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Abstract: 
Merger of two different ‘class’ yield a higher degree probability of ‘impacts’ – To be produced in further research; than otherwise – 
‘class’ of unimodular structures i.e., ‘class’ with lesser degrees being transformed to the same order criterions in a ‘weighted’ way. This 

being established in converge -∆−: originating from the source concerned: Then emergent throughout in the separate case; being diverge 

- ∆+ with opposite orientation. Norming over variables – Classifiers are analyzed for each probability class 
 

Classifiers: 

Class ∩1 and class ∩1     being considered as the base case being attributed notionally although in a ‘fuzzy’ way being established in orders 

less than ‘concerned hypothesis’ for ‘class’ ∩1 and  ∩2 ∃∆−≈ ∆+  ∀𝑐𝑜𝑛𝑐𝑒𝑟𝑛𝑒𝑑 𝐴𝑇𝐿𝐴𝑆: ‘Structures with algebraic variables’ or otherwise 
to be specified later.  
 

Analytics: 
Bayesian in a modified approach as prepared for this study. 
 

Parameters: 
 

𝐶𝑙𝑎𝑠𝑠 𝑃𝑟𝑜𝑏𝑎𝑖𝑙𝑖𝑡𝑦 𝐴𝑇𝐿𝐴𝑆

 ∩1  ∩1 ∆+

≲
 ∩1    ∩2 ∆−

       𝑈𝑛𝑖𝑚𝑜𝑑𝑢𝑙𝑎𝑟 ⟶  ∀ 
+1

−1

 𝑤𝑕𝑒𝑟𝑒 + 1 ⟹  +𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑠  ∃ − 1  ∩1  ∩1    
𝑙𝑒𝑠𝑠  𝑤𝑒𝑖𝑔 𝑕𝑡𝑒𝑑  𝑡𝑕𝑎𝑛
                ∩1  ∩2 

 

Results: 
To be established over repeated revisions replacing variables as constants for all the Parameters  concerned. 
 

Approach: 

Bayesian Inference; 𝑑𝑒𝑔𝑕  Parameters;  𝜁 − 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑆𝑡𝑟𝑜𝑛𝑔; 𝜁 − 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑊𝑒𝑎𝑘; Bernoulli Samples 
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Methods: 
 
 
 
 
 
 
I Parameterization  
 
Regression coefficient – 𝜇 ≅  ∩1  ∩2   | Symbol  𝑢𝑠𝑒𝑑 𝑕𝑒𝑟𝑒 𝑓𝑜𝑟 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 | 𝑒𝑎𝑐𝑕 𝑐𝑙𝑎𝑠𝑠 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑠𝑢𝑏 
 

Probability of the distributions – 𝜌 𝜇  for distributions concerned 𝜇 
 

Sampling distribution – 𝜌 𝒟|𝜇  where 𝒟 = 𝑑𝑎𝑡𝑎𝑠 𝑡𝑕𝑎𝑡 𝑎𝑟𝑒 𝑟𝑖𝑔𝑕𝑡 𝑛𝑜𝑤 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 
 
 

 
 
 
 
 
II Theorem 
 

𝜌 𝜇|𝒟 =
𝜌 𝒟|𝜇 𝜌 𝜇 

 𝜌 𝒟|𝜇 𝜌 𝜇 
=

𝜌 𝒟|𝜇 𝜌 𝜇 

𝜌 𝒟 
 

 
Where,  
 

𝜌 𝜇  is prior distribution 

𝜌 𝜇|𝒟  is posterior distribution            ⟹     𝜌 𝜇|𝒟  ∝ 𝜌 𝒟|𝜇 𝜌 𝜇  

𝜌 𝒟|𝜇  is the sample distribution 
 
 

 
 
 
 
 
 
III Sample Datasets 
 
𝐴𝑇𝐿𝐴𝑆 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 𝐻𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑖𝑧𝑒𝑑 𝐹𝑎𝑐𝑡𝑜𝑟𝑠

