
EasyChair Preprint
№ 9555

NP on Logarithmic Space

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 25, 2023

NP on Logarithmic Space
Frank Vega !Ï

NataSquad, 10 rue de la Paix 75002 Paris, France

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
Another major complexity classes are L and NL. Whether L = NL is another fundamental question
that it is as important as it is unresolved. We prove that NL = NP just using 1L-reductions and
thus, we show that P = NP.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness; Theory of computation → Abstract machines

Keywords and phrases Complexity Classes, Completeness, Polynomial Time, Reduction, Logarithmic
Space

1 Introduction

In 1936, Turing developed his theoretical computational model [11]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [11]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [11]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [11].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each
string w in Σ∗ there is a computation associated with M on input w [2]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [2].
Note that, M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [2].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [5]. We
denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this

mailto:vega.frank@gmail.com
https://uh-cu.academia.edu/FrankVega
https://orcid.org/0000-0001-8210-4126

2 NP on Logarithmic Space

means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the string u, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [10].

It is fully expected that P ̸= NP [10]. Indeed, if P = NP then there are stunning
practical consequences [10]. For that reason, P = NP is considered as a very unlikely event
[10]. Certainly, P versus NP is one of the greatest open problems in science and a correct
solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [4]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We provide a final answer for this outstanding problem using the logarithmic
space complexity.

1.1 The Hypothesis
A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[11]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [7]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [5]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [5]. A principal NP–complete problem is SAT [7]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [7]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [5]. For example, the Boolean
formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

F. Vega 3

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [11]. The work tapes may contain at most O(logn) symbols
[11]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [10].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [10].

A function f : Σ∗ → Σ∗ is a logarithmic space computable function if some deterministic
Turing machine M , on every input w, halts using logarithmic space in its work tapes with
just f(w) on its output tape [11]. Let {0, 1}∗ be the infinite set of binary strings, we say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there is a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such that
for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the completeness of the complexity classes L,
NL and P among others.

The two-way Turing machines may move their head on the input tape into two-way
(left and right directions) while the one-way Turing machines are not allowed to move the
input head on the input tape to the left [8]. Hartmanis and Mahaney have investigated
the classes 1L and 1NL of languages recognizable by deterministic one-way logarithmic
space Turing machine and nondeterministic one-way logarithmic space Turing machine,
respectively [8]. They have shown that 1L ̸= 1NL (by looking at a uniform variant of the
string non-equality problem from communication complexity theory) and have defined a
natural complete problem for 1NL under deterministic one-way logarithmic space reductions
[8]. Furthermore, they have proven that 1NL ⊆ L if and only if L = NL [8].

We can give a certificate-based definition for NL [2]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape,
that is called “read-once”, where the head never moves to the left on that special tape [2].

▶ Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M , x is placed on its input tape, the certificate
string u is placed on its special read-once tape, and M uses at most O(log |x|) space on its
read/write tapes for every input x where | . . . | is the bit-length function. The Turing machine
M is called a logarithmic space verifier.

An oracle Turing Machine M has an additional tape, the oracle tape, and three states
q?, qyes and qno [9]. When M enters q? (M is said to query the oracle), then M goes
to the state qyes or the state qno according to whether the string written in the oracle
tape belongs or does not belong to a set called the oracle [9]. A language accepted by an
oracle Turing Machine M with oracle A is denoted by LA(M) [9]. The class of languages
accepted by deterministic and nondeterministic oracle Turing Machine M working in space
S(n), with oracle A, is denoted by DSPACEA(S(n)) and NSPACEA(S(n)), respectively
[9]. In this definition, we bound the space of the oracle tape by a space 2O(S(n)) [9]. A

4 NP on Logarithmic Space

nondeterministic oracle Turing machine can query 22O(S(n)) strings in the tree of all possible
computations [9]. There is another definition such that the oracle tape is not space-bounded
and the machine works deterministically from the time it begins to write on the oracle tape
[9]. The complexity classes DSPACE⟨A⟩(S(n)) and NSPACE⟨A⟩(S(n)) are the respective
complexity classes based on this definition on an oracle A [9]. It is trivial to see that
DSPACE⟨A⟩(S(n)) = DSPACEA(S(n)) [9].

