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Abstract— We report a new approach to train machine 

learning (ML) models for binary classification in order to detect 

anomalies in application log records. Contrary to the common use 

of actual values of different log fields, we used metadata of the log 

records (“log schema”) to train and test our ML models.  Our 

objective was to use ML models to automatically detect anomalous 

log records that may carry sensitive or restricted information and 

thus prevent their inadvertent transfer (“leakage”) from the source 

to destination environments. In addition to all the controls and 

measures currently in place to prevent such data leakage, our ML 

model approach provides an additional layer of data security to 

further reduce the possibility of potential data leaks.  

Several ML models (decision tree (DT), random forest (RF) and 

Gradient Boosted Tree (GBT)) were trained using a combination of 

real (class: “normal”) and synthetic (class: “suspicious”) metadata 

for approximately five million log records. The metadata for 

“normal” records were extracted from the schema of real historical 

log records that do not contain “sensitive” or “restricted” 

information. The metadata for likely “suspicious” records were 

simulated via artificially injecting structural violations that are not 

observed in the known “normal” log records. The final prediction 

(“normal” or “suspicious”) for each new record was based upon 

the use of a voting classifier. The three ML models (DT, RF and 

GBT) in our solution all individually yield high average accuracy 

in predictions (1.0, 0.99 and 1.0, respectively) over multiple 

experimental runs. Accordingly, the voting classifier consistently 

yields highly accurate predictions (1). Combined, our results 

suggest that the use of a combination of real and synthetic 

metadata derived from log schema and a voting classifier can be 

successfully applied to build a robust ML model solution for 

anomaly detection in log records. 

Keywords—anomaly detection, machine learning, decision 

tree, random forest, gradient boosted tree. 

I. INTRODUCTION 

Anomaly or outlier detection involves identification of one 
or more rare, unexpected or suspicious items, events or 
observations [1-3]. Some common anomaly detection use 
cases in the industry include abnormal traffic pattern detection 
in financial transactions, fraud detection in insurance claims, 
prevention of network intrusion, and monitoring of unusual 
system or user behavior. Traditionally, different statistical 
analytical models have been used for the purpose of anomaly 

detection in large datasets [3, 4]. The statistical methods 
usually involve computations of various statistical parameters 
of representative sample data (e.g., moving average, standard 
deviation), followed by formulation of rules based upon their 
computed values in known “normal” sample data. New 
samples that deviate from the defined “normal” patterns are 
usually identified as potential anomalies or outliers [4].   

More recently, with the advent of “big data”, it is now 
recognized that the use of machine learning (ML) models, in 
conjunction with dynamic statistical analyses, can provide 
more suitable real-time solution to most anomaly detection 
problems, particularly in cases where the distribution patterns 
of “normal” data in high-velocity massive datasets change 
frequently or evolve dynamically over time [5-9].  The ML 
modeling approach typically involves data preprocessing, 
training and testing of models, and finally detecting anomalies 
in new and commonly live streaming data using previously 
trained ML models.  

The detection of sensitive data as “anomalous” and 
prevention of their unintended transfer from a secure source 
environment to a non-secure destination environment is 
usually called “DLP” (“Data Loss or Leak Prevention”) [10, 
11].  In this specific study, our objective was to detect leakage 
of sensitive log data during their transfer from the source 
environment (secure zone) to its destination (non-secure zone) 
environment (Fig. 1).  The data from various application logs 
in the source data lake may contain sensitive information 
related to specific details on financial transactions. While it is 
necessary to move data from their source to the destination 
data lake, particularly for the purpose of log analytics and 
system monitoring, it is also critically important to prevent 
any accidental leakage of data in this process.  

 

Fig. 1 The data sources and sinks for the data lakes in the secure zone 
and non-secure zone environments 
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Here we report the results of our new approach to train 
multiple ML models using a training dataset that was prepared 
via extracting the schema of known historical “normal” log 
records. The training dataset also included synthetic records 
with artificially injected schema violations labeled as 
“suspicious” records. The ML models in our approach 
collectively yield final predictions based upon simple majority 
voting on new records as either “normal” or “suspicious”. We 
demonstrate that our approach of using a combination of log 
metadata and voting classifier consistently yield accurate 
predictions. 

