
EasyChair Preprint
№ 10387

K-Smali: an Executable Semantics for Program
Verification of Reversed Android Applications

Marwa Ziadia, Mohamed Mejri and Jaouhar Fattahi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 13, 2023

K-Smali: an Executable Semantics for Program
Verification of Reversed Android Applications

Marwa Ziadia[0000−0002−8563−4736], Mohamed Mejri[0000−0003−4820−3176], and Jaouhar
Fattahi[0000−0002−3905−9099]

Department of Computer Science and Software Engineering, Laval University, 2325, rue de
l’Université, Québec (Québec) G1V 0A6, Canada.

Abstract. One of the main weaknesses threatening smartphone security is the
abysmal lack of tools and environments that allow formal verification of appli-
cation actions, thus early detection of any malicious behavior, before irreversible
damage is done. In this regard, formal methods appear to be the most natural and
secure way for rigorous and unambiguous specification as well as for the veri-
fication of such applications. In previous work, we proposed a formal approach
to build the operational semantics of a given Android application by reverse en-
gineering its assembly code, which we called Smali+. In this paper, we rely on
the same idea and we enhance it by using a language definitional framework. We
chooseK framework to define Smali semantics. We briefly introduce theK frame-
work. Then, we present a formal K semantics of Smali code, called K-Smali. Se-
mantics includes multi-threading, threads scheduling and synchronization. The
proposed semantics supports linear temporal logic model-checking that provides
a suitable and comprehensive formal environment for checking a wide range of
Android security-related properties.

Keywords: Android applications, K framework, formal semantics, formal veri-
fication, Smali.

1 Introduction

Android platform users are increasingly exposed to attacks on the Android environ-
ment via untrusted applications. The McAfee 2020 report confirms that fake applica-
tions are the most active mobile threat category, generating almost half of all malicious
telemetry, with a 30% increase from 2018 [1]. SMS trojan such as AsiaHitGroup and
GGTracker are prime examples of attacks that manifest at the application level (e.g.
Fake Player application). This may cause financial losses to the user by sending text
messages to premium-rate numbers without their knowledge. Spying by taking photos,
recording videos or audios, retrieving the history of the application, recording phone
conversations, and tracking user location are among a large range of threats that jeop-
ardize Android users through rogue applications. Several research initiatives have been
recently put forward to handle these concerns. Their goal is mainly to detect misbe-
having applications and to enforce the security within them. Nevertheless, it is virtually
impossible to assess efficiency or deficiency or prove the validity of a given system
in the absence of a formal specification. According to Stefanescu et al. [2], which we

endorse, analysis tools for a programming language should be based on the formal
semantics of that language. The informal semantics are subject to interpretation by dif-
ferent tool developers, and there is generally no guarantee that these interpretations are
consistent with the specification. However, even in the presence of a formal specifica-
tion, language definitional frameworks are highly needed. They are generally provided
with a guideline to formalize a given language, which allows avoiding human errors
and omissions that can slip in. They also permit to produce reliable results and to test
the resulting formal semantics against a set of sample programs. Nevertheless, this type
of framework should meet a set of criteria. Firstly, it must be easy to use and should
provide human-readable semantics. Secondly, it must be sufficiently adapted to per-
form formal reasoning and provide automated proofs. Moreover, it should be able to
define language-related features, such as concurrency. The framework should also be
generic so that it is not tied to a specific language, and modular so that it does not need
to be modified if new features are added. Ideally, the framework should also include its
own analyzer for the language being analyzed so that the use of an external software
program is not mandatory. The K framework [3] is a prime example of tools satisfying
most of these requirements. It provides a user-friendly rewrite-based language for defin-
ing formal operational semantics of programming languages. Figure 1 shows different
modules that can be applied on any language having K semantics, such as LTL model
checking, symbolic execution, and program verification. The first thing we can notice is
the large choice of tools (e.g. compilers, interpreters, state-space explorers, and test-case
generators) that can be automatically derived from one reference formal definition of the
language. It is a wise way to eliminate the need to squander resources on designing and
implementing expensive custom tools. Different approaches define multiple semantics
for one language, each designed for a purpose (e.g. program verification, symbolic ex-
ecution, etc.), which is an uneconomical and labor-intensive way. In previous work [4],
we put forward an operational semantics for Smali that we called Smali+. Smali is an
assembly-like code generated from reverse-engineering Android applications. Smali+

includes the most important Dalvik features such as multithreading, method invocation,
and object creation. However, this formal approach used to generate formal semantics is
not executable, error-prone, and lacks a semantics engineering framework with the char-
acteristics mentioned above. Furthermore, verifying and proving the correctness of such
formal semantics requires manual development of custom tools (such as interpreters and
compilers), usually with no guarantee. The resulting program may end up manifesting
unexpected behaviors and, in some cases, leading to irreversible consequences [3]. In
this paper, we choose the K framework for Smali code formalization. The main goal is
to provide an executable and expressive formal semantics with which program analysis,
security policy enforcement, and property verification can be performed. We name the
resulting semantics K-Smali. Additionally, using K, the obtained semantics can be used
to check security properties specified as Linear temporal logic (LTL) [5, 6] formulas.
These properties reflect the healthy behaviors of an application that attacks, originating
from SMS Trojans or Android spyware for example, try to transgress. For complete
details on Smali, reverse engineering and compilation steps of an Android application,
we kindly refer the reader to [4]. Our contribution consists of full-fledged semantics for
Android applications, entirely compatible with the K framework so that it inherits all its

powerful compilation, testing, and verification tools. We have been a lot motivated by
different K semantics for several real languages such as Java [7], PHP [8], and C [9].
We see that they have been used as trusted reference models for the defined language.

This paper is organized as follows. In Section 2, we briefly introduce the K frame-
work. In Section 3, we present K-Smali. That is, we present the general and detailed
configuration, syntax, and semantics rules. In Section 4, we indicate how we verify
some important security-related properties using K on the derived semantics. Section
5 reviews and discusses related research work. Finally, in Section 6, we draw some
conclusions and trace some directions for future work.