We state the following Hypothesis:

▶ Hypothesis 1. There is a nonempty language L2 ∈ 1L, such that there is another language
L3 which is closed under logarithm space reductions in NP–complete with a deterministic log-
arithmic space Turing machine M using an additional special read-once input tape polynomial
p : N→ N, where:

L3 = {w : M(w, u) = y, ∃u ∈ {0, 1}p(|w|) such that y ∈ L2}

when by M(w, u) we denote the computation of M , w is placed on its input tape, and the
certificate string u is placed on the special read-once tape of M . In this way, there is a
NP–complete language defined by a logarithmic space verifier M such that when the input is
an element of the language, then there exists a certificate u such that M outputs a string
which belongs to a single language in 1L.

We show the principal consequences of this Hypothesis:

▶ Theorem 2. If the Hypothesis 1 is true, then NL = NP .

Proof. We can simulate the computation M(w, u) = y in the Hypothesis 1 by a nondetermin-
istic logarithmic space oracle Turing machine N such that the string y is written in the
oracle tape in the computation of N(w), since we can read the certificate string u within the
read-once tape by a work tape in a nondeterministic logarithmic space generation of symbols
contained in u [10]. Certainly, we can simulate the reading of one symbol from the string u
into the read-once tape just nondeterministically generating the same symbol in the work
tapes using a logarithmic space [10]. We could remove each symbol or a logarithmic amount
of symbols generated in the work tapes, when we try to generate the next symbol contiguous
to the right on the string u. In this way, the generation will always be in logarithmic space.
This proves that L3 is in NL1L since the string y written in the oracle tape is queried whether
y ∈ L2 or not. That is equivalent to say that L3 is in NL when the Hypothesis 1 is true,
since NL1L = NL as a consequence of that NL is closed under 1L–reductions [9]. Due to
L3 is closed under logarithm space reductions in NP–complete, then every NP problem is
logarithmic space reduced to L3. This implies that NL = NP since NL is closed under
logarithm space reductions as well. ◀

1.2 The Problems
We define the problems that we used.

▶ Definition 3. ONE-IN-THREE 3-TIMES 3SAT (3T-3SAT)
INSTANCE: A Boolean formula ϕ in CNF such that each variable appears exactly thrice

with two positive and one negated literal occurrences.
QUESTION: Is there a truth assignment such that each clause has at least one true

literal?

F. Vega 5

▶ Definition 4. 1SUM
INSTANCE: A positive integer K and a collection B of positive real numbers such that

K has a logarithmic size in relation to the bit-length of B and every element in B has the
same bit-length | K | where | . . . | means the bit-length function.

QUESTION: Is the sum of all elements of the collection B equal to K?

2 Results

▶ Theorem 5. 3T-3SAT ∈ NP–complete.

Proof. Consider the problem ONE-IN-THREE 3SAT with no negated literals. The question
is the same as 3T-3SAT but the instances in ONE-IN-THREE 3SAT are Boolean formulas
in 3CNF . Besides, we know that ONE-IN-THREE 3SAT ∈ NP–complete [7]. Consider an
instance ψ of ONE-IN-THREE 3SAT in which the variable x appears k times. So, we replace
the first occurrence of x by x1, the second by x2 and so on, where x1, x2, . . . , xk are k new
variables. Next, we add the expression

(⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . . ∧ (⇁ xk ∨ x1)

which is equivalent to

x1 ⇒ x2 ⇒ . . .⇒ x1.

Note that, each clause above has fewer than 3 literals. The final result satisfies the condition
on the selected variable x. Suppose we are given in ψ the expression

. . . (u ∨ v ∨ x) . . . ∧ . . . (x ∨ y ∨ z) . . .

and therefore, the transformed expression into another Boolean formula ϕ would be

. . . (u ∨ v ∨ x1) . . . ∧ . . . (x2 ∨ y ∨ z) . . . ∧ . . . (⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . .

where the variable x2 appears exactly thrice since x2 appears twice and finally ⇁ x2 appears
once. Hence, we proceed with this subroutine for each variable in ψ in ONE-IN-THREE 3SAT
to finally obtain the equivalent instance ϕ in 3T-3SAT. ◀

▶ Theorem 6. 1SUM ∈ 1L.

