to this control bus.

For evaluating the PU, we implemented the use case shown in Fig. 7a, which
resulted in the block design shown in Fig. 6. This block design has two masters:
the Cortex-A9 and a Microblaze. The Cortex-A9 is the APU of the target SoC-
FPGA, and the Microblaze is a soft processor, which is instantiated in the PL.
In addition, two slaves in the PL are instantiated, and the Microblaze can also
access the slaves that are on the PS part. For this design, where there are two
masters and multiple slaves, we instantiate the PUs on the master side. By this,
we only require two PUs, as shown in Fig. 6; other possible configurations are
explained in Sec. 6.

ZYNQ

MICROBLAZE

AXI 
INTERCONECTION

MICROBLAZE 
LOCAL MEMORY

PROTECTION UNIT

PROTECTION UNIT

AXI 
INTERCONECTION

AXI BRAM

PERIPHERAL

AXI 4-Lite, Control bus of the Protection Units
AXI 4-Full, Data bus for the memory region access
Local connection

AXI-ID 
MANIPULATOR

Fig. 6: Implemented system design. Two Protection Units on the master side.
The AXI-ID Manipulator is not required with Microblaze, but is inserted for
demonstration purpose.

In our design, the APU is responsible for starting up the system. When the
FPGA is turned on, the Cortex-A9 runs the First Stage Boot Loader (FSBL),
a bare-metal program responsible for loading the bitstream from memory and
programming the PL. When the PL is running, the FSBL program sets up the
PUs and runs the APU and Microblaze applications. It is essential that the PUs
are set up before any other applications. By this, the applications can run either
as bare-metal source code or through an operating system, and the PU is set
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up in a secure way. In order to provide temporal isolation, the APs have to be
properly updated at run-time with the support of a hypervisor. In addition, to
guarantee the security of the PUs and of the whole system, the FSBL should
be run with a secure boot, or the PUs should be set with the support of a
hypervisor. In this paper, we focus on the proposed isolation methodology and
the PUs, therefore we do not explain all security aspects that involve the whole
system.

During the implementation, the designer should know all AXI-IDs of masters
and slaves. If an AXI-ID is not provided, or a master/slave has no AXI-ID, the
designer can use the AXI-Manipulator between the master/slave module and the
AXI interconnection bus as shown in Fig. 6. The AXI-ID Manipulator adds or
overwrites specific bits of the AXI-ID for the AXI requests and restores the old
AXI-ID for the related responses. This component is essential for defining the
various AXI-IDs used for recognizing the different PD.

6 Results and Discussion

In this section, we report and discuss the results of our work. We consider various
implications related to the deployment step. In addition, we analyze the results
of the testing design and different PU configurations used for comparing our
work with the related works. In the end, we point out possible improvements
and potential future works.

The proposed isolation method aims for low-cost SoC-FPGAs, so it has been
conceived to be flexible and lightweight. The presented PU can be deployed on
every SoC-FPGA that uses AXI as communicating interface protocol. As shown
in Fig. 7, it can be instantiated on the master side, slave side, and between
two AXI interconnects. This allows the PUs to be deployed at the points in the
system where they are most effective. These points may differ between different
systems.

AXI-Interconnect

Protection Unit

Policy

Slave

Protection Unit

Policy

Slave

Master Master

(a) PUs before IC

AXI-Interconnect

Protection Unit

Policy

Slave

Protection Unit

Policy

Slave

Master Master

(b) PUs after IC

AXI-Interconnect

Slave

Protection Unit

Policy

Slave

Master Master

AXI-Interconnect

(c) PU between ICs

Fig. 7: Exemplary Deployment of Protection Units

A system design, where masters are much more than slaves can save resources
if the PUs are deployed on the slave side, or the other way around. When the PU
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is instantiated on the master side, it manages only the transaction coming from
this master component; in this case (shown in Fig. 7a), each master component
has its PU, where only the MRs have to be checked. This configuration can also
have the advantage of blocking unwanted transactions before they could cause
contention in the downstream interconnect.

In contrast, if the PU is instantiated on the slave side, each slave has its
own PU, which is only responsible for the MRs of the related slave. The last
configuration is shown in Fig. 7c, where there is only one PU. In this case,
two interconnect busses are used, where the first groups all master connections
and the second groups all slave connections. In this case, all PDs and MRs are
managed by a single PU. This solution can be advantageous when there is a
similar number of masters and slaves in the system and they are few, because it
will use less resources than using multiple PUs.