Formal language
definition with K

Interpreter

Compiler

Debugger

Symbolic execution

Parser

Model Checker

Test case generator

Deductive pro-
gram verifier

Fig. 1: K Framework features [10]

2 Overview on K framework

K is a rewriting-based definitional semantic framework for programming languages.
It provides a complete methodology for their design and specification. The K specifi-
cation consists of three main steps: a syntax definition, a configuration definition, and
a semantic definition. Once these steps are completed and saved in files with k ex-
tension, the command kompile is used to compile each definition. The command krun
invokes an interpreter with which program models can be simulated and tested. Several
options can be added to this command to generate models on which formal verifica-
tion tools for parsing, interpretation, deductive formal verification, symbolic execution,
and model checking can be applied. Figure 1 illustrates all these features. Syntax in K

is written with the conventional Backus-Naur Form (BNF) notation. Listing 1.1 repre-
sents an example of aK source file containing a program P syntax definition. As shown,
non-terminals are starting with uppercase letters and preceded by the keyword syntax,
whereas terminals are represented inside two quotes. For example, in line 2, a program
Pgm is defined as a list of semicolon-separated instructions. Syntax declaration can be
tagged with attributes. These attributes are specified in square brackets at the end of
a given definition and are meant to provide additional information to the parser. The
strictness constraint, for example, specifies how the arguments of the language con-
struct should be evaluated. In line 3, the "strict(2)" attribute indicates to the parser that
only the second argument (i.e. Exp) should be evaluated. When no number is provided
with this attribute, such as in line 4, all argument positions are considered strict (i.e.
they are evaluated in any fully interleaved order). K framework offers some basic types
such as Bool, Int, String, Float, etc. as well as the Id type (Identifier), which facilitates
the language specification.

1 module P−Syntax
2 s y n t a x Pgm : : = L i s t " { " I n s t , " ; " " } "
3 s y n t a x I n s t : : = Id " " Exp [s t r i c t (2)]
4 s y n t a x Exp : : = " mul " " (" I n t I n t ") " [s t r i c t]
5 end module

Listing 1.1: An example of K syntax definition

Before defining semantic rules, K requires to set the structure of the program state
by setting its configuration. It provides additional information (besides the syntax) about
the definite language to better understand its semantics. Program states in K configura-
tions are organized in units called cells. Cells are labeled and possibly nested. Each cell
contains semantic information about the program, such as its context, memory, envi-
ronment, etc. The cell content differs according to this information and can hold several
algebraic data types such as maps, lists, sets, and trees. Figure 2 shows the generated
graphical representation for a program P configuration. The notation inside the cells
represents their initial state. Configuration consists of a top cell labeled >, holding two
sub-cells: a $ PGM variable cell of type k, used, by convention always for computation,
a Memory cell holding a mapping form the program variables to values, initially empty.
The asterisk symbol "*" used with the Inst sub-cell specifies its multiplicity.

•K

Inst*

$PGM:k

•Map

Memory

>

Fig. 2: K configuration example

Once syntax and configuration are defined, semantics rules should be set. Defining
semantics for the language consists of a set of K rewrite rules that drive the execution
of programs. One can describe a K rewrite rule as a transition over configurations,

that starts with a configuration holding the original program and ends with a new one
maintaining the result. Each rule in K is preceded by the keyword rule and has the
following form:

rule lhs⇒ rhs

where lhs represents the left-hand side of the rule and rhs is the right-hand side. List-
ing 1.2 provides an example of semantics definition. The module P-semanitcs repre-
sents the semantics definition of the P program presented in Listing 1.1. Line 3 repre-
sents a rewrite rule definition for multiplication. Notice the ellipses “...” in the rewrite
rule definition. It is actually used for a volatile part of the term, which corresponds to
the part that the current rule does not take into account.

1 module P−S e m a n t i c s
2 i m p o r t s P−Syntax
3 r u l e <>> <PGM>< I n s t > I1 : I n t ∗ I2 : I n t ⇒ I1 ∗Int I2 </ I n s t ></PGM> . . . < />>

4 end module

Listing 1.2: An example of K semantics definition

The K rewrite rule defined in Listing 1.2 affects one cell in the program P configuration
(i.e. Inst cell) as follows:

rule
〈

I1:Int * I2:Int
I1 ∗Int I2

〉
Inst

The line expresses a rewrite. Terms above and below the line represent the left-hand side
(lhs) and the right-hand side (rhs) of the rule, respectively. The rest of the configuration
context is inferred automatically.

3 K-Smali

3.1 Syntax

As previously mentioned, formal modeling Smali code was the subject of earlier work
[4]. To make this paper self-contained, this subsection details just the definitions, in-
structions, and terms that are newly considered in K-Smali. Listing 1.3 corresponds to a
K source file used to define K-Smali. It provides basic syntactic categories and the syn-
tax of selected instructions. Following the disassembly process, all internal source Java
classes are separated from their including class, each class in a .smali file. The Manifest
file allows the identification of the application’s entry point. We suppose that its syn-
tax consists only of the keyword .manifest followed by a method reference MethodRef
referring to the method’s full name as well as the fully qualified name of its including
class. This method represents the entry point from which the program starts execution
(line 78). Each class in the .smali file is defined by a class header ClassHeader in-
dicating all information about the class: possible comments; its fully qualified name
(starting always by "L" and ending by ";" line 33), its direct super-class fully qualified
name (if exists), access flags indicating its visibility; its corresponding Java source class
(identified by the .source keyword) and finally a set of implemented interfaces.