Proof. Given an collection of positive real numbers B, we can read its elements from left
to right, check that every element in B has the same bit-length | K |, sum them one by
one into a single value, measure the bit-length of B to compare this number by K and
compare the calculated value whether it is equal to K. We can make all this computation in
a deterministic one-way using logarithmic space. Certainly, the comparison between K and
the bit-length of B could be done in logarithmic space since K is a unique value. On the
one hand, we can count and store the number of bits of each element of the collection that
we read from the input and check whether they are all equal to the unique bit-length | K |.
Indeed, we never need to read to the left on the input for the acceptance of the elements in
1SUM in a deterministic logarithmic space. ◀

▶ Theorem 7. There is a deterministic logarithmic space Turing machine M , where:

3T-3SAT = {w : M(w, u) = y,∃u such that y ∈ 1SUM}

when by M(w, u) we denote the computation of M , w is placed on its input tape, u is placed
on the special read-once tape of M , and u is polynomially bounded by w.

6 NP on Logarithmic Space

Algorithm 1 Logarithmic space verifier with output

1: /*A valid instance for 3T-3SAT with its certificate*/
2: procedure VERIFIER(ϕ, A)
3: /*Initialize the number of variables*/
4: n← number–of–variables(ϕ)
5: /*Output the value K*/
6: output n·(n+1)

2
7: /*Initialize the number of clauses*/
8: m← number–of–clauses(ϕ)
9: /*Output the open square bracket of collection B*/

10: output , [
11: /*Iterate for the elements of the certificate array A*/
12: for i ← 1 to m do
13: /*Assign the current index*/
14: j ← A[i]
15: if j = null then
16: return “no”
17: else if j > number–of–literals(ci) ∨ j < 1 then
18: return “no”
19: else if i = m ∧A[i+ 1] ̸= null then
20: return “no”
21: else if ci[j] < 0 then
22: /*We fill it by zeroes until the bit-length of K*/
23: output fill–by–zeroes(−ci[j])
24: else
25: /*We fill it by zeroes until the bit-length of K*/
26: output fill–by–zeroes(ci[j]

2)
27: end if
28: if i < m then
29: output ,
30: else
31: /*Output the close square bracket of collection B*/
32: output]
33: end if
34: end for
35: end procedure

F. Vega 7

Proof. The input could be a Boolean formula ϕ in CNF such that each variable appears
exactly thrice with two positive and one negated literal occurrences. The Boolean formula
ϕ contain n variables and m clauses. We can create a certificate array A which contains
indexes values that represents the position of exactly one literal per clause. We read at
once the indexes values of the array A and we reject when this index is out of range
in relation to the clause in the ith position. Besides, we check that the array contains
exactly m element: one index per clause. While we read the indexes values of the array
A using every position i, we check those constraints in A and output half of the number
that represent the positive literals and the absolute value for negated literals just assuming
the literals are defined as integer according to the DIMACS files representation as input
(http://www.satcompetition.org/2009/format-benchmarks2009.html).

By Theorems 5 and 6, we obtain that for all:

ϕ ∈ 3T-3SAT⇔ ∃A such that (K,B) ∈ 1SUM

with the output of real numbers B that sums K = n·(n+1)
2 when we guarantee do not output

the positive and negated literal of a single variable and we indeed do output one single value
for each clause. To sum up, we can create this verifier that only uses a logarithmic space in
the work tapes such that the array A is placed on the special read-once tape, because we
read at once the indexes values in the array A. Hence, we only need to iterate from the cells
of the array A to verify whether the array is an appropriated certificate according to the
described constraints and check that every index j is correct.