∩1∩1   ∩1∩2

∆+ 𝑛 𝜕𝑛 𝜕 𝑛

≈

∆− 𝑛 𝜕𝑛 𝜕 𝑛

        

 
 
 

 
 
 
 
 
 
 
 
 
 

∃ 𝜕 𝑛 ≳ 𝜕𝑛  
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IV Inference 
 

𝑑𝑒𝑔𝑕  Parameters with almost no available information are 𝑥, 𝑦 ∃𝑥 = 1, 𝑦 = 1 ⊆ 𝑑𝑒𝑔𝑕  
 
 
 

 
 
 
 

IV.I Weak Cases (∆−) 
 

 

 𝜌 𝜇 ≡
𝜁 𝑥 + 𝑦 

𝜁 𝑥 𝜁 𝑦 
𝜌𝑥−𝑦 1 − 𝜌 𝑥−𝑦 =

2!

0! 0!
𝜌0 1 − 𝜌 0    ⟹ 𝜌 𝜇  ∝  𝜌0 1 − 𝜌 0  

 

𝐹𝑎𝑐𝑡𝑜𝑟𝑠: 𝛼 for 𝜕𝑛   |  𝛽 for 𝜕  
 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠:  ×𝑖

𝛼+𝛽

𝑖=1

        ∃ ×𝑖=  
𝑖 = 1, 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
𝑖 = 0, 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑕𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑖𝑧𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

  

 
 

𝑇𝑕𝑢𝑠: 𝜌 𝒟|𝜇 =  𝜌×𝑖

𝛼+𝛽

𝑖=1

 1 − 𝜌 1−×𝑖
  ⟹  𝜌 𝜇|𝒟 ∝ 𝜌𝛽  1 − 𝜌 𝛼  

 
 
 
 
 
 
 
 

IV.I Strong Cases (∆+) 

 

 𝜌 𝜇 ≡
𝜁 𝜕𝑛 + 𝜕 𝑛 

𝜁 𝜕𝑛 𝜁 𝜕 𝑛 
𝜌𝜕𝑛−1 1 − 𝜌 𝜕

 
𝑛−1  

 

𝑇𝑕𝑢𝑠: 𝜌 𝜇|𝒟 ∝ 𝜌𝛽 1 − 𝜌 𝛼 ∗ 𝜌𝜕𝑛−1 1 − 𝜌 𝜕
 
𝑛−1    ⟹  𝜌 𝜇|𝒟 ∝ 𝜌 𝜕𝑛−1  +  𝛽  1 − 𝜌  𝜕

 
𝑛−1 +  𝛼  
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V Establishing Hypothesis 
 

∆+: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝜌 =
 𝜕 𝑛 − 1

𝜕𝑛 − 1    +   𝜕 𝑛 − 1
 

 
 

∆−: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝜌 =
   𝛼

𝛽  +    𝛼
 

 
 
 
 
With the Weak Priory (vague information) 
 
 
 
:  

∆−: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝜌 =
   𝛼

𝛽  +    𝛼
 𝑺𝒍𝒊𝒈𝒉𝒕𝒍𝒚 𝒈𝒓𝒆𝒂𝒕𝒆𝒓 𝒕𝒉𝒂𝒏 ∆+ : 

 𝜕 𝑛 − 1

𝜕𝑛 − 1    +    𝜕 𝑛 − 1
 

 
 
 
 

 
 
 
 
 
VI Remarks 
 
Considering the hypothesis the weight to be established to the weight to be considered are taken as a 5.1 – 4.9 % with 0.2 more 

inclined in the ‘establishing class or sides’ 𝑤𝑕𝑒𝑟𝑒 + 1 ⟹  +𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑠  ∃ − 1  ∩1  ∩1     
𝑙𝑒𝑠𝑠  𝑤𝑒𝑖𝑔 𝑕𝑡𝑒𝑑  𝑡𝑕𝑎𝑛
                 ∩1  ∩2. 

 

 
 
. 
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