1 module SMALI−SYNTAX
2 s y n t a x Program : : = S m a l i F i l e s M a n i f e s t F i l e
3 s y n t a x S m a l i F i l e s : : = L i s t { S m a l i F i l e , " " }
4 s y n t a x S m a l i F i l e : : = C l a s s
5 s y n t a x C l a s s : : = C l a s s H e a d e r F i e l d s Methods
6 s y n t a x C l a s s H e a d e r : : = Comments " . c l a s s " A c c e s s F l a g s ClassName S u p e r C l a s s

S o u r c e C l a s s I n t e r f a c e s
7 s y n t a x S u p e r C l a s s : : = Comments " . s u p e r " SuperClassName | Empty
8 s y n t a x S o u r c e C l a s s : : = Comments " . s o u r c e " S t r i n g | Empty
9 s y n t a x Comments : : = L i s t {Comment , " " }

10 s y n t a x Comment : : = r " \ \ # . * " [t o k e n]
11 s y n t a x F i e l d s : : = L i s t { F i e l d , " " }
12 s y n t a x F i e l d : : = Comments " . f i e l d " A c c e s s F l a g s FieldName " : " Type ValueOp
13 s y n t a x ValueOp : : = Value | Empty
14 s y n t a x Methods : : = L i s t {Method , " " }
15 s y n t a x Method : : = Comments " . method " A c c e s s F l a g s MethodNameSign MethodBody " .

end method "
16 s y n t a x MethodNameSign : : = MethodName M e t h o d S i g n a t u r e
17 s y n t a x M e t h o d S i g n a t u r e : : = MethodInTypes MethodRetType
18 s y n t a x MethodInTypes : : = " (" Types ") " | " (" ") "
19 s y n t a x MethodRetType : : = Type | VoidType
20 s y n t a x Type : : = P r i m i t i v e T y p e | Objec tType | ArrayType
21 s y n t a x P r i m i t i v e T y p e : : = "Z" | "B" | "C" | "D" | "F" | " I " | " J " | "S"
22 s y n t a x VoidType : : = "V" / * vo id t y p e * /

23 s y n t a x Objec tType : : = LName / * O b j e c t r e f e r e n c e * /

24 s y n t a x ArrayType : : = " [" P r i m i t i v e T y p e | " [" Objec tType | " [ArrayType "
25 s y n t a x Value : : = Bool | I n t | F l o a t | S t r i n g
26 s y n t a x A c c e s s F l a g s : : = L i s t { AccessF lag , " " }
27 s y n t a x A c c e s s F l a g : : = " p u b l i c " | " p r i v a t e " | " p r o t e c t e d " | " f i n a l " | " a b s t r a c t " | " s t a t i c "
28 s y n t a x ClassName : : = LName
29 s y n t a x SuperClassName : : = LName
30 s y n t a x MethodName : : = Name | " c o n s t r u c t o r " "< i n i t >"
31 s y n t a x FieldName : : = Name
32 s y n t a x Name : : = Id
33 s y n t a x LName : : = r "L [_a−zA−Z0−9]*[_a−zA−Z0−9] * ; " [t o k e n]
34 s y n t a x MethodRef : : = ClassName "−>" MethodNameSignature
35 s y n t a x F i e l d R e f : : = ClassName "−>" FieldName
36 s y n t a x P a r a m e t e r s : : = L i s t { Pa rame te r , " , " }
37 s y n t a x P a r a m e t e r : : = RegName
38 s y n t a x MethodBody : : = L i s t { S t a t e m e n t , " " }
39 s y n t a x S t a t e m e n t : : = I n s t r u c t i o n | D i r e c t i v e
40 s y n t a x I n s t r u c t i o n : : = " go to " " : " Labe l
41 | " : " Labe l
42 | " nop "
43 | " s p a r s e − s w i t c h " RegName " , " " : " S w i t c h t a b
44 | " c o n s t " RegName " , " Val
45 | " c o n s t − s t r i n g " RegName " , " S t r i n g
46 | " move " RegName " , " RegName
47 | "new− i n s t a n c e " RegName " , " ClassName
48 | "new− a r r a y " RegName " , " RegName " , " ArrayType
49 | Sge t RegName " , " F i e l d R e f
50 | Sput RegName " , " F i e l d R e f e r e n c e
51 | " i g e t " RegName " , " RegName " , " F i e l d R e f
52 | " i p u t " RegName " , " RegName " , " F i e l d R e f
53 | " a g e t " RegName " , " RegName " , " RegName
54 | " a p u t " RegName " , " RegName " , " RegName
55 | " i f −eq " RegName " , " RegName " , " " : " Labe l
56 | " i f − l t " RegName " , " RegName " , " " : " Labe l
57 | BinOp RegName " , " RegName " , " RegName [l e f t]
58 | UnOp RegName " , " RegName
59 | " invoke − s t a t i c " " { " P a r a m e t e r s " } " " , " MethodRef
60 | " invoke − v i r t u a l " " { " P a r a m e t e r s " } " " , " MethodRef
61 | " move− r e s u l t " RegName
62 | " r e t r u n −vo id "
63 | " r e t u r n " RegName
64 | " moni to r − e n t e r " RegName
65 | " moni to r − e x i t " RegName
66 s y n t a x Sput : : = " s p u t " | " spu t −o b j e c t "
67 s y n t a x Sge t : : = " s g e t " | " s g e t −o b j e c t "
68 s y n t a x Binop : : = " add " | " sub " | " mul " | " d i v " | . . .
69 s y n t a x Unop : : = " neg " | " n o t " | " i n t − to − l ong " | . . .
70 s y n t a x Val : : = I n t
71 s y n t a x S w i t c h t a b : : = " . s p a r s e − s w i t c h " T a b l e c a s e s " . end s p a r s e − s w i t c h "
72 s y n t a x T a b l e c a s e s : : = L i s t { T a b l e c a s e , " " }
73 s y n t a x T a b l e c a s e : : = Value "→" " : " Labe l
74 s y n t a x S t r i n g I d , Labe l : : = Id
75 s y n t a x Empty : : = " "
76 s y n t a x M a n i f e s t F i l e : : = " . m a n i f e s t " MethodRef
77 end module