II. METHODOLODIES 

     In Fig. 2, we show a schematic to outline the complete 
workflow for data preprocessing, and ML model training, 
testing and prediction. Here is a brief description of each of 
these stages: 

 

Fig. 2 The ML workflow for data leak prevention 

A. Data Preprocessing  

In typical ML modeling, actual values of individual 
features are used in training datasets as part of data 
preprocessing. In our case, we have, however, used the 
schema (metadata) of log records in order to train and test our 
ML models. As such, our sample data were comprised of 
metadata extracted from known “normal” log records 
available in the data lake in the non-secure source 
environment. The raw log records extracted from the non-
secure environment closely resemble the source log data in the 
secure zone environment, and, accordingly, our sample data 
are representative of the log records that our ML models are 
likely to ingest upon deployment in the secure zone 
environment. 

Table 1 Representative sample data for the ML models*  

 

(*NOF: No. of fields; FL: field length; Num: numerical; Alph: alpha-
betic; AlphaNum: alphanumeric; En: encrypted; Unen: unencryptted; 
Entpy: entropy) 

First, the metadata of approximately four million historical 
log records were extracted from their immediate storage in 
HBase. These pipe-delimited raw log records were parsed via 
a custom-built parser to extract the individual fields of the log 
records (Fig. 2). Each field in a record was further broken 
down into multiple sub-fields based upon its schema elements 
(e.g., field length, alphabetic, numeric, special character; also 
see Table 1). For the field type schema element, we used a 
binary indicator to populate values for its data type fields (0 
for no and 1 for yes). For example, if a given field in the log is 
of numeric data type for a specific record (e.g., “Field 
Length”; see Table 1), the value for that feature was populated 
with 1. If the value of the same feature is non-numeric for a 
different log record, the value for that record is populated with 
0. This process was repeated for each feature and for each 
record in the training dataset. Further, Shannon entropy 
(discussed later; Table 1) was computed for each feature based 
upon its unencrypted value and also encrypted values with 
respect to simple, hexadecimal and base64 encryption 
methods. Finally, the sign of each field value in the log 
(positive or negative) was populated in the “Sign” field of the 
feature matrix. Finally, if a given log record had less than 
maximum number of features for the entire dataset, the 
missing feature values were padded with 0’s in the sample 
metadata matrix. Combined, our feature matrix had a total of 
10 separate fields (“sub-features”) that describe the metadata 
for a single feature.  These records were used as “normal” 
samples (class 0) in our sample dataset. 

In the absence of known “suspicious” samples in the 
source log, we programmatically created synthetic (class 1) 
samples. This was done via artificially injecting records with 
structural violations that are not observed in “normal” 
samples. First, a custom program was used to create a 
“baseline” for all positive records for each combination of 
primary schema elements in the historical dataset. The 
baseline creation is important for our dataset because it 
ensures that all variabilities within a single field for a 
“normal” sample metadata are considered across all records 
prior to generation of synthetic suspicious samples. This, in 
turn, ensures that synthetic suspicious samples are indeed 
different from any of the existing normal samples in the log 
records. We used approximately four million class 0 and one 
million class 1 records for our sample data.  

For each sample, a random unique identifier (UUID) was 
assigned and the target variable (class 0 or 1) was labeled. 
Further, the values of three primary schema elements repre-
sentting categorical fields (Application name, log type and 

 

 

 

 

 

 

flow type) were converted to numerical values using the 
StringIndexer() Spark ML library function [12]. This function 
is similar to a hashing function that parses over each 



 

 

categorical feature column and assigns a numerical value to 
each categorical value. Next, all records (four million class 0 
and one million class 1) were mixed and reshuffled to yield 
the final sample data that were used by our ML model training 
program and subsequently for model testing. We used an 
80/20 split out of a total of approximately five million samples 
for our model training and testing.  

B. ML Model Training 

We used three different ML models for our solutions: 
Decision Tree (DT) [13, 14]; Random Forest (RF) [15, 16]; 
and Gradient Boosted Tree (GBT) classifier [17-19]. Further, 
we used a Simple Majority Voting Classifier to yield the final 
predictions for each new test sample.  

1) Decision Tree (DT) 

A decision tree is a structure that resembles an inverted 
tree with its root at the top and branches with nodes, arcs, and 
finally ending with leaves at the bottom [13, 14]. Nodes are 
assigned to feature attributes, whereas the arcs that emerge out 
of the nodes are assigned to the features in the dataset. The 
leaves of the tree are assigned to one of the target classes (0 or 
1). The partitioning of sample data continues recursively until 
each subset ends up with a single leaf representing a single 
class. As a result, the “path” of nodes links all the relevant 
features in their decreasing order of importance from the top 
to the bottom of the tree and classify the sample data into their 
respective target classes. As noted, in our specific use case, 
only two classes were used (class 1 for “suspicious” and class 
0 for “normal” samples). Thus, a complete partitioning of 
sample dataset via DT algorithm resulted in either 0 or 1 (and 
not both) as class values in the leaves.  