This logarithmic space verifier with output will be the Algorithm 1. We introduce some
constraints in the Algorithm 1 in order to guarantee the algorithmic procedure. For example,
we assume that a value does not exist in the array A into a cell of some position i when
A[i] = null. In addition, we immediately reject when the mentioned comparisons between
the indexes values j and the size of the clause do not hold at least into one single binary digit.
That means the machine enters into the rejecting state when the certificate is not valid. Note
that, we assume the variables are between 1 and n due to the DIMACS files representation
as input (http://www.satcompetition.org/2009/format-benchmarks2009.html). ◀

▶ Theorem 8. NL = NP .

Proof. This is a directed consequence of Theorems 2 and 7 because of the Hypothesis 1
is true. Certainly, 3T-3SAT is closed under logarithm space reductions in NP–complete.
Indeed, we can reduced SAT to 3T-3SAT in logarithmic space and every NP problem could
be logarithmic space reduced to SAT by the Cook’s Theorem Algorithm [7]. ◀

3 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [7]. A proof of P = NP will have stunning
practical consequences, because it possibly leads to efficient methods for solving some of the
important problems in NP [5]. The consequences, both positive and negative, arise since
various NP–complete problems are fundamental in many fields [6]. This work theoretically
proves that P = NP since NL ⊆ P and so, we should seriously take into account these
positive and negative consequences [10].

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as SAT will break most existing
cryptosystems including: Public-key cryptography, symmetric ciphers and one-way functions

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html

8 NP on Logarithmic Space

used in cryptographic hashing. These would need to be modified or replaced by information-
theoretically secure solutions not inherently based on P–NP equivalence.

There are positive consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research
are NP–complete, such as some types of integer programming and the traveling salesman
problem [6]. Efficient solutions to these problems have enormous implications for logistics [6].
Many other important problems, such as some problems in protein structure prediction, are
also NP–complete, so this will spur considerable advances in biology [3].

Since all the NP–complete optimization problems become easy, everything will be much
more efficient [6]. Transportation of all forms will be scheduled optimally to move people
and goods around quicker and cheaper [6]. Manufacturers can improve their production
to increase speed and create less waste [6]. Learning becomes easy by using the principle
of Occam’s razor: We simply find the smallest program consistent with the data [6]. Near
perfect vision recognition, language comprehension and translation and all other learning
tasks become trivial [6]. We will also have much better predictions of weather and earthquakes
and other natural phenomenon [6].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself [1]. Research mathem-
aticians spend their careers trying to prove theorems, and some proofs have taken decades
or even centuries to find after problems have been stated [1]. For instance, Fermat’s Last
Theorem took over three centuries to be proved [1]. A method that guarantees to find proofs
for theorems, should one exist of a “reasonable” size, would essentially end this struggle [1].

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, USA, 2009.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (hp) model
is np-complete. Journal of computational biology: a journal of computational molecular cell
biology, 5(1):27–40, 1998.

4 Stephen Arthur Cook. The P versus NP Problem. http://www.claymath.org/sites/default/
files/pvsnp.pdf, April 2000. Clay Mathematics Institute. Accessed 9 January 2023.

5 Thomas Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, USA, 3rd edition, 2009.

6 Lance Fortnow. The status of the P versus NP problem. Communications of the ACM,
52(9):78–86, 2009.

7 Michael Randolph Gare and David Stifler Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, USA, 1
edition, 1979.

8 Juris Hartmanis and Stephen Ross Mahaney. Languages Simultaneously Complete for One-
Way and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383–390, 1981.
doi:10.1137/0210027.

9 Pascal Michel. A survey of space complexity. Theoretical computer science, 101(1):99–132,
1992. doi:10.1016/0304-3975(92)90151-5.

10 Christos Harilaos Papadimitriou. Computational complexity. Addison-Wesley, USA, 1994.
11 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, USA, 2006.

http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://doi.org/10.1137/0210027
https://doi.org/10.1016/0304-3975(92)90151-5

	1 Introduction
	1.1 The Hypothesis
	1.2 The Problems

	2 Results
	3 Conclusions