Listing 1.3: K source file for K-Smali syntax

A Comment is a regular expression r"<regExp>" that starts with # and followed by
any character (.) zero or many times (*). Notice that the attribute [token] used when
defining a comment and the fully qualified name of a class (lines 10 and 33) signals
that the associated sort will be occupied by domain values, which is a set of literal val-
ues (string and integer). A class definition includes its fields and methods as well. A
method is defined by a set of access flags that determines its scope, a full name, a signa-

ture, and a body. A method name signature consists of the method input MethodIntypes
and output MethodRetTypes types. Fields are a list of field identified by the keyword
.field, access flags, a name, a type, and a value (if exists). The method body is a list of
blank-separated statements. Statements are either directives or instructions. A directive
could be .locals followed by an integer, indicating the number of the local register in
the method. The directive .registers specifies the total number of registers in the method
(including local and parameter registers). Considered instructions include unconditional
and conditional jumps with, respectively, goto, if-eq, if-lt and sparse-switch instructions.
All jumping to a given label (:Label) identifying the concerned instruction. We also
consider instructions of moving a constant string and constant integer to a destination
register with, respectively const-string and const instructions. Exchange between regis-
ters is modeled with move instruction from source to a destination register. Objects and
arrays creation, arithmetic and subroutine instructions as method invocation and return
(void and non-void) instructions are also part of the K-Smali language. Notice that the
attribute [left] can be used for binary operations like addition which is left-associative
(line 57). K-Smali includes as well read/write static fields (sget, sput), instance fields
(iget, iput), and array elements (aget, aput) instructions. Finally, threads synchroniza-
tion for shared objects instructions are modeled by monitor-enter and monitor-exit fol-
lowed by the register name RegName, which actually holds the object to be reserved
reference. For more details, such as interface definition, primitive types notations in
Smali, we invite the reader to see [4].

3.2 Configuration

Figure 3 illustrates the configuration of a disassembled DEX file in a high-level overview.
A Smali program configuration consists of a top level cell > holding four main cells:
Threads, Classes, RegisterMethods, and Heap. The Threads cell represents the con-
current behavior of the program. It consists of the executing thread represented by the
Thread sub-cell and a list of runnable threads in the Scheduler sub-cell. All information
required for multithreading (synchronization, scheduling and communication), includ-
ing the currently executing details, are in this sub-cell. Each thread is identified by an
identifier id, a RunTime field computing each executed instruction, and a status rep-
resenting its state. A thread state can be "run" for a running thread, a "runnable" for a
thread waiting to be selected by the scheduler, or an object reference "Ref " for a blocked
thread waiting for the release of this object. Classes cell is harboring one or multiple
class(es). RegisterMethods cell is an independent cell (since registers are reserved and
released each time a method returns). The Heap cell corresponds to a shared memory
used to store the dynamically created objects and arrays.

Figure 4 provides the detailed configuration for sub-cells. A running thread is iden-
tified by an identifier Id, a k cell for the execution context (i.e. the computation to be
executed), and a ReturnResult cell for its return value. Each class in Class cell is defined
by its fully qualified class name, its direct super-class fully qualified name, an access
flag indicating its visibility, and a map cell Fieldsclass mapping the class fields names
to values. The Class cell includes either a Methods cell for all methods (zero or more)
in the class. A method cell includes its full name, access flags, and a body, which is
denoted by code cell and consists of a mapping from Ids (identifiers) to corresponding

...
Thread

•List

Scheduler

Threads

...

Class*

Classes

...
RegisterMethod*

RegisterMethods

...
Object*

...
Array*

Heap

>

Fig. 3: K-Smali global configuration

statements. RegisterMethod cell holds two sub-cells, the register reference and a map-
ping register names to values. An Object cell records the object reference in the heap,
its class full name, a mapping (class) fields to values, and a Reservedobject indicator
(an integer) cell used for threads synchronization. An "undefined" value indicates a free
object (i.e. its associated monitor is not acquired by any thread), whereas a thread iden-
tifier id value designates a reserved one by the specified thread reference. The Array
cell records the array name and size, and a mapping form indexes names to values.

N
Id

K

k

Value

ReturnResult

Thread

ClassName

Name

ClassName

SuperClass

AccesFlags

AccessFlagsClass
•Map

FieldsClass

MethodReference

MethodFullName
AccesFlags

AccessFlagsMethod
•Map

Code

Method*

Methods

Class*

N
RefRegisters

•Map

Registers

RegisterMethod*

N
RefObject

ClassName

ClassObject

•Map

FieldsObject
N

ReservedObj

Object*

Name

ArrayName

Type

ArrayType
N

Arraysize

•Map

ArrayIndex

Array*

Fig. 4: K-Smali sub-cells configuration

3.3 Semantics

Hereafter, we present the operational semantics of Smali in K. It is represented as a set
of independent rewrite rules. As our semantics is quite vast (it encompasses more than
50 rules), we will present only rules expressing the most important features. In each
rule, we can capture three main repetitive execution phases :(1) the execution of the

selected statement in the code sub-cell, (2) the selection of next statement to execute
in the sub-cell K, (3) the thread executing the current instruction T must be selected
by the scheduler. Which means that it must have the state "run" and the identifier id.
This condition is checked by the side condition of each rule. In addition to rewrite
rules, K definitions include functions. Most of these functions are used to manage the
side-conditions of rewrite rules, in particular, for logical predicates.
The rule Rinvoke−virtual invokes an instance method.
rule Rinvoke-virtual

ThId

Id

< M(m); I(i); R(r) >

< lookupMethod(ClassNameObject ->m’); I(0); R(r ′) > < M(m); I(i + 1); R(r) >

k

Thread

m

MethodFullName

i 7→invoke-virtual {R0, ..., Rn}, ClassName ->m’

Code

Method

Threads ∪ (ThId; T ; run)

Threads ∪ (ThId; T + 1; run)

Scheduler

r

RefRegisters

R0 7→ v0 ... 7→ ... Rn 7→ vn

Registers

RegisterMethod

• 7→ r ′(fresh)
RefRegisters

p0 7→ _

v0

... 7→ _

...

pn 7→ _

vn

Registers

RegisterMethod

RegisterMethods

v0

Reference

ClassNameObject

Class

Object

Heap



requires
Scheduler(Threads ∪ (ThId; T ; run)) = ThId
and
ClassName ->m’,Ljava/lang/Thread;->start()V

The caller method passes arguments to the callee by setting its parameter registers. The
class of the object whose method is being called (or the receiving object’s class) is first
retrieved from the heap through its reference. The rule RlookupMethod is called to search
the method m’ in the class ClassName and upwards to its super-class chain. .
rule RlookupMethod

lookupMethod(ClassName 7→ m’)

•

k

ClassName

NameClass

m’

MethodFullName

Class


requires m’ is in the class ClassName .

