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Abstract. This paper presents a novel exploration of the relationship between coarsening annealing 

and the moving boundary problem approach, with a particular emphasis on diffusion, Stefan's 

solution, and non-integer exponents in the power law of interface versus time. The research delves 

into the complex dynamics of phase transformations, specifically the process of coarsening 

annealing, and how it can be effectively modeled using the moving boundary problem approach. 

The role of diffusion in these transformations is explored, elucidating how atomic mobility 

influences the coarsening process. A significant focus of this study is the investigation of non-

integer exponents in the power law of interface versus time. This aspect challenges traditional 

models and provides a more nuanced understanding of phase transformations. It is demonstrated 

that non-integer exponents can accurately model the dynamics of the interface over time, offering 

new insights into the coarsening process. This research has significant applications in materials 

science and engineering, particularly in the design and manufacture of alloys and composite 

materials. Furthermore, our findings can inform the development of more efficient manufacturing 

processes, reduce waste and improving product quality. 

Introduction 

1. Coarsening often modeled by the Lifshitz-Slyozov-Wagner (LSW) theory, describes the 

diffusion-controlled growth of particles. The moving boundary problem, given by the Stefan 

problem, is another critical model used to describe phase changes. This paper aims to integrate 

these models, providing a robust framework for analyzing phase transformations. 

 

  2. Coarsening Annealing:Coarsening, or Ostwald ripening, occurs when larger particles grow at 

the expense of smaller ones, reducing the system's overall energy. This process is described by the 

LSW theory, which describes  the growth dynamics of particles in a supersaturated solution. The 

theory assumes steady-state diffusion and spherical symmetry, simplifying the complexities in 

coarsening  . 

  

           (1) 

  

where  r  is the radius of a particle, R  is the average radius of particles, and  k  is a constant related 

to the diffusivity and solubility of the material. 

  

3. Moving Boundary Problem Approach:  The moving boundary problem describes the evolution 

of the interface between two phases during a phase change. The classical Stefan problem,  involves 

solving heat equations in both phases. The position of the interface is determined by the heat 

balance condition: 



 

  

         (1a) 

 

  

where  is the density, L  is the latent heat,  xs  is the position of the solid-liquid interface,   s 

andl  are the thermal conductivities of the solid and liquid phases, respectively, and Ts  and Tl  are 

the temperatures in the solid and liquid phases . 

  

 4. Diffusion: Diffusion is a key process in phase transformations, involving the movement of atoms 

to form more stable phases. The diffusion rate is temperature-dependent,  described by Fick's laws: 
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where  J is the diffusion flux,  D  is the diffusion coefficient,  C  is the concentration,  t  is time, and  

 denotes the spatial gradient . 

  

 5. Stefan’s Solution: Stefan’s solution provides a mathematical description of the phase boundary 

evolution by solving heat equations in the two-phase regions. The Stefan condition is an energy 

balance at the moving interface: 

  

     (2) 

  

where S is the position of the phase boundary,  kl  and  ks  are the thermal conductivities of the 

liquid and solid phases, and  T  is the temperature . 

  

 6. Non-Integer Exponents in the Power Law of Interface versus Time 

The kinetics of certain phase transformations can be predicted using non-integer temporal 

exponents in the power law of interface versus time. This is described by: 

  

          (3) 

  

where R(t) is the radius of the growing particle,  t  is time, and  n  is a non-integer exponent. This 

reflects concentration-dependent diffusion through the interface, challenging traditional integer-

based models . 

  

Analysis of Time Exponents Using the Cahn-Hilliard Equation 

  

The Cahn-Hilliard equation describes phase separation processes in binary mixtures and can be 

written as: 

  

          (4) 

 

  



 

Where (x,t) is the order parameter (e.g., concentration difference), M is the mobility (assumed 

constant), and F[ is the free energy functional. For a simple form, the free energy functional can 

be written as: 

  

       (5) 

 

  

Where  alpha and   beta are constants . This leads to the Cahn-Hilliard equation: 

  

       (6) 

  

  

 Usual Form: The usual form of the Cahn-Hilliard equation with constant mobility is: 

  

       (7) 

  

 Similarity Solutions: For similarity solutions, we consider solutions of the form: 

  

        (8) 

  

where  is the similarity variable. 

  

 Small Time (Early Stage): At small times, the dominant term in the Cahn-Hilliard equation is the 

linear term. Neglecting the nonlinear term, we get: 

  

           (9) 

  

Using the similarity form  (x,t) = f(), we get: 

 

       (10) 

  

Simplifying and considering dominant terms for small t, we get: 

  

   (/4) f’(h) +f”” =0        (11) 

  

  

Large Time (Late Stage): At large times, the nonlinear term becomes significant. The equation 

balances both linear and nonlinear terms. We use the same similarity form and equate terms: 

  

     (12) 

  

This leads to the nonlinear similarity equation: 

  



 

       (13) 

  

 Asymptotic Solutions 

To expand the similarity solutions () and () further for the Cahn-Hilliard equation, we need to 

derive and analyze the asymptotic forms for both small and large times. 