2)  Random Forest (RF) 

 The RF algorithm uses labeled training data to create 
a collection (“ensemble”) of Decision Trees (hence called 
“forest”) and merge them together to yield potentially more 
consistent predictions than expected from a single individual 
tree [15, 16]. Each tree was trained using a defined percentage 
of randomly selected subset from the original training dataset 
(66% with replacements). We used an ensemble of X trees in 
our RF model.   The final prediction of the model (class 0 or 
1) was based upon the built-in aggregation logic applied on 
the collection of predictions from each of the X trees 
constructed beforehand. The RF model usually tends to reduce 
the variance in predictions via the use of more trees.  

3) Gradient-Boosted Tree (GBT) 

Similar to RF, the GBT model also uses ensembles of 
decision trees. In contrast to the RF model which builds fully-
grown trees, the GBT model, however, iteratively builds 
shallower (and hence weaker) trees. The GBT model uses the 
aggregation of predictions from these multiple shallow trees in 
order to make final predictions. Unlike RF, where reducing 
variance is the primary objective, the GBT model tends to 
reduce the bias in final predictions by using more trees [17-
19]. 

C. ML Model Testing 

 In order to leverage the strengths of each of the three 
different models (DT, RF and GBT) we implemented a simple 
majority voting classifier to produce a single final prediction 
based upon the individual prediction from each model 
(described above). Each log record is scored by the three 
models, and thus yielding three predictions. These predictions 
(1’s or 0’s) were persisted in a SQL table for each new log 
record identified by their unique ID (UUID). The voting 
algorithm joins each of the three output tables corresponding 
to each model, and creates a new table with the predictions of 
each model in separate columns. The final voting score is 
calculated as the average of each row and rounded to the 
nearest integer or zero. For example, if the predictions for a 
single row are 0, 1, and 1, the rounded average for those 
predictions would be 1, essentially taking a majority vote (a 
tie results in 1 as the output). The voting algorithm uses model 
inputs dynamically, so new models can be added and removed 
without necessitating changes in the voting classifier. 

Our ML model training program trained each model with 
the training subset and saved it as a PMML file in the HDFS. 
The trained ML models were tested via using a separate 
testing program. The testing program loaded the feature 
matrix of the test data that was prepared during the initial data 
preprocessing stage prior to model training (section II A). 
Next, the testing program loaded each of the three saved ML 
models from HDFS. These saved models were used to make 
predictions based upon the test data. The voting classifier 
subsequently made the final prediction (class 0 or 1) on each 
record. The test results were saved in a file in the HDFS for 
evaluation on model performance.  

In accordance with confidentiality requirement, the details 
of scoring program and the source data used for the program 
cannot be reported here. Suffice to note that we have created a 
separate ML model scoring program where the feature matrix 
for new streaming log data will be ingested and the scoring 
program will make predictions in real time. This scoring 
program is similar to the testing program in all aspects except 
for its real-time data ingestion capability.  The scoring 
program is capable of ingesting streaming data via use of 
Spark structured streaming and make predictions in real time.  

D. ML Solution Implementation 

As noted, the ML models were built using Spark 
ML/MLLib libraries [12], and were trained and tested using 
source-like data saved in the HDFS in a 6-node Spark cluster. 
The data pipeline and saved models were deployed in the 
source environment. A custom-built script is run to fetch 
sample data from the HBase, prepare a CSV file and save it 
locally in the cluster. A shell script was created that is capable 
of kick-starting the jobs of data preprocessing, model training 
and finally model testing. Once the mode test performance is 
evaluated to be satisfactory, the scoring program is run via a 
script in order to make real time predictions. In source 
environment, the periodic evaluations of model performances 
and required retraining of models are supported as part of ML 
model life cycle. 

 



 

 

III. RESULTS 

 
As noted in section 2, the performance of each model was 

evaluated via a testing program using approximately one 
million test data that comprised a 20% split of the original five 
million samples. The total training time for the three ML 
models was estimated to be approximately 2 hours and 30 mins 
using about 4 million training samples. As expected, the 
elapsed time for ML model testing, on the other hand, was 
much smaller (less than an hour). The test results and 
performance metrics for each model are shown in Table 2. 