If the method is not in the class, then lookup in the super-class scn.
rule RlookupMethod

lookupMethodNotFound(ClassName

scn

7→ m′)

k

ClassName

NameClass

scn

SuperNameClass

m′
MethodFullName

Class


requires m′ is not the class ClassName .This rule checks also if the invoked method is

different from start() method of the class Thread, which is used to start a thread and
treated separately with the rule RCreate−thread .
The rule Rcreate-thread creates a new thread object and adds it to the scheduler list.
rule Rcreate-thread

ThId

Id

< M(m); I(i); R(r) >

< M(m); I(i + 1); R(r) >

k

Thread

• 7→ ThId1(fresh)
Id

< lookupMethod(ClassNameObject ->m’); I(0); R(r ′) >

k

Thread

Threads

Threads ∪ (ThId; T ; run)

Threads ∪ (ThId; T + 1; run) ∪ (ThId1; 0; runnable)

Scheduler

m

MethodFullName

i 7→invoke-virtual R0, ClassName ->m’

Code

Method

r

RefRegisters

R0 7→ v0
Registers

RegisterMethod

RegisterMethods

• 7→ r ′(fresh)
RefRegisters

p0 7→ _

v0

Registers

RegisterMethod

v0

Reference

ClassNameObject

Class

Object

Heap



requires
Scheduler(Threads ∪ (ThId; T ; run)) = ThId
and
ClassName ->m’

=Ljava/lang/Thread;->start()V

The rule Rmonitor-enter expresses a successful detention of the monitor associated with
the object Ref since its status equals to "undefined". The reserved object reference is
updated by the owner thread reference ThId.
rule Rmonitor-enter

ThId

Id

< M(m); I(i)

I(i + 1)

; R(r) >

k

Thread

Threads ∪ (ThId; T ; run)

Threads ∪ (ThId; T + 1; run)

Scheduler

m

MethodFullName

i 7→monitor-enter Rn

Code

Method

r

RefRegisters

Rn 7→ Ref

Registers

RegisterMethod

Ref

Reference

Status

ThId

ReservedObj

Object



requires Scheduler(Threads ∪ (ThId; T ; run)) = ThId
and (Status = undefined)or(Status , ThId))

The rule Rmonitor-enter(block) models a failed attempt to a shared object (the object sta-
tus equals to another thread reference). The thread is blocked until the object’s monitor
is released.
rule Rmonitor-enter(block)

ThId

Id

< M(m); I(i)

I(i)

; R(r) >

k

Thread

Threads ∪ (ThId; T ; run)

Threads ∪ (ThId; T + 1; Ref)

Scheduler

m

MethodFullName

i 7→monitor-enter Rn

Code

Method

r

RefRegisters

Rn 7→ Ref

Registers

RegisterMethod

Ref

Reference

Status

ReservedObj

Object



requires Scheduler(Threads ∪ (ThId; T ; run)) = ThId
and Status , undefined
and Status , ThId

The rule Rmonitor-exit represents a thread that releases the owned monitor for the object
in Rn (the status is rewritten by the "undefined" value).
rule Rmonitor-exit

ThId

Id

< M(m); I(i)

I(i + 1)

; R(r) >

k

Thread

Threads ∪ (ThId; T ; run)

schedulerUpdate(Threads; Ref) ∪ (ThId; T + 1; run)

Scheduler

m

MethodFullName

i 7→monitor-exit Rn

Code

Method

r

RefRegisters

Rn 7→ Ref

Registers

RegisterMethod

Ref

Reference

ThId

undefined

ReservedObj

Object



requires Scheduler(Threads ∪ (ThId; T ; run)) = ThId
and (Status = undefined) or (Status , ThId))

where:
schedulerUpdate({}; Ref) = {}

schedulerUpdate({(ThId; T ; Ref)} ∪ Threads; Ref) = {(ThId; T ; run)} ∪ schedulerUpdate(Threads; Ref)
schedulerUpdate({(ThId; T ; Status)} ∪ Threads; Ref) = {(ThId; T ; Status)} ∪ schedulerUpdate(Threads; Ref) If Status , Ref

The Function schedularUpdate() releases all blocked threads waiting for this object
since it is now free.

4 Program verification

In addition to defining an executable formal semantics of Smali, our second objective
is to formally verify Smali programs using K and the built-in tools for parsing and
program verification. To verify properties on a given Android application, we need a
K-Smali program P, a property S to be proved, and finally testing if P satisfies or not
the property S using the command krun and the appropriate option. For property spec-
ification, K offers a wide range of options. In sum, the logical foundation of the K

framework’s verification infrastructure is matching logic for static properties [11] and
reachability logic for the dynamic ones (from version 4 and up). Therefore, properties
can be specified as reachability logic assertions using K rewrite rules. They can also be
written as preconditions and post-conditions in Hoare triples [2], temporal logic formu-
las LTL, Modal logic, formulas in first-order logic, or any other logical formalism. K
offers Linear Temporal Logic (LTL) model checking via compilation into Maude pro-
grams through its Maude [12, 13] backend available in version 3.5 and down. Security-
related properties such as confidentiality, access control, information flow, etc. can be
checked in general. For Android, we may need more fine-grained properties specific
to its typical features and security-sensitive services. Most existing approaches rely on
the analysis of API calls to detect malicious behaviors of a given Android applica-
tion (e.g. in [14–18]). Executing sensitive operations, such as sending SMS messages,
recording audios and videos, tracking the geographical position of the user are all per-
formed through calls to API methods. Verifying properties for each time these APIs are
used will certainly increase the false positive rate. Instead, it would be more judicious
to express the temporal order in which these APIs are invoked. In this sense, model-
checking is the most suitable technique for verifying temporal properties [14]. Many
spyware exploit the system services to collect or disclose private data. As a result, they
become able to track the geographic location of the device, eavesdrop on conversations,
take photos, and record videos without the user’s knowledge. The SMS sending APIs
are also among the most sensitive APIs in Android. Such a feature can be mislead by
attackers to send SMSs to premium-rate numbers without the user’s consent. DogWars
[19], for instance, is an application containing a Trojan that sends SMSs to all contacts
on the device. Similarly, the telephony-related APIs can be a way to use paid services
in Android and call premium-rate numbers without notifying the user.