To analyze the performance of our PU, we have implemented it with Vivado
2020.2 on the target SoC-FPGA XC7Z020 using different configurations. First,
we run it in the test design shown in Fig. 6. In this design, we use two PUs and
we set the AXI Clock to a frequency of 100 MHz. Each PU has one PD and two
MRs.

Table 2: Resource utilization for the test design
LUTs FFs LUTRAM Block DSP

PU: axi demux 53 22 0 0 0
PU: configuration block 58 109 0 0 0
PU: policy check write 35 0 0 0 0
PU: policy check read 34 0 0 0 0
PU: axi error 22 15 0 0 0
PU Microblaze 202 146 0 0 0
Test Design 4470 4449 299 3 3

As shown in Table 2, the PU in front of the Microblaze uses only 202 LUTs
and 146 FFs. In fact, in relation to the resource utilization of the test design,
it uses only 4.51% of the LUTs and 3.28% of the FFs. Also, in relation to the
available resources of the target FPGA, it uses only 0.37% of LUTs and 0.13%
of FFs. This low utilization of resources is essential for low-cost SoC-FPGAs
with limited resources. Table 2 also shows the resources used by the internal
components. As expected, the policy check components do not use any FFs,
because it has been designed with combinatorial logic in the Register-Transfer
Level (RTL). This is an important result because this component determines the
decision path and the delay of the granted transaction, which is combinatorial
and does not contribute to the critical clock path. Since we set the clock fre-
quency at 100MHz, it means that the PU processes a single transaction in less
than 10 ns. Most of the FFs are used in the configuration block that contains
the control/status register and APs of the PU.
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Table 3: Resources’ utilization and execution time (c.c. means clock’s cycle)
Work LUTs FFs LUTRAMs Execution Time
PU, 1PD/16MR 339 198 0 <10 ns (<1 c.c.)
PU, 16PD/1MR 191 198 0 <10 ns (<1 c.c.)
PU, 16PD/16MR 950 678 0 <10 ns (<1 c.c.)
PU, 1PD/1MR 164 168 0 <10 ns (< 1 c.c.)
MPPU [10] 655 1082 12 (4 c.c) only the decision
HIMM [11] 86 75 6 220-35000 ns

In Table 3 we compare the resource utilization of our PU to the MPPU
of Kornaros et al. [10] and the Hardware IP management module (HIMM) of
Kumar Saha and Bobda [11].

Our PU’s resource usage is listed for different numbers of PDs and MRs. Since
the resource usage is optimized at design time based on the set parameters, we
can see how the PU scales by changing the number of PDs and MRs. The MPPU
has similar functionality as the PU with 1PD/16MR configuration as it is also
able to differentiate 16 memory regions. Because we define PDs and MRs at
design time and implement the policy check only with LUTs, we reached better
performance in terms of resource optimization and execution time. The HIMM
has similar functionality to the 16PD/1MR configuration as they protect a single
slave by 16 different application contexts (application contexts have the same
functionality as our PDs). They use less resources as most of their processing is
done outside the HIMM. They manage and store the policy in the PS and hold
local copies in the HIMM. If a rule is not present locally, it has to be fetched
first leading to delays of up to 35000 ns.

In the future, additional optimization can be done by substituting the library
components with specialized components that are optimized for the PU. In ad-
dition, this PU can be used as a foundation to integrate a basic hypervisor in
the SoC-FPGA that will manage the temporal isolation properly. Finally, the
combinatorial path of the PU can be pipelined in the case that it can not be
executed in one clock cycle on a given target FPGA.

7 Conclusion
In this work, we have analyzed the isolation limitations of low-cost SoC-FPGAs
and we have proposed an isolation method that results in a lightweight Protection
Unit that uses combinatorial logic for the decision path. We also implemented
and integrated the PU in a test design, where we confirmed that a single trans-
action is processed with no additional latency. The key to this result is that the
decision path is combinatorial, so no FFs are used in the policy check and it
does not contribute to the critical path of the system design. Compared to the
state of the art, where external memory is the bottleneck, the presented isola-
tion method and the PU implementation result in a much faster execution. In
addition, its deployment flexibility, configurability and scalability makes it espe-
cially well-suited for the integration with low-cost SoC-FPGAs. The presented
Protection Unit can be found as SystemVerilog component and/or IP Core block
on our website [16].
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