Table 2: Performance metrics* for the ML models and the voting 

classifier 

Models TP TN FP FN Accu. Prec. Rec. F1 AUC 

DT 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0 

RF 799130 151632 33 316 0.99 1.0 1.0 0.999 0.999 

GBT 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0 

Voting 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0 

(*TP/TN: True Positive/Negative; FP/FN: False Positive/ Negative; Accu.: 
Accuracy; Prec.: Precision; Rec.: Recall; F1: F1 Score; AUC: Area Under the 
ROC Curve) 

IV. DISCUSSIONS 

 
Three features in our historical log dataset (Application 

name, Flow type and Log type) mainly control the variability 
in the log schema, and are called “primary schema elements” 
here. As such, the metadata for a given combination of these 
primary schema elements vary only to limited extents across 
all positive log records. Conversely, two log records with 
different combination of primary predictors may have vastly 
different metadata. 

As noted, our current modeled solution uses DT, RF and 
GBT models. However, we initially experimented with 
additional binary classification models (e.g., Naïve Bayes 
[21], Support Vector Machine [22]) using the same sample 
data. Our experimental results consistently showed that the 
use of DT, RF and GBT models followed by a majority voting 
classifier yielded the most consistent and highly accurate 
results (Table 2). Accordingly, here we limit our discussion to 
the latter three models.   

The DT model uses a “greedy algorithm” that recursively 
partitions the training data into one of our binary classes (class 
0 or 1) [23]. Each partition is greedily selected based upon the 
best split from a set of possible splits. The split that maximizes 
the “information gain” at a given node in the tree is identified 
as the best split. Further, the node impurity provides a measure 
of homogeneity of the labels at the node. The node impurity is 
usually determined via one of two popular attribute selection 
methods, “gini index” or entropy. Although we evaluated both 
methods in our current implementation, the gini index method 
seems to have yielded the most consistently accurate results 
for our sample dataset. This is expected because gini index is 
more suitable where samples are split into larger partitions and 
into smaller number of classes (only two classes in our case).  

While DT models consistently yields accurate results over 
multiple runs in our testing, use of DT model alone can 
impose certain limitations [24]. For example, the DT 
algorithm trains only one single decision tree in modeling. 
Also, DT structure can be somewhat unstable because it 
depends heavily on the feature values in each node of the tree. 
As a result, the DT model can have a large impact on the 
overall structure of the tree due to small changes in the 
features values in the training dataset. Further, DT models are 
also prone to overfitting on the training data.  For these 
reasons, we have used two additional “ensemble” methods 
(“bagging” and “boosting”) in our modeling in order to build a 
more robust solution. The two ensemble models we have used 
for “bagging” and “boosting” are a random forest (RF) model, 
and a gradient-boosted tree (GBT) model, respectively. 

The RF and GBT models attempt to address the issue of 
overfitting observed in the DT model via training multiple 
decision trees in parallel. In our RF model, we have used a 
66% subset of training data with replacement in order to build 
an ensemble of X separate trees [25]. The use of more trees 
helps to improve the model performance in two divergent 
ways in RF and GBT models. Notably, the RF model reduces 
the variance in predictions by using more trees, whereas more 
trees in the GBT model tend to reduce the bias observed in a 
single tree.  

Both RF and GBT models, however, have their strengths 
and weaknesses [26]. For example, GBTs train one tree at a 
time, whereas the RF models train multiple trees in parallel. 
As a result, GBT models can take longer to train than RF 
models using the same training data. Note that the GBT 
model, however, can use shallower trees than in RF models in 
order to reduce the training time. Further, RF models are 
usually easier to tune because model performance improves 
monotonically with addition of progressively larger number of 
trees. The performances of GBT models, on the other hand, 
can degrade if the number of trees continues to grow beyond 
its optimum number. The two algorithms, when used in 
combination via voting, thus leverage the strengths of both 
models. This is consistent with our results that RF model 
alone make small proportion, yet significant number of false 
positive (FP) and false negative (FN) predictions (33 and 316, 
respectively; see Table 2), whereas the voting classifier 
combines the results of all three models (including GBT) and 
makes 100% accurate predictions based upon our test data. 