4.1 Spyware

Among the properties that we want to check is if a given Android application tries to spy
on the user. Taking photos, recording audios and videos without the user’s knowledge
are among behaviors that characterize spyware on Android.

– Program to be verified: Given a program P that allows to take a picture with the in-
struction invoke-virtual of the method TakePicture from the fully-qualified class
name Landroid/hardware/Camera;. The invocation of this API can only be ex-
ploited to take a picture without the user’s knowledge. Except that, invoking the
method setPreviewDisplay or setPreviewTexture from the same class before allows
to display the camera preview. In this way, the user will be aware that the camera
is open and tries to take a photo. APIs representing these two features are mainly
invoked by as illustrated in the following example.

1 invoke − v i r t u a l {v1 , v2 } , L a n d r o i d / hardware / Camera ; 7→ s e t P r e v i e w D i s p l a y (L a n d r o i d /

view / S u r f a c e H o l d e r ;) V
2 invoke − v i r t u a l {v0 , v2 , v2 , v1 } , L a n d r o i d / hardware / Camera ; 7→ t a k e P i c t u r e (L a n d r o i d /

hardware / Camera$ S h u t t e r C a l l b a c k ; L a n d r o i d / hardware / Camera$ P i c t u r e C a l l b a c k ;
L a n d r o i d / hardware / Camera$ P i c t u r e C a l l b a c k ;) V

Listing 1.4: Taking a picture and displaying camera preview APIs

– Property specification: An LTL formula can express the desired behavior and re-
quires the order of having the API SetPreviewDisplay or SetPreviewTexture before
the API TakePicture. This way we can check if the program can spy on the user
or not. To define this property, we need to express the past logic using both past
LTL (ptLTL) and future LTL logic (LTL) modalities. Temporal logic (LT) gathers
LTL and ptLTL modalities [20]. An LTL formula representing this behavior could
be defined as follows:

�(takePicture → �(setPreviewDisplay ∨ setPreviewTexture))

The LTL formula starts with the LTL operator � which means "always". The op-
erator � represents the past logic (ptLTL) and means "previously". The operator
∨ expresses disjunction. Intuitively, the formula states that "If takepicture happens
now, setPreviewDisplay or setPreviewTexture must (always) have happened (pre-
viously)". Similarly, by not using the method setPreviewDisplay from Landroid/-
media/MediaRecorder;, the user will not be warned when the application attempts
to record video or audio surreptitiously. The following LTL formula expresses this
behavior :

�(setVideoSource ∨ setAudioSource → �setPreviewDisplay)

4.2 SMS Trojan

SMS trojans cause financial losses to users by sending SMS messages to premium-
rate numbers without the user’s consent. Hiding of received SMS messages is possible
by aborting broadcast intents. In fact, after invoking the API sendTextMessage with
a premium number, the attacker intercepts and calls the abortBroadcast function to
remove billing-related notification messages from respective service providers. This
way, the attacker can make sure that the user will not be able to detect that an SMS has
been sent.

– Property specification: This property can be expressed by the formula below:

�(¬abortBraodcast → �sendTextMessage)

The ptLTL operator � means "eventually" in the past. In order to detect the pos-
sibility of an SMS Trojan, the formula ensures that "each time the abortBroadcast
function is preceded with a sendTextmessage method, this action will not be per-
mitted". Intuitively, it ensures that the user will be notified each time he receives an
SMS.

– Krun command: Krun command is used to execute a program having the K se-
mantics of the language. LTL formulas can also be verified through LTL model
checking with this command plus the option "−−ltlmc" as follows:

krun P.smali −−ltlmc LTLformula

The option "−−ltlmc" is used with the command Krun to indicate that the specified
program (P.smali) is model-checked with the following LTL formula (LTLformula).
The outcome is True if the property holds. Otherwise, a counter-example represent-
ing an execution violating the property is exhibited.

5 Comparison with related work

Android application analysis tools can be grouped into two categories of approaches:
test-based and formal semantics-based approaches, hereafter discussed.

Test-based approaches Several efforts have focused on the Android security issue with-
out a formal foundation at both the specification and verification levels. For example,
Porter Felt et al. [21] proposed a tool, called Stowaway, to capture overprivilege in com-
piled Android applications to ascertain whether Android developers follow the least
privilege rule. This tool collects the API calls that an application uses and associates
them with permissions. They used dedicated testing tools to build the permissions map
in order to spot privilege escalation. In [22], Chin et al. proposed a tool, called Com-
Droid, to analyze the interaction between applications in order to detect vulnerabilities
and security risks in their components. In [23], Arzt et al. proposed Flowdroid, a static
taint-analysis tool for Android applications. This tool models important aspects spe-
cific to Android such as application lifecycle and callbacks, which results in reducing
missed leaks and false positives. What these tools all have in common is that they do
not all produce formal proof that an application is secure or not, which undermines
their reliability and raises questions about their validity. Another line of test-based An-
droid malware detection is using machine learning and deep learning. The overall idea
consists of building a dataset holding both malicious and benign Android application
samples, from which features are extracted. Based on these inputs, classification algo-
rithms are used for malware detection. Feng et al. [24] propose a pre-installed solution
called MobiTive. They divide their system functionality into a server-side and mobile
side. The first part provides a trained deep learning model and a feature dictionary built
from the extracted API calls and manifest properties. In the second part, as soon as an
application is downloaded, MobiTive extracts features of the API calls and manifest
properties from the classes.dex and manifest files. Although the authors insist on the
benefits of extracting features directly from the APK, without wasting time on con-
verting it into a human-readable format, they use a third-party decoder library and an
API parser for that, which is also time-consuming. In our approach, we use the reverse-
engineering tool Apktool to retrieve the Smali code. The tool generates immediately a
human-readable code (Smali), from which several features can be more easily extracted
and parsed. In the same stream of thought, Kumar et al. [25] use a deep learning model
to analyze and detect malware in Android Internet of Things (IoT) devices. Although
their claimed high accuracy scores, none of the cited pieces of work are based on a
formal specification to detect malware. Therefore, none of them can be proven correct.
Moreover, the shown results are tritely bound to the given scenarios.