Details are given in the Appendix 

 

Summary of Asymptotic Solutions 

  

1. Small Time 

         (14) 

 The solution spreads out with a characteristic length scale  and the amplitude decays as   

 t
-1/4

. 

  

2. Large Time: 

          (15) 

 The solution approaches equilibrium values  with interfaces described by a hyperbolic tangent 

profile. 

  

Intermediate Time Behavior: At intermediate times, the dynamics of phase separation governed 

by the Cahn-Hilliard equation exhibit a transitional behavior between the early diffusive regime and 

the late-time phase separation regime. 

  

Transitional Dynamics 

  

1. Amplitude Growth and Coalescence:  Initially, during intermediate times, the amplitude of 

fluctuations in the order parameter () continues to grow, though at a slower rate than  the early 

stages. This growth arises due to  competition between surface tension (driving phase separation) 

and diffusion (smoothing out concentration gradients). 

  

2. Coarsening: As time progresses through the intermediate stage, small domains of different 

phases begin to coalesce, forming larger domains. This coarsening process occurs because smaller 

domains have higher curvature and therefore higher energy, driving them to merge into larger, 

lower-energy domains. 

  

3. Scaling Behavior: The characteristic length scale (L(t) of these domains typically exhibits a 

power-law dependence on time, , where  depends on the dimensionality of the system 

and the nature of the interfacial dynamics. For a three-dimensional system,  is commonly 

observed.  In fact this is what Lifshitz Slyozov [1], claimed 

  

 Time Dependence 

  

The time dependence of the phase separation process described by the Cahn-Hilliard equation is 

crucial for understanding how the system evolves from initial mixing to final phase-separated 

states. 

  



 

1. Early Time (Diffusive Regime): At small times, the system is dominated by diffusive processes. 

The order parameter () evolves according to the linear diffusion equation in the Cahn-Hilliard 

form: 

  

         (16) 

  

   where M is the mobility, alpha and beta  are constants, and phi represents the concentration 

difference. 

  

2. Intermediate Time (Coarsening): During the intermediate stage, the system undergoes 

coarsening, where small domains merge into larger ones. The characteristic length scale L(t) grows 

with time as , indicating a power-law growth. 

  

3. Late Time (Phase Separation): At late times, the nonlinear term  becomes dominant, 

leading to phase separation into distinct phases with well-defined boundaries. The system 

approaches equilibrium where  settles into values  1 with interfaces described by sharp profiles, 

often approximated by hyperbolic tangent functions. 

4. Hence the value of alpha is not fixed and changes with the coarsening regime. Figure 1 illustrates 

the trends for the two approximations for early and late times: 

  
  

  
Fig1: Asymptotic plots for ealy and late time evolution of the solution  

  

Discussion 

  

Research on phase transformation kinetics and materials behavior has significantly advanced 

through various landmark studies. Lifshitz and Slyozov [1] described the time-dependent growth or 

dissolution of particles in a supersaturated solution, laying the foundation for understanding particle 

dynamics over time. Earlier, Stefan [2] introduced the Stefan problem, focusing on the time-

dependent growth of phase boundaries during melting or freezing. 

 

The Cahn-Hilliard [3] equation is a critical tool for modeling phase separation and pattern 

formation in binary mixtures, highlighting the importance of time in phase separation kinetics. 

Koga and Krstic [4] emphasized control and estimation aspects in phase change models for Stefan 

problems, which are crucial for materials science applications that involve time-dependent thermal 

and phase boundary evolutions. Similarly, Cani [5] explored moving boundary problems, which 

inherently involve the time evolution of phase boundaries and interfaces in various materials 

systems. 

 



 

Ardell [6] provided theoretical insights into the effect of volume fraction on particle coarsening 

kinetics, relevant in various materials science contexts. Zhou et al. [7] investigated the kinetics of 

overlapping precipitation and particle size distribution in the Ni3Al phase, contributing to the 

understanding of alloy microstructure. Guo and Sha [8] quantified precipitation hardening and the 

evolution of precipitates, which are crucial for understanding material strengthening mechanisms. 

Baldan [9] reviewed progress in Ostwald ripening theories and their applications to nickel-base 

superalloys and other materials systems. 

 

Jayanth and Nash [10] provided insights into the factors influencing particle coarsening kinetics and 

size distribution, important for understanding the time-dependent growth of particles during phase 

transformations. Filbet and Laurençot [11] advanced computational modeling of phase 

transformations by providing numerical approximation techniques for the Lifshitz-Slyozov-Wagner 

equation. Hickman et al. [12] reinterpreted experimental data on the coarsening of solid β-Sn 

particles in liquid Pb-Sn alloys, applying theoretical frameworks to discuss the time-dependent 

processes involved. Ardell [13] revisited the fundamentals of precipitation hardening, offering 

deeper insights into its mechanisms and implications in materials science. Finally, Li et al. [14] 

proposed a new framework for transient coarsening kinetics, enhancing understanding within the 

Lifshitz-Slyozov-Wagner space. 