The DT and GBT models consistently yield accurate 
predictions over multiple runs (accuracy = 100%; see Table 
2). Similarly, the accuracy in predictions from the RF model is 
also impressively high (> 99%). Such high accuracy in 
prediction from individual models in some cases may indicate 
possible “overfitting” of training samples. The issue of 
overfitting can be identified via comparative evaluation of 
model performance during training and testing. For example, 
if a highly complex ML model is used in training, it can result 
in high training accuracy, yet the same model is likely to fail 
to “generalize” on new samples. Each of our three ML 
models, on the other hand, yields highly accurate predictions 
on a large subset of testing samples (~ one million that were 
not used during model training). This suggests that our two 



 

 

 

Fig. 3 Chart of the relative importance of 10 best features in the training 
dataset for the DT model. These 10 features collectively account for 
~51% of the cumulative feature importance. 

target classes (class 0 and 1) are linearly separable in the 
feature space of our sample dataset. This is consistent with our 
observation that some of the features with highest importance 
(e.g., Shannon entropy values) are distinct between the two 
classes. As noted, each field in the log record was broken 
down to 10 separate sub-features in our dataset (section II A). 
Also note in Fig 3, that the 10 features that together contribute 
to more than 50% of feature importance in our DT model are 
not the 10 “sub-features” of a single feature. Instead, the 10 
important features include seven distinct features from the 
dataset (ranging from feature number 6 through 67). This 
suggests that the DT model predictions are not heavily biased 
based on one or two particular features. Further, except for 
features 6 and 7, the other features carry somewhat equal 
importance (~ 2%: see Fig 3). Combined, these results suggest 
that multiple distinctive features in the dataset allow the DT 
model to separate the two target classes (0 and 1) on the 
feature space with minimal or no overlap. 

The RF model yields some incorrect predictions (FP = 33 
and FN = 316; Table 2) that constitute a very small fractions 
of the total predictions (< 0.01%). Although such a low 
percentage of incorrect prediction is acceptable in most use 
cases, we chose to build a more robust solution for our use 
case. This is because the log records misclassified as 
“suspicious” (false positive (FP)) are otherwise candidates for 
blocking from the source to destination environment. 
Conversely, the 316 false negative (FN) predictions represent 
records that are actually suspicious, yet the RF model failed to 
classify them correctly. As such, the data leakage of these 
records from the source to destination environments cannot be 
prevented, and it can pose a data security risk. 

Although both false positive and false negative predictions 
are undesirable, false negative predictions, as discussed above, 
pose greater risk of data leakage in our use case. Accordingly, 
one of the acceptance criteria for our ML models was to 
achieve minimal or no false negative predictions. To this end, 
we have leveraged multiple ML models (DT, RF and GBT), 
rather than relying solely on one single model. Our results 
suggest that the use of voting classifier to aggregate the 
predictions from these three individual models and make final 

prediction based on majority voting yield consistently highly 
accurate (100%) predictions.  

V. CONCLUSIONS 

In this study, we have demonstrated the effectiveness of a 
new approach of using log metadata to train machine learning 
(ML) models for binary classification in detecting suspicious 
records that may carry sensitive or restricted information. We 
have used a combination of real (“normal”) and synthetic 
(“suspicious”) metadata for approximately five million log 
records and trained three ML models (decision tree (DT), 
random forest (RF) and Gradient Boosted Tree (GBT)). These 
three ML models in our solution all individually yield high 
average accuracy in predictions (1, 0.99 and 1, respectively) 
over multiple experimental runs. The final predictions (class 0 
for “normal” and class 1 for “suspicious”) were obtained via a 
custom voting classifier based upon the aggregated majority 
voting on the predictions form each of the three ML models. 
The voting classifier consistently yields highly accurate 
predictions (accuracy = 1.0). Combined, our results suggest 
that the use of a combination of real and synthetic metadata 
derived from log schema and a voting classifier can be 
successfully applied to build a robust solution for anomaly 
detection in log records. 

In the future, we intend to explore the efficacy of deep 
learning (DL) models (e.g., Autoencoder, Restricted 
Boltzmann Machine (RBM)) as additional methods for 
detecting anomalous log records. Similarly, different natural 
language processing (NLP) methods can also be potentially 
used to detect sensitive information in log records based on 
actual values of different fields rather than use of their 
metadata (as used in our current ML solution). Finally, in 
contrast to our current implementation, the different ML 
models and the voting classifier can be deployed as 
microservices that can run concurrently and also as self-
contained services, rather than sequentially in a monolithic 
application. The use of microservices as ML models can 
significantly reduce the training and testing time of the models 
and enable the application to make both training and scoring at 
the same time. 
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