Formal approaches In addition to test-based approaches, there have been several ef-
forts to use formal methods to analyze the code of Android applications. In [26], Khan
et al. put forward a formal model to analyze data flows between Android applications
using the theorem prover Coq. For that, a programming language-based security was
formalized in mechanical Coq. Applications were modeled as simple terms and the sys-
tem correctness comes down then to data-flow safety. Coq offers mechanical support for
building and checking proof of correctness. In [27,28], Betarte et al. suggested a formal
specification of Android’s permission model allowing to state and prove security pro-
prieties and enforce permission-based access control policies. Properties were proved
using the Coq proof assistant. Compared to Coq, K supports an interpreter enabling to
test and to run testing programs (executable semantics), a symbolic execution engine
for the language, and parsers generated automatically from the specification. Moreover,
the program definition with K is clearer and more concise with BNF notations, against
inductive purely syntactic definitions with Coq. In sum, theK framework is better suited
for specifying languages and verifying programs. This task is far more expensive when
using Coq. This being said, Coq remains more suited to model math-oriented problems
and to prove theorems. Other important studies [29–31] have been proposed. They were
based on the formal semantics of Dalvik bytecode for the analysis, detection of poten-
tial vulnerabilities, or malicious behavior. Despite promising results and the power of
formal methods to identify problems at an earlier stage and produce more robust lan-
guages, none of these pieces of work have been based on a language definitional frame-
work for defining formal semantics. On the other hand, none of the aforementioned
formal languages for Android application is considering the concurrent nature of the
language. K-Smali fully supports multithreading. Pegasus [14] model checks tempo-
ral logic formulas, expressing an application behavior as expected by the user, against
an abstraction called permission event graph (PEG). The PEG is then verified using a
verification tool for compliance with the specification. Other model checkers are also
proposed in [32,33]. [34] is the closest work to ours. Instead of parsing a single applica-
tion, the approach is applied to a set of applications (APK) since the checked property
is related to collusion between different applications. The Maude model checker checks
the property for the input set of Android applications. The resulting semantics was only
used to verify the collusion property. In our work, the semantics of one Android ap-
plication enables us to verify many properties related to its API calls. This feature is
a key static metric that enables to identify malicious behaviors, such as SMS Trojans,
spyware, and many other malware. In [35], we used the K-Smali semantics presented
in this paper as a formal basis to enforce security policies. LTL formulas expressing
several properties are defined and then transformed to K-Smali programs, then injected
into untrusted programs, compelling them to abide by the policy. The security policy
enforcement process has been automated in [36] using the K framework once again. In
this work, all the enforcement steps were made by K through a syntax, a configuration
and rewrite rules. It generates, from a formula defined in K and a K-Smali program, a
new version of the program that behaves according to the introduced formula. We used
the interpreter offered by K to confirm this result.

6 Conclusion

In this work, we have presentedK-Smali, which we believe is the most complete formal
semantics of the Smali language. Using theK framework, we have been able to improve
several uncovered points in Smali+, such as the program entry point, the initialization
step, and other missing details discovered when compiling the language definition. Ex-
ecution, semantics debugging are all taken care of by the framework. The interpreter
allows executing sample programs and debugging the semantics, which increases the
reliability of the generated formal model. K-Smali includes an important feature that
has been largely neglected in the state of the art, which is multithreading. This allows
testing the behavior of any multi-threaded Android program. Moreover, owing to its
built-in tools, K makes it easy to verify properties on Smali programs.

References

1. Mcafee mobile threat report 2020. https://www.mcafee.com/content/dam/
consumer/en-us/docs/2020-Mobile-Threat-Report.pdf.

2. Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu. Semantics-
based program verifiers for all languages. In Eelco Visser and Yannis Smaragdakis, editors,
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, pages 74–91. ACM, 2016.

3. Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J.
Log. Algebraic Methods Program., 79(6):397–434, 2010.

4. Marwa Ziadia, Jaouhar Fattahi, Mohamed Mejri, and Emil Pricop. Smali+: An Operational
Semantics for Low-level Code Generated from Reverse Engineering Android Applications.
Information, 11(3), 2020.

5. Kyungmin Bae and José Meseguer. Model checking linear temporal logic of rewriting for-
mulas under localized fairness. Science of Computer Programming, 99:193–234, 2015.

6. Valentin Goranko and Antje Rumberg. Temporal Logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, sum-
mer 2020 edition, 2020.

7. Denis Bogdanas and Grigore Rosu. K-java: A complete semantics of Java. In Sriram K. Ra-
jamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015, pages 445–456. ACM, 2015.

8. Daniele Filaretti and Sergio Maffeis. An executable formal semantics of PHP. In Richard E.
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in
Computer Science, pages 567–592. Springer, 2014.

9. Chris Hathhorn, Chucky Ellison, and Grigore Rosu. Defining the undefinedness of C. In
David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 336–345. ACM, 2015.

10. Grigore Rosu. K: A semantic framework for programming languages and formal analysis
tools. In Alexander Pretschner, Doron Peled, and Thomas Hutzelmann, editors, Dependable
Software Systems Engineering, volume 50 of NATO Science for Peace and Security Series -
D: Information and Communication Security, pages 186–206. IOS Press, 2017.

https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf

11. Grigore Rosu and Xiaohong Chen. Matching logic: the foundation of the K framework (in-
vited talk). In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Or-
leans, LA, USA, January 20-21, 2020, page 1. ACM, 2020.

12. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

13. Traian-Florin Serbanuta and Grigore Rosu. K-maude: A rewriting based tool for semantics
of programming languages. In Peter Csaba Ölveczky, editor, Rewriting Logic and Its Appli-
cations - 8th International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010,
Paphos, Cyprus, March 20-21, 2010, Revised Selected Papers, volume 6381 of Lecture Notes
in Computer Science, pages 104–122. Springer, 2010.

14. Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara,
Thomas R. Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Xiaodong Song. Con-
textual policy enforcement in android applications with permission event graphs. In 20th
Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, Cali-
fornia, USA, February 24-27, 2013, 2013.

15. M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano, W. Srisa-an, and X. Luo. Detect-
ing Vulnerable Android Inter-App Communication in Dynamically Loaded Code. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pages 550–558, April
2019.

16. Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, and Lamjed Ben Said. On the use of arti-
ficial malicious patterns for android malware detection. Computers and Security, 92:101743,
2020.

17. Han Gao, Shaoyin Cheng, and Weiming Zhang. Gdroid: Android malware detection and
classification with graph convolutional network. Computers and Security, 106:102264, 2021.

18. Guangdong Bai, Quanqi Ye, Yongzheng Wu, Heila Botha, Jun Sun, Yang Liu, Jin Song
Dong, and Willem Visser. Towards Model Checking Android Applications. IEEE Trans.
Software Eng., 44(6):595–612, 2018.

19. Elinor Mills. Dog wars app for android is trojanized. https://www.cnet.com/news/
dog-wars-app-for-android-is-trojanized/.

20. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems -
specification. Springer, 1992.

21. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David A. Wagner. Android
permissions demystified. pages 627–638, 2011.

22. Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing Inter-
application Communication in Android. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’11, pages 239–252, New York,
NY, USA, 2011.

23. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise Context,
Flow, field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps. SIG-
PLAN Not., 49(6):259–269, June 2014.

24. Ruitao Feng, Sen Chen, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin, and Yang Liu. A
performance-sensitive malware detection system using deep learning on mobile devices.
IEEE Trans. Inf. Forensics Secur., 16:1563–1578, 2021.

25. Rajesh Kumar, Wenyong Wang, Jay Kumar, Zakria, Ting Yang, Waqar Ali, and Abubackar
Sharif. Iotmalware: Android iot malware detection based on deep neural network and
blockchain technology. CoRR, abs/2102.13376, 2021.

https://www.cnet.com/news/dog-wars-app-for-android-is-trojanized/
https://www.cnet.com/news/dog-wars-app-for-android-is-trojanized/

26. Wilayat Khan, Muhammad Kamran, Aakash Ahmad, Farrukh Aslam Khan, and Abdelouahid
Derhab. Formal analysis of language-based android security using theorem proving ap-
proach. IEEE Access, 7:16550–16560, 2019.

27. Gustavo Betarte, Juan Diego Campo, Carlos Luna, and Agustín Romano. Formal analysis of
android’s permission-based security model,. Sci. Ann. Comput. Sci., 26(1):27–68, 2016.

28. G. Betarte, J. Campo, M. Cristiá, F. Gorostiaga, C. Luna, and C. Sanz. Towards formal
model-based analysis and testing of android’s security mechanisms. In 2017 XLIII Latin
American Computer Conference (CLEI), pages 1–10, 2017.

29. Etienne Payet and Fausto Spoto. An Operational Semantics for Android Activities. pages
121–132, 2014.

30. Erik Wognsen, Henrik Søndberg Karlsen, Mads Chr. Olesen, and René Hansen. Formali-
sation and analysis of Dalvik bytecode. Science oßf Computer Programming, pages 25–55,
2014.

31. Jinseong Jeon and Kristopher K. Micinski. Symdroid : Symbolic Execution for Dalvik. 2012.
32. Rosangela Casolare, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. An-

droid Collusion: Detecting Malicious Applications Inter-communication through Shared-
Preferences. Inf., 11(6):304, 2020.

33. Rosangela Casolare, Fabio Martinelli, Francesco Mercaldo, Vittoria Nardone, and Antonella
Santone. Colluding android apps detection via model checking. In Leonard Barolli, Flora
Amato, Francesco Moscato, Tomoya Enokido, and Makoto Takizawa, editors, Web, Artificial
Intelligence and Network Applications - Proceedings of the Workshops of the 34th Interna-
tional Conference on Advanced Information Networking and Applications, AINA Workshops
2020, Caserta, Italy, 15-17 April, volume 1150 of Advances in Intelligent Systems and Com-
puting, pages 776–786. Springer, 2020.

34. As Irina Mariuca, Jorge Blasco, Thomas M. Chen, Harsha Kumara Kalutarage, Igor Mut-
tik, Hoang Nga Nguyen, Markus Roggenbach, and Siraj Ahmed Shaikh. Detecting Mali-
cious Collusion Between Mobile Software Applications: The Android TM Case, pages 55–97.
Springer International Publishing, August 2017.

35. Marwa Ziadia, Mohamed Mejri, and Jaouhar Fattahi. Formal and automatic security pol-
icy enforcement on android applications by rewriting. In Hamido Fujita and Héctor Pérez-
Meana, editors, New Trends in Intelligent Software Methodologies, Tools and Techniques
- Proceedings of the 20th International Conference on New Trends in Intelligent Software
Methodologies, Tools and Techniques, SoMeT 202, Cancun, Mexico, 21-23 September, 2021,
volume 337 of Frontiers in Artificial Intelligence and Applications, pages 85–98. IOS Press,
2021.

36. Marwa Ziadia, Mohamed Mejri, and Jaouhar Fattahi. K Semantics for Security Policy En-
forcement on Android Applications with Practical Cases. In EAI CICom 2021, editor, 2nd
EAI International Conference on Computational Intelligence and Communications Novem-
ber 18-19, 2021 Versailles, France. EAI CICom 2021, 2021. Accepted.

	K-Smali: an Executable Semantics for Program Verification of Reversed Android Applications