 

These studies collectively enhance the understanding of time-dependent phenomena in phase 

transformation kinetics, contributing to both theoretical foundations and practical applications in 

materials science. 

Conclusion 

  

The Cahn-Hilliard equation captures the intricate dynamics of phase separation in materials 

systems, exhibiting different behaviors at early, intermediate, and late times. Understanding the 

time dependence allows researchers to predict and manipulate the evolution of microstructures in 

materials, crucial for applications in metallurgy, polymer science, and other fields of materials 

engineering. 

  

By studying these time-dependent behaviors, researchers gain insights into optimizing material 

properties through controlled phase transformations, enhancing both theoretical understanding and 

practical applications. This overview integrates the intermediate time behavior and time 

dependence within the context of the Cahn-Hilliard equation, highlighting the progression from 

diffusive mixing to phase separation in materials science and engineering.  

These asymptotic forms help to understand the behavior of the system over different time scales, 

with the initial diffusive spread dominated by linear terms and the long-term phase separation 

influenced by nonlinear terms. 

 

The integration of coarsening and the moving boundary problem provides a comprehensive 

framework for understanding phase transformations in materials. By exploring diffusion, Stefan’s 

solution, and non-integer exponents in the power law of interface versus time, this paper contributes 

to both theoretical insights and practical applications in materials science and engineering. Future 

research could further explore the complexities of phase transitions, potentially applying these 

concepts to specific materials systems for enhanced understanding and application. 
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Appendix: Mathematical Derivation 

Small Time Asymptotic Solution: For small times, the equation reduces to: 

  

  
  

This is a linear fourth-order differential equation. For small times, we consider the solution to be 

close to the initial condition, which we assume to be a small perturbation. A common approach is 

to look for solutions in terms of Gaussian functions or other simple forms that satisfy the 

differential equation. 

  

Assuming a Gaussian-like initial condition: 

  

  



 

  

Where (epsilon) is a small parameter and sigma  is the initial width, we propose a solution of the 

form: 

  
  

where A and B are constants to be determined. 

  
Substituting \) into the differential equation: 

  

  
  

we calculate the derivatives: 

  
  

  
  

Substituting these into the equation gives: 

  

[  

  

Canceling the exponential terms and solving for \(B\), we find: 

  

 
  

For small \(\eta\), the leading order term is: 

  

  
  

  

  
  

  
  

Therefore, the small time solution is: 

  

  
  

 Large Time Asymptotic Solution: For large times, the nonlinear term  becomes 

significant, leading to: 

  

  
  

This is a nonlinear differential equation. For large times, we expect phase separation, leading to 

regions where  approaches  (the equilibrium values of \(\phi\)) separated by interfaces. 

  



 

Near the interfaces, we can use a hyperbolic tangent profile, a common solution for phase 

separation problems: 

  

  
  

where  is a characteristic interface width. 

  

Substituting this into the differential equation, we verify that it approximately satisfies the 

nonlinear terms: 

  

  
  

  
Balancing the terms in the differential equation, we get: 

  

\[ . \] 

  

For large times, we simplify to: 

  

  
where \(\xi\) is related to the competition between the linear and nonlinear terms, typically 

proportional to .  

  

Using perturbation for small large t) 

  

To find the asymptotic solution for small () of the given equation 

  

  
we proceed with an asymptotic analysis assuming can be expanded in a series around  = 0. 

  

Let's denote the small parameter as We seek a solution of the form 

  
 

where  fi(epsilon) are functions of epsilon   to be determined. 

  

Substituting  f() into the equation and equating coefficients of like powers of  epsilon, we obtain: 

  

1. Leading Order (epsilon^0): 

   
   Since   is small, we assume ( f_0(0) approx 1 ) (a typical assumption for the order parameter in 

such problems). Solving for ( f_0(0) ): 

  

  
2. Next Order  epsilon^1 

   
  



 

   Again using  , 

  

    
  

   Hence, f_1(epsilon) ) is a function of (epsilon), but to leading order, ( f_1(0) ) is arbitrary and  

f_1''''(0) = 0 . 

  

3. Higher Orders (epsilon^2), (epsilon^3), etc.): 

   The analysis proceeds similarly for higher orders, with each successive equation involving 

derivatives of  f_i(epsilon) evaluated at (epsilon = 0). 

  

Integration f””1 =0 ,  f1 varies as 
4
 

  

Since  ~ 1/t 
1/4   

the time dependence  of  f  is as the fourth root of t 

Therefore, the asymptotic solution for small \(\eta\) is given by: 

  

  
where are determined by solving the respective equations for each order. 

  

To summarize, the leading order term f_0() gives ( f) ~ 1 ) as ( 0), and corrections to this 

leading behavior are given by subsequent terms  f_1(epsilon), f_2(epsilon), ...) 